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Gaussian process prior models, although well known in the Bayesian statistics community, are a relatively new

approach for modelling of dynamic systems and consequently a novelty in systems and control community. The

Gaussian process prior model is a probabilistic nonparametric model. The complexity of such model depends on

the amount of input data used for identification and contained in the model. This complexity adds to the com-

putational load necessary for multiple-step-ahead prediction and for model simulation. The combination of local

linear models and sparse data in off-equilibrium regions can be utilised to reduce the amount of data in Gaus-

sian process model. This approach is used in the paper for the modelling of a gas-liquid separator process plant,

where substantial amount of measurement data in equilibrium region and sparse measurement data in distance

from equilibrium region are combined in one Gaussian process model.

1. INTRODUCTION

Owing to operating and safety constraints, the available measured data from which we are
often required to construct an empirical model of process plant is often concentrated mainly around
equilibrium points with only relatively sparse data measured far from them. A common approach
in this situation is to build local models using the data in the vicinity of equilibrium points and then
blend these models so as to obtain a nonlinear model covering the operating envelope, e.g. [3],[6].
In paper [6] the use of Gaussian processes (GP) for modelling dynamic systems has been proposed
as an alternative approach. Further developments of this probabilistic, nonparametric approach for
modelling dynamic systems led to incorporation of local models, e.g [4] and to the local model
network version of GP modelling [2].

Gaussian process prior model [7] is a probabilistic, non-parametric model used mainly in the
Bayesian statistics community. It can be used to tackle many of the standard problems usually solved
by artificial neural networks and is applied on a range of static nonlinear regression problems. How-
ever, it is only until recently that they have been also used for dynamic systems modelling and in the
context of iterative multiple-step ahead prediction, e.g. [5]. Gaussian process model describes both
the dynamic characteristics of nonlinear system, and at the same time provides information about the
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confidence in its predictions. The model can highlight the areas of the input space where prediction
quality is poor due to the lack of data, by indicating the higher variance around the predicted mean.

A key issue in nonparametric GP models is that in their simplest form the computational burden
is relatively large. The computational burden is associated with training data covariance matrix in-
version and can be reduced by employing approximate inverses. An alternative approach considered
in this paper is to summarise the measured data in the vicinity of the equilibrium points into the local
models which are then incorporated into the GP model. This not only accords well with engineering
practice but has the potential to directly reduce the computational burden.

Despite the current challenges, such as the computational burden associated with the number of
training data, the Gaussian process approach has a number of exciting advantages. The simple model
structure, reduced problems associated with the choice of the model structure and the uncertainty
information on the predictions are attractions of the Gaussian process approach. The model also
offers the possibility to incorporate various kinds of prior knowledge into the model, e.g. linear local
models, statical characteristic, hysteresis, etc. Furthermore, Gaussian Process models could be used
for investigating the potential benefits of a nonparametric approach to modelling.

The purpose of this paper is to present an identification case study with measurements from
a gas-liquid separator pilot plant using Gaussian Process model with incorporated linear models
(LMGP model). The study will show that the use of this model:

• solves issues of unbalanced distribution of data points for modelling,

• reduces the large computational burden due to the large amount of contained data in ordinary
Gaussian Process model and

• provides not only the information about plant behaviour but also information about the model
prediction confidence.

2. MODELLING WITH GAUSSIAN PROCESSES

2.1. GAUSSIAN PROCESS MODEL

A detailed presentation of Gaussian processes can be found, e.g., in [7]. The Gaussian process
is a collection of random variables with a joint multivariate Gaussian distribution,f(x1), . . . , f(xn) ∼
N (0,ΣΣΣ), and is fully described by the mean and covariance matrix. For simplicity, a zero-mean
process is assumed. The elementsΣij of the covariance matrixΣΣΣ are covariances between the val-
ues of the functionf(xi) andf(xj) and are functions of the corresponding argumentsxi andxj:
Σij = C(xi,xj). The covariance functionC(., .) can be of any kind, provided that it generates a
positive definite covariance matrixΣ. The Gaussian Process model fits naturally in the Bayesian
modelling framework as it places a Gaussian process prior directly over functions instead of param-
eterisingf(x). In the following, a stationary process is assumed, where the stationarity assumption
implies that the covariance between two points depends only on the distance between them and is
invariant with a translation in the input space. Then a common choice of covariance function is the
squared exponential or Gaussian function:

cov[f(xp), f(xq)] = C(xp,xq) = v1 exp
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wherexd
p denotes thedth component of theD-dimensional input vectorxp, andv1, w1, . . . , wD are

free parameters called hyperparameters in the GP model framework. This covariance function is
such that the points that are close together in the input space lead to more correlated outputs than the
points further apart (a smoothness assumption). The parameterv1 controls the vertical scale of the
variation, and thewd’s are inversely proportional to the horizontal length-scale in dimensiond.

Let the input/target relationship bey = f(x) + ε. We assume an additive white noise with the
variancev0, ε ∼ N (0, v0), and put a Gaussian process prior with the covariance function (1) and
the unknown parameters onf(.). Within this probabilistic framework, we can writey1, . . . , yN ∼
N (0,KN), with K = ΣΣΣ + v0I whereI is anN × N identity matrix. Making a prediction with this
model means that we are searching for the predictive distributionyN+1 corresponding to a new given
inputxN+1 based on a set ofN training data pairsxi, yi

N
i=1.

If we split y1, . . . , yN+1 into two parts,y = [y1, . . . , yN ] andy∗, we can write

y, y∗ ∼ N (0,KN+1) with KN+1 =
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whereK is anN×N matrix giving the covariances betweenyp andyq, for p, q = 1 . . . N , k(x∗)
is anN × 1 vector giving the covariances betweeny∗ andyp (kp(x

∗) = C(xp,x
∗), for p = 1 . . . N ),

andκ(x∗) = C(x∗,x∗) is the covariance between the test output and itself.
For our modelling purposes the joint probability (2) can be divided into a marginal and a condi-

tional part. Given a set ofN training data pairs,{xp, yp}N
p=1, the marginal term gives us the likelihood

of the observed data:y|X ∼ N (0,K), wherey is theN×1 vector of the training targets andX is the
N ×D matrix of the corresponding training inputs. The unknown hyperparameters of the covariance
function and the noise variancev0 can then be estimated via the maximization of the log-likelihood.
The conditional part of (2) provides the predictive distribution ofy∗ corresponding to a new, given
input x∗. We only need to condition the joint distribution on the training data and the new input
x∗, p(y∗|y,X,x∗) = p(y,y∗)

p(y|X)
. It can be shown that this distribution is Gaussian with the mean and

variance

µ(x∗) = k(x∗)T K−1 y (3)

σ2(x∗) = κ(x∗) − k(x∗)T K−1 k(x∗) (4)

In this way we can use the meanµ(x∗) as an estimate for the predictive distribution ofy∗ and the
variance or standard deviationσ(x∗) as the uncertainty or the measure of confidence attached to the
estimate.

The above modelling procedure was developed for modelling static nonlinearities, but it can
be readily applied for modelling dynamic systems, as shown in [5]. Consider a dynamic system in
the ARX representation, where the output at time stepk depends on the delayed outputs and the
exogenous control inputs:

y(k) = f(y(k − 1), . . . , y(k − L), u(k − 1), . . . , u(k − L)) + ε(k) (5)

whereε(k) is white noise and the outputy(k) depends on the state vectorx(k) = [y(k − 1), y(k −
2), . . . , y(k − L), u(k − 1), u(k − 2), . . . , u(k − L)]T at time stepk.



Multiple-step-ahead predictions of a system modelled by (5) can be achieved by iteratively
making repeated one-step-ahead predictions, up to the desired horizon. A naive way of doing so is,
at each time-step, to feed back the mean of the predictive distribution (the estimate of the output) by
consideringx(k + n) = [ŷ(k + n− 1), . . . , ŷ(k + n−L), u(k + n− 1), . . . , u(k + n−L)]T , where
ŷ(k + n − i) is the point estimate ofy(k + n − i). Although this approach, also called output error
approach, is approximate, as the variance of the lagged outputs on the right-hand side of equation (5)
is neglected, it is commonly used when modelling dynamic systems with neural networks or fuzzy
models. Another possibility for multiple-step-ahead prediction is presented in [1] where the Monte
Carlo simulation is used.

2.2. INCORPORATION OF DERIVATIVE OBSERVATIONS

In this paper we are only summarising the main modelling results of various authors, because
the focus of the paper is the modelling case study. The topic is explained in e.g. [1],[4].

The main idea behind the incorporation of derivative observations is to join two different sorts
of data in a single model. This comes in very useful for dynamic systems modelling, as we will see
later. Since differentiation is a linear operation, the derivative of a GP remains a GP. This enables
the Gaussian process modelling framework to be extended to include observed derivatives of the
function as well as (or instead of) the values of the function itself. The output (target) vectory, which
before consisted solely of output measurements, now also contains the derivatives of regressors. The
corresponding inputs remain the values of the regressors associated with each function and derivative
observation.

If the function derivatives are treated in the same way and in the same set of training pairs as
function observations, then due to the different nature of the data one must appropriately change the
covariance function (which changes the covariance matrix), reflecting the covariance between the
data. In the case of the Gaussian covariance function (1), the covariance between the functional and
derivative data becomes:
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and in the case of two derivative data the covariance function becomes:
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where∂yp

∂xd
p

denotes the first derivative ofyp in the direction of thedth component of theD-dimensional
input vectorxp.

When the covariance matrixK and the vectork∗ are expanded with covariance functions for
derivative observations (6) and (7), the predictive distribution of a function output corresponding to
a newx has a mean and variance that can be calculated by equations (3) and (4), as is the case when
using only one sort of data, i.e., function observations.

Derivative observations around a selected equilibrium point can, for dynamic systems, be inter-
preted as the parameters of the local linear model about this particular point and can be synthesized
using standard linear regression. With such a synthesis the information carried by (many) training



points in the vicinity of equilibrium points can be reduced to the local model, thereby effectively
reducing the number of data points in the model for computational purposes.

The data may or may not contain information about the noise. For function observations, as-
suming white noise, the noise information is added to the diagonal elements of the covariance matrix
corresponding to these points. If no information is available, the noise variancev0 is learned as in
the case without derivative observations. When standard identification methods are used the noise
for every derivative observation is also obtained. The acquired covariance matrices of each identified
linear local model are added to the overall covariance matrix for the corresponding derivative com-
ponent.

3. CASE STUDY

3.1. PROCESS PLANT DESCRIPTION

The semi-industrial process plant used for the case study in the paper is the unit for separating
the gas from liquid that forms part of a larger pilot plant positioned at Department of systems and
control, Jozef Stefan Institute. The screen shot from SCADA presenting the scheme of this plant is
given in Figure 1.

The role of the separation unit is to capture flue gases under low pressure from the effluent
channels by means of water flow, to cool them down and then supply them under high-enough pres-
sure to other parts of the pilot plant.

The flue gases coming from the effluent channels are absorbed by the water flow into the water
circulation pipe through injector.

The water flow is generated by the water ring pump. The speed of the pump is kept constant.
The pump feeds the mixture of water and gas into the tank, where gas is separated from water. Hence
the accumulated gas in tank forms a sort of ‘gas cushion’ with increased internal pressure. Owing
to this pressure, the flue gas is blown out from tank into the neutralization unit. On the other side,
the ‘cushion’ forces water to circulate back to the reservoir. The quantity of water in the circuit is
constant.

In order to understand the basic relations among variables and to illustrate the nonlinearity of
the process a mathematical model is introduced. The gas-liquid separation pressure sub-system of
interest can be described by a set of two equations.
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whereui is the command signal of valve Vi, i = 1, 2, where V1 is the valve on output from
tank R4.1 to other subprocess and V2 is the valve between tanks R4.2 and R4.1,hi is the level in
tank R4.i, i = 1, 2, p1 is the relative air pressure in tank R4.1,Si is the section area of tank R4.i, p0 is
atmospheric pressure,hTi is height of tank R4.i, i = 1, 2, Ri is the open-close flow ratio of valve Vi,
i = 1, 2, ki is the flow coefficient of valve Vi, i = 1, 2, Φw is the known constant water flow through
pump,αi; i = 1, 2, 3 are constant parameters.



Fig. 1: SCADA scheme of the gas-liquid separator

From the model presented, it can be seen that the nonlinear process is of a multivariable nature
(two inputs and two outputs with dynamic interactions between the channels). In our case a level
feedback control was implemented. Consequently the dynamic system could be approached as a
single-input single-output dynamic system with the command signal of valve V1 as the input and the
pressure in tank R4.1 as the output. As can be seen from Eqs. (8) pressure is nonlinearly related to
level and input flow which results in different dynamic behaviour depending on the operating region.

User-friendly experimentation with the process plant is enabled through interface with the Mat-
lab/Simulink environment. This interface enables PLC access with the Matlab/Simulink using OPC
protocol via TCP/IPv4 over Ethernet IEEE802.3. Control algorithms for experimentation can be pre-
pared in Matlab code or as Simulink blocks and extended with functions/blocks, which access PLC.
In our case all schemes for data acquisition were put together as Simulink blocks.

3.2. IDENTIFICATION AND VALIDATION

One of the reasons for difficult identifiability of nonlinear dynamic systems in general, and this
system is no exception, is in the distribution of data used for model identification. Except for the
case when the system input is a random signal with magnitudes uniformly and densely distributed
over the entire region — which is very unrealistic input — data is distributed so that the majority of
the samples are concentrated close to the equilibrium curve and only sparse data is measured on a
distance from it.

Gaussian process model is proposed as a possible solution that handles this problem caused by
unbalanced distribution of the data well due to the possibility of joining different sorts of data.



Since the process to be identified is characterised as predominantly the first order system, a
model of the form (9) is identified

p1(k + 1) = f(p1(k), u1(k), h1(k)), (9)

which means that pressurep1(k), valve signalu1(k) and liquid levelh1(k) are selected as regressors.
The mean value of the predicted pressurep1(k) is feed back, and the predicted mean and variance
are calculated as described in the previous section. Attempts have been made to identify the system
with a higher order model, but the results were not better.

Based on the response and iterative cut-and-try procedure, a sampling time of 15 seconds is
selected. Seven equilibrium points at seven different liquid levels spanning the operating region of
interest were selected. At each equilibrium point a small-scale random binary signal with zero mean
and magnitude 0.02 was applied. A linear approximation to the local dynamics at each selected
equilibrium point was obtained with linear systems identification of ARX model. In addition to this
equilibrium information, a small, sparse set of off-equilibrium input-output data consisting of 60
data points was selected. Larger numbers of off-equilibrium observations were also studied and this
number was chosen as a compromise between the accuracy of achieved fit and number of data points
used. These data points were taken from the input signal given in Figure 2. They were selected based
on the Euclidean distance from equilibria with equation (10).

(p1(k)− p1(k − 1))2 + (u1(k)− u1(k − 1))2 + (h1(k)− h1(k − 1))2 > 1.6 · 10−3 (10)

To summarise, following information was used to train the LMGP model:

• seven equilibrium input-output values spanning the operating region of interest,

• the set of coefficients of the linear models representing partial derivatives of the output in the
selected equilibrium points,

• sixty input-output values sampled from off-equilibrium points.

The response of the LMGP model on the validation input signal together with the process
response is given in Figure 3. The corresponding standard deviation and the level of liquid which
predominantly characterises the nonlinear dynamics are given in Figure 4. The goodness of fit of
both models was also compared by computing following two cost functions:

• average squared test error
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Fig. 2: Signals from which samples for identification (black dots) are taken

whereN is the number of validation points,yi is the process response (target),ŷi is the model output
(predictive mean) andσ2

i is the predictive variance at the time stepi. SE, or one of its versions,
is commonly used performance measure, which compares only the mean values of model predicted
distribution of the model to the output of the process. LD on the other hand does not take into account
only the mean value of predictive distribution but also its variance and is therefore providing more
competent measure for GP model.

4. CONCLUSIONS

A case study where Gaussian process model with incorporated linear local models is used for
the dynamic system identification of gas-liquid separator is presented in the paper.

The problem of system identifiability from the available data exist in practice as a result of an
uneven data distribution. Concentrated data in the vicinity of the equilibrium points and sparse data
far away from them make the task of identification very complex. It is very difficult to obtain a model
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Fig. 3: Response on the validation data

from such data that will describe the dynamics far away from equilibrium points as well as it does
close to them. A modelling approach that handles this situation well is GP modelling. However, any
intensive calculation with such a model could represent a significant computational burden.

GP model with incorporated linear local models represents a form of probabilistic model that is
computationally less demanding than GP model due to equilibrium data compression and reduction.
Such model can be effectively used for modelling of nonlinear dynamic systems.

The gas-liquid separator plant is a representative of nonlinear process plants where uneven mea-
surement data distribution takes place. A model based on these measurement data was developed in
two stages. Firstly, local linear models were obtained around seven equilibrium points. These data
were combined with sixty off-equilibrium data points and seven equilibrium points into Gaussian
process model with incorporated linear local models. The model validation of obtained nonparamet-
ric model with relatively low number of data points is given. Obtained model can be used for various
purposes e.g. process control or prediction of plant performance.

The contribution of this paper is the application of system identification with GP models with
incorporated linear local models on a gas-liquid separator case study.

The used method is not meant as a replacement of the existing nonlinear system identification
methods. Rather it is a useful complementary approach when uneven measurement data distribution
is pronounced and when the system designer finds nonparametric model useful.
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Fig. 4: Standard deviation and the level of liquid in tank R4.1
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