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ABSTRACT. In case of an unplanned emission event from a nuclear power plant, the local population can be protected more efficiently 

when valid atmospheric dispersion model results are available. Atmospheric dispersion models use local meteorological variables as 

inputs. When atmospheric dispersion in the future is being predicted, a forecast of the local meteorological variables is needed. The most 

important variable in atmospheric dispersion modelling is wind, and accurately predicting ground level winds presents a challenge to 

numerical weather prediction models. We therefore develop hybrid models for forecasting local ground level wind at a single location 

where the terrain is complex and the average wind is weak and fluctuating. Wind speed and direction are modelled as west-east and 

south-north wind components. Each model is composed of a numerical weather prediction model and a Gaussian process statistical mod-

el that uses numerical weather predictions as some of its inputs and is trained on historical data to predict the output component. The 

most advanced Gaussian process models studied are of Gaussian process nonlinear autoregressive model with exogenous input (GP-

NARX) type. In addition to numerical weather predictions, they also use local meteorological variables, including the output variable, 

as their inputs. Numerical weather prediction results based on large scale information and fundamental knowledge of the system are thus 

supplemented by local measurements that better reflect the effects of local topography and land use. The models are tested by prediction 

and simulation. The wind components predicted by more advanced models are more accurate than raw or post-processed numerical 

weather prediction results. As an example, a model predicting 2D wind vector 1.5 h in advance achieves a NRMSE of 0.214 if it uses all 

the immediately available information. This is better than both the persistence model with NRMSE of 0.188 and post-processed NWP 

with NRMSE of 0.164. This demonstrates that hybrid modelling provides the best weather information for short-term and medium-term 

atmospheric dispersion forecasting. While the method is motivated by nuclear emission sources, it could also be applied to other pollution. 
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1. Introduction 

Atmospheric dispersion models calculate pollutant con- 

centration fields as a function of time based on topography, land 

use, emission source, and weather information. They require 

local meteorological variables that can be either measured or 

forecasted. Dispersion of radioactive pollutants hypothetically 

emitted from Krško Nuclear Power Plant (NPP) is studied be- 

fore the emission. The goal is to facilitate protection of the in- 

habitants in the surroundings by having the radioactive plume 

dispersion results available as soon as an unplanned emission 

from a nuclear power plant happens. For the purpose, knowl- 

edge of certain future local meteorological variables is neces- 

sary as they are required for atmospheric dispersion modelling. 

In particular, short-term (30 min to 6 h ahead) and medium-

term (6 h to 1 day ahead) (Wang et al., 2016) forecasts are de- 

sired. Very short-term forecasts (under 30 min ahead) do not 

give enough time to react, while long-term ones (over 1 day  
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ahead) would be less accurate so recalculating at a later time 

would be beneficial. 

Studies on dispersion of emissions with measured meteo- 

rological conditions and prescribed atmospheric dispersion mod-

els are required for environmental impact assessments prior to 

construction. As specified in the EU Directive 2008/1/EC, Coun-

cil Directive 84/360/EEC of 28 June 1984 on the combating of 

air pollution from industrial plants (6) introduced a general frame-

work requiring authorisation prior to any operation or substan-

tial modification of industrial installations which may cause air 

pollution (EuropeWan Union, 2008). These assessments are per-

formed for past measured local meteorological variables and 

thus do not need weather forecasting. Their results do not apply 

to the immediate future in case of an accident. Predictions of 

local meteorological variables which are not required for per-

mits and licenses are therefore highly beneficial in case of an 

accident. 

There are several ways of forecasting the local meteorolog- 

ical variables. One is persistence method – using the current 

measured values as the forecast. This method of prediction is 

good for short term forecasting on flat terrain (Potter and Neg- 
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nevitsky, 2006) because the weather is changing gradually. For 

intermediate term forecasts several hours to a day in advance, 

it will be demonstrated that physics-based, statistical, or hybrid 

models that give better results can be constructed. 

Physics-based numerical weather prediction (NWP) mod- 

els that are used in forecasting are refined from global prognos- 

tic models. In our case, the NWP model for the region of inter- 

est is run by WRF-ARW version 3.4.1 (Skamarock et al., 2008). 

NWP forecasts can be used in place of predictions of local me- 

teorological variables for atmospheric dispersion modelling. 

Models of this kind have been developed for Switzerland (Tes- 

ta et al., 2013), Germany (Von Arx et al., 2014) and Slovenia 

(Mlakar et al., 2019) and validated on field data in Slovenia 

(Grašič et al., 2019). However, NWP models have certain limi- 

tations. Their spatial resolution is limited, and the details of to- 

pography on a scale smaller than the resolution are neglected 

(Wagenbrenner et al., 2016; Yao et al., 2017). In forecasting lo- 

cal meteorological variables, there is thus room for improve- 

ment on NWP results, in particular on smaller local scales. 

To obtain a statistical model, patterns are identified using 

machine learning, enabling one to predict the value of the out- 

put variable from the available input information. An example 

from weather forecasting is a model that forecasts future local 

meteorological variables based on the current and past mea- 

surements (Božnar and Mlakar, 1995; Božnar et al., 2017). No 

explicit knowledge about the dynamical system that generates 

the observed signals is used in building such a model. The dy- 

namics is instead identified from training data that is composed 

of historical measured signals. 

A hybrid, integrated, or statistical post-processing model is 

formed by using outputs of a NWP model as some of the inputs 

of a statistical model (Neal et al., 2014). In comparison with 

pure NWP models, the advantages of a hybrid model for our use 

case are that it predicts local meteorological variables and that 

it utilizes the available local measurements that reflect small-

scale topography by using them as inputs. It applies the results 

of the numerical weather prediction model that is based on 

physics knowledge and on the information on the large scale 

state of the weather system, giving it an edge over pure statisti- 

cal models to which this information is not available. 

Since wind is the most influential variable in atmospheric 

dispersion modelling (Breznik et al., 2003; Beelen et al., 2010; 

Barratt, 2013), and it is challenging to predict with NWP (Wa- 

genbrenner et al., 2016; Yao et al., 2017), we focus on wind speed 

and direction forecasting. The methods used are universal and 

can be applied to other local meteorological variables as well. 

Hybrid methods for wind forecasting have often been used 

in wind power forecasting (Okumus and Dinler, 2016). Gaus- 

sian process (GP) models have been used in wind power fore- 

casting as well (Mori and Kurata, 2008; Wang and Hu, 2015; 

Hoolohan et al., 2018). However, our study significantly differs 

from those in the character of the field site and in the goal of 

modelling. Wind power forecasting is concerned with the wind 

speed, while in atmospheric dispersion modelling, wind direc- 

tion is as important as wind speed. Wind power forecasting is 

mostly used in flat terrain with strong persistent winds (Lei et 

al., 2009). In contrast, we are investigating an example of a 

complex terrain with changeable wind and low average wind 

speed, see Figures 2 and 3. For pollution dispersion modelling, 

changeable and low wind speed conditions are more demand- 

ing than persistent strong wind conditions (Carvalho and de 

Vilhena, 2005). 

We choose to model the wind with GP models including 

Gaussian process nonlinear autoregressive models with exoge- 

nous input (GP-NARX) (Kocijan, 2016). Compared to meth- 

ods such as artificial neural networks and support vector ma- 

chines, which have also been used in hybrid wind forecasting 

(Okumus and Dinler, 2016), GP is another universal approxi- 

mator (Deisenroth et al., 2012) distinguished by providing the 

output probability distribution. The article is focused on the sta- 

tistical part of the wind predicting hybrid model. Regressors 

used in wind prediction are selected, where a regressor is a mod- 

el input and is either a signal or a time-shifted signal to encom- 

pass the system dynamics. The system is identified on a subset 

of available data and the model is tested on a subset that is dis- 

junct from the identification subset. Different figures of merit 

are evaluated. Several variations of the model are compared to 

each other and to models with different structures. 

In summary, the knowledge gap addressed in this study is 

hybrid modelling of wind outside of flat terrain with persistent 

wind. Unlike in the wind power forecasting, in atmospheric dis- 

persion modelling the model output is of great interest also when 

the wind speed is low. The presented methods are not limited to 

radiological pollution. They are also applicable to other sites 

with different types of emission sources. Our results are intend- 

ed to be used with Lagrangian particle tracing dispersion mod- 

els (Tinarelli et al., 2000). 

2. Methods 

2.1. Overview 

WRF-ARW version 3.4.1-based NWP model is available 

for the area of interest. The terrain is complex as can be seen in 

Figure 1. In the area of 30 km by 30 km centred on the Stolp 

weather station, the minimum elevation is 131 m and the maxi- 

mum elevation is 1019 m. CORINE Land Cover (European Union, 

2019) shows that 35% of this area is covered by broad-leaved 

forest, 21% by complex cultivation patterns, 11% is land prin- 

cipally occupied by agriculture with significant areas of natural 

vegetation, 9% non-irrigated arable land, 8% mixed forest, 5% 

vineyards, and the rest is other land covers such as urban areas, 

water, other natural vegetation and other agricultural uses. There 

are 6 meteorological stations: Stolp at Krško NPP, Brežice, Cerkl- 

je, Cerklje Airport, Krško, and Lisca, their locations are listed 

in Table 1 and shown in Figure 1(a). At Stolp weather station, 

vertical profile measurements obtained using sensors on a tower, 

radio acoustic sounding system (RASS), and sonic detection and 

ranging (SODAR), are available. There is also an atmospheric 

dispersion model that requires local meteorological variables 

as inputs. 

Hybrid models predicting local meteorological variables 

are developed. Each hybrid model consists of the NWP model 
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and a statistical part. The inputs of the statistical part, the re- 

gressors, are output signal samples of the NWP and measure- 

ments of the local meteorological variables, both possibly time-

shifted to include the system dynamics. Its output is a predic- 

tion of a local meteorological variable. The prerequisite for build- 

ing such a model is the availability of training data, that is, of 

historical measurements and NWP-produced signals that repre- 

sent the inputs and the outputs of the statistical part of the mod- 

el. A hybrid model uses the knowledge of the physical state of 

the atmosphere and the effects of large scale atmospheric circu- 

lation from the NWP model, the influence of small-scale local 

topography deduced statistically from the historical measure- 

ments, and the local weather information from real-time mea- 

surements at the meteorological stations. 

 

(a) Overview map 

 

(b) View from the tower 

 
 

Figure 1. (a) A 40 km × 40 km overview map of the area with 

the meteorological stations. The Stolp station is in the NW 

part of the NPP. (b) View from the tower at Stolp weather 

station towards NW. 

 

This article is focused on the statistical part of the hybrid 

model, which is in our example a GP model, structured as a 

GP-NARX in the most advanced example. We predict ground 

level wind as it is more challenging for NWP to predict than 

upper level winds and we demonstrate the model for the Stolp 

weather station location. 

 

Table 1. Locations of Meteorological Stations 

Name UTM grid zone 33T WGS84  

 East North Latitude Longitude  

Stolp at Krško NPP 539776 5087498 45.939900 15.513132  

Brežice 546266 5083861 45.906760 15.596502  

Cerklje 540614 5081216 45.883312 15.523411  

Cerklje Airport 540035 5083159 45.900833 15.516111  

Krško 538593 5088899 45.952577 15.497984  

Lisca 522034 5101613 46.067735 15.284905  

 

Table 2. Available Signals 

Name 2W T H P Other N 

Stolp ✓ ✓ ✓ ✓ Temperature 10, 40, and 70 

m above ground, humidity 

10 and 40 m above ground, 

global solar radiation 

11 

Brežice ✓ ✓ ✓   4 

Cerklje  ✓ ✓ ✓  3 

Cerklje Airport ✓ ✓ ✓ ✓  5 

Krško ✓ ✓ ✓   4 

Lisca ✓ ✓ ✓ ✓  5 

SODAR     Lowest 5 layers used of 24 

total, 3 wind components 

each 

15 

NWP+ANN ✓ ✓ ✓ ✓ Global solar radiation, 

cloudiness, diffuse solar 

radiation 

8 

Math     Sin and cos with period 1 

day, 1 year 

4 

Note: A tick in “2W” column means that 2 wind components 10 m above 
ground are available, “T” stands for air temperature 2 m above ground, 

“H” is relative humidity 2 m above ground, and “P” is air pressure 2 m 

above ground. The total number of signals from the station is labelled “N”. 

 

2.2. Signals 

The local meteorological variable signals that are taken in- 

to consideration are listed in Table 2. They are the variables 

measured at the 6 meteorological stations – 2 horizontal wind 

components, temperature, relative humidity, air pressure, not 

all of them at every station, all at ground level except at Stolp 

station – the SODAR wind components, the numerical weather 

predictions, and signals corresponding to time of day and sea- 

son. There are 47 measured signals, of which 32 are measured 

in situ and 15 are measured remotely as a vertical profile with 

SODAR, 8 signals from the relevant discretization cell of the 

NWP model, and 4 time signals, giving a total of 59 signals. Of 

the NWP signals, 7 are computed directly and 1, diffuse solar 

radiation, is estimated with an artificial neural network (ANN). 

The 4 computed signals that represent the time are cos(hour of day 

× 2π/24), sin(hour of day × 2π/24), cos(day of year × 2π/235.25), 
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sin(day of year × 2π/365.25). 6 years of the data from the years 

2012 ~ 2017 is available. 

The quantities we are predicting are west-east and south-

north components of ground level horizontal wind, 10 m above 

ground, at Stolp weather station. A separate model for each one 

of the components is developed. The predicted components can 

be converted into horizontal wind speed and direction.  

All the meteorological variables used in the model are sam- 

pled every Δt = 1/2 h and represent averages over the whole Δt 

for the measured variables and snapshot values for NWP + ANN 

and mathematical signals. The ground level wind component 

signals at Stolp and NWP predictions of the same quantity are 

shown in Figures 2 and 3. 

 

2.3. Regressor Selection 

The statistical model is identified through supervised learn- 

ing (Bishop, 2006), the relationship between the regressors and 

the output variable is inferred from the training data. It is then 

applied to new instances of inputs to predict the output. An ad-

ditional regressor may in principle give the model more infor-

mation and improve the prediction. However, there are several 

reasons for keeping the number of regressors small. 
 

(a) 6 years 

 
 

(b) 1 week 

 

Figure 2. W-E component of the ground level wind. The blue line is NWP forecast, the red one is the measurement at Stolp 

weather station. Graph (a) is for the whole 6 years of the study, graph (b) is for 1 week of June 2017. 
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(a) 6 years 

 
 

(b) 1 week 

 

Figure 3. S-N component of the ground level wind. The blue line is NWP forecast, the red one is the measurement at Stolp 

weather station. Graph (a) is for the whole 6 years of the study, graph (b) is for 1 week of June 2017. 

 

One reason is the curse of dimensionality (Sun et al., 2014). 

Each regressor adds a dimension to the model space and higher 

dimensionality leads to data sparsity (Jing et al., 2007). Addi- 

tional regressors, in particular if they are not relevant (Cichosz, 

2015), increase the necessary amount of training data, which is 

important because the training data set is finite. Having a big ra- 

tio of the number of training samples to the number of model 

parameters prevents overfitting (Theodoridis and Koutroum- 

bas, 2006). Having too many regressors thus leads to worse gen- 

eralization because regressors introduce parameters. 

The data is noisy. More regressors introduce more noise that 

also adversely affects the algorithm’s performance (Elhamifar 

and Vidal, 2013). A separate issue is computational complexity. 

More dimensions require more computation both for learning 

and for predicting. 

For these reasons, it is preferable to use few regressors and 

not to use any unnecessary ones. At the same time, the regres- 

sors used should contain enough information for the wind mod- 

el to make good predictions. 

Several methods of regressor selections that can be used to 

achieve these goals are available. To select the regressors, we 

use linear in parameters (LIP) method as implemented in Pro- 
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Opter IVS (Gradišar et al., 2015) to rank the regressors. The re- 

gressors are ranked from best to worst by the amount of the use- 

ful information they carry, so it is reasonable to use a chosen 

number of the best ranking ones when building a model, which 

is what we do. 

 

2.4. Training Data Reduction 

In principle, a bigger amount of training data results in a 

better statistical model. However, excessive amount of training 

data causes ill-conditioning, unreasonable computer memory 

requirement, or too long computation times. The available quan- 

tity of training data is excessive for the GP models we use, so 

we reduce it to a reasonably sized sample. 

One straightforward way of selecting the training data 

points to use is decimation. Selecting every s-th sample from 

the training data multiplies the training data set size with a fac- 

tor of 1/s. Another method we try is a smart selection method 

based on Euclidean distance between training points. Every da- 

ta point is treated as a vector with (normalized) regressor and 

measured output values as its coordinates. For every point in the 

initial training data, the distance to its nearest neighbour is com- 

puted. The points whose distances to their nearest neighbours are 

large are kept in the output training set, the ones with neigh- 

bours nearby are rejected. The procedure is done iteratively: in 

each step, 95% of the points are kept and 5% are discarded, and 

the obtained output training set is reduced again until the desired 

number of training points is reached (Perne et al., 2019). 

 

2.5. Gaussian Process Model 

GP is a stochastic process f(z) where any finite set of func- 

tion values
1 2{ ( ),  ( ),  ,  ( )}Mf f fz z z is jointly normally distribut- 

ed. The set is described by its mean vector m and covariance 

matrix Σ as (Rasmussen and Williams, 2006; Kocijan, 2016): 

 

1 1( ( ),  ,  ( ) | ,  ,  )  ( ,  )M Mp f f =z z z z m   (1) 

 

Symbol
1 1( ( ),  ,  ( ) | ,  ,  )M Mp f fz z z z stands for the joint 

probability density function of
1( ),  ,  ( )Mf fz z for a given 

choice of
1,  ,  Mz z . A GP can be constructed by setting the 

elements mi of the mean vector m to the values m(zi) of a mean 

function m(z), and the matrix elements Σij to the values k(zi, zj) 

of a kernel function or covariance function k(z, zʹ). Any func- 

tion that generates a positive, semi-definite covariance matrix 

Σ can be used as covariance function (Kocijan, 2016). 

When modelling a dynamic system, one is interested in a 

relation between the input z and the output y of the form y(z) = 

g(z) + v, where g(z) is an underlying function and v is the mea- 

surement and model error. We choose to model the error as white 

noise v ~  2(0, )z
. 

The goal of GP modelling is constructing a GP that pre- 

dicts the probability density p(y(z)). A prior guess of the mean 

function is made, often m(zi) ≡ 0, and a covariance function that 

reflects our knowledge of the dynamic system is chosen. The 

training data is then used to obtain posterior distribution p(y(z)). 

The training data  is structured as  = {Z, y}, where the regres- 

sion matrix Z contains the regression vectors, Z = [z1, …, zN], 

and the training outputs yi from the training vector y = [y1, …, 

yN]T are taken to be noisy realizations of the GP, f(zi) = y(zi) + 

vi, p(v1, …, vN) = (0, Σv). The noise covariance matrix Σv is 

diagonal since the noise is uncorrelated. The “full” covariance 

matrix is defined as K = Σ + Σv. The predictive distribution at 

a test point z* is (Rasmussen and Williams, 2006; Kocijan, 2016): 

 
2( ( ) | ,  )  ( ( ),  ( ))    =p f z z z z  (2) 

 

where T 1( )    −=z k K y  (3) 

 
2 T 1            ( )  ( )     −= −z z k K k  (4) 

 

The k and scalar κ are defined using covariance function 

to equal k = k(z*, Z)T and κ = k(z*, z*). Taking noise into ac- 

count, the expression for the probability density of the mea- 

sured output y* at the test point is p(y*|, z*) = (μ(z*), σ2(z*) 

+ 2 z
). 

The covariance function typically has some free parame- 

ters called hyperparameters Θ, a good choice of which is typi- 

cally not known in advance, so they are chosen with optimiza- 

tion based on the training data. The values of hyperparameters 

that maximize the likelihood p(Θ|Z, y) and are thus the most 

probable given measurement data are chosen. Assuming a prior 

distribution of hyperparameters that is uniform – every value of 

each hyperparameter is equally likely – it is (Rasmussen and 

Williams, 2006): 

 

( | ,  )  ( | ,  )p p  Z y y Z  (5) 

 

The right-hand-side distribution is multivariate normal, and 

taking its logarithm, it follows: 

 

T 11 1
log ( | ,  ) log2 log | |  

2 2 2

N
p  − = − − −Zy K y K y  (6) 

 

This expression is used as the objective function for the op- 

timisation to determine Θ. 

 

2.5.1. Model Choices and Assumptions 

We assume σz is constant, independent of z, σz = σn. It fol- 

lows that Σv = 2 .n I We choose squared exponential covariance 

function, expressed in component notation as: 

 
2

2

2
  1

1 (   )
( ,  )  exp[ ]

2

D
d d

f

d d

z z
k

l


=

−
 = − z z  (7) 

 

There are D + 1 hyperparameters that have to be chosen, 

consisting of σf and the ld’s for the values of d from 1 to D. A 

choice of σn has to be made as well. 

We follow the procedure of Stepančič and Kocijan (2017) 

and substitute the parameter σn with a new parameter λ, defined 

as λ = 2 2/ n f
. It enables us to express the optimum value of σf 
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analytically as: 

 
1

2
T 1

  ( )
(   )

f

N


 −
=

+y I y
 (8) 

 

We determine the values of the other hyperparameters and 

λ through optimization with the criterion (6) using conjugate 

gradient method (Rasmussen and Williams, 2006; Rasmussen 

and Nickisch, 2010). 

 

2.6. GP-NARX 

NARX stands for nonlinear autoregressive exogenous mod- 

el. Its structure is shown in Figure 4 and it can be described 

with a nonlinear stochastic recurrent equation of the form 

(Nelles, 2001): 

 

( )  ( (   1 ), ,  (   ),= −  − y t f y t t y t n t   

            ( 1 ), ,  ( ))  −  −  +t t t m t vu u  (9) 

 

The system inputs are assembled into the vector u and the 

model output signal is labelled as y. The parameter t represents 

the time for which the prediction is made. The model output dis- 

tribution p(y(t)) depends on the previous distributions of the 

modelled variable p(y(t - iΔt)) and on the other regressors u. The 

noise v represents measurement and process noise. In the case 

of GP-NARX, the nonlinear function f is a GP and the variance 

of the GP is useful in determining the variance of the distribu- 

tion of model output. 

 

 
 

Figure 4. Hybrid wind component prediction model with GP-

NARX. The inputs of the GP model are both the values of its 

output variable in the previous time steps and the values of 

other external variables. In simulation, predicted values of the 

output variable are used as model inputs as soon as they are 

available, while at the beginning of the simulation, measured 

values are used. Some inputs of the GP-NARX are obtained 

as outputs of the NWP model and the ANN model for diffuse 

solar radiation, making the whole a hybrid model. 

 

As a result of nonlinearity, the output distribution p(y(t)) is 

in general non-Gaussian and is hard to describe analytically even 

if v is Gaussian. It is thus not practical to perform simulations 

and multi-step predictions (see 2.8) analytically. Instead, Monte 

Carlo method is used. Many deterministic realizations of simu- 

lation are performed, where the values of v and f at every t are 

determined by random sampling from their Gaussian distribu- 

tions – distribution for f is Gaussian when the inputs are deter- 

ministic, which they are in a realization. Expected value and 

variance of the modelled variable as a function of time are then 

estimated from the sample of realizations. 

 

2.7. GP-NFIR 

NFIR stands for nonlinear finite impulse response. The 

structure of a NFIR model is shown in Figure 5 and it can be 

described with a nonlinear stochastic recurrent equation of the 

form (Nelles, 2001): 

 

( )  ( ( 1 ), ,  ( ))  = −  −  +y t f t t t m t vu u  (10) 

 

We see that GP-NFIR is a special case of GP-NARX where 

output values do not enter the model as regressors. As a result, 

simulating the model is more straightforward and computation- 

ally significantly less demanding. However, the necessary num- 

ber of regressors is significantly larger than in GP-NARX, which 

may cause problems with training (Nelles, 2001). With GP-

NFIR, there is no distinction between prediction and simulation 

(see 2.8) as the variable predicted by the model is not used in 

model inputs. 

 

 
 

Figure 5. In contrast with GP-NARX, GP-NFIR model does 

not use the output signal in any of the regressors. 

 

2.8. Prediction Versus Simulation 

Statistical GP models compute the predicted value distribu- 

tion of the output variable based on the provided input values. 

In the case of GP-NARX, certain input values are values of the 

output variable. There are thus multiple choices for the input 

value, either measurement or a model output can be used. If one 

always uses the necessary measured value when calculating the 

output for a certain time, we speak of prediction in the model- 

ling sense. 

Another approach is multi-step prediction – starting with 

all measurements when calculating the model output for time t 

and using no measurements of the output variable from time t 

on, only the model predictions, when calculating the output at 

time t + 1Δt, t + 2Δt, …, t + nΔt. The positive integer n is the 

number of prediction steps. Multi-step prediction can then be 

restarted at t + 1Δt with all measurements and used to obtain the 

predicted value at t + (n + 1)Δt., again with n steps. 

The third possibility is simulation – starting with all the 

measurements when calculating the output for time t and then 

continuing the same way as in multi-step prediction without fur- 

ther measurements of the output variable all the way to the end 

of the time period of interest. 
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2.9. Testing 

We use the data from the years 2012 ~ 2017, consisting of 

105217 data points in total. Points from 94945 to 95616 and from 

103729 to 104400, corresponding to the first 14 days of June 

2017 and to the first 14 days of December 2017, are used for 

testing the models, while the rest is available for training. Test 

data is separate from the training data so as to verify the gener- 

alization ability of the model. The reason for using such a small 

share of data in testing is that certain simulations require sub- 

stantial computation time proportional with the number of test- 

ing data points and that many models have to be tested when de- 

veloping the modelling methods. For example, GP-NARX sim- 

ulations with smartly selected training data points for both wind 

components for two 14-day periods take 7618 seconds on Intel® 

CoreTM i7-3770K CPU @ 3.50GHz × 8 with 16 GB RAM, Ubuntu 

20.04.2 LTS, and MATLAB R2015a. The required computation 

time does not, however, hinder the intended model use. Simu- 

lating the GP-NARX models for 1 day ahead only takes a few 

minutes. It should also be noted that one does not have to wait 

for an accident to happen before running the models. The models 

can be run on a regular schedule so that the predictions are already 

available in the case of an accident. 

To test the results, we use normalised root-mean-square er- 

ror (NRMSE), Pearson’s correlation coefficient (PCC), and mean 

standardised log loss (MSLL) values when applicable as fig- 

ures of merit. NRMSE is defined as: 
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where y is the vector of measured values, E(y) is the mean of 

the measured value, and μ is the vector of predicted values. 

NRMSE varies between negative infinity and 1, where 1 corre- 

sponds to perfect fit and 0 is the value achieved if the prediction 

is the mean of the measured value. A convenience of NRMSE 

is that no assumption that the modelled quantity is a scalar is 

necessary, it can be calculated for vector quantities. We use it to 

evaluate predictions of horizontal wind as a 2D vector.  

The definition of PCC is: 
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where E(μ) is the mean predicted value. The expression ||y- 

E(y)||2 is variance. 

MSLL is defined as (Rasmussen and Williams, 2006): 
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where yi is the measured value, 2 y
is the variance of the mea- 

sured value, E( ˆ
iy ) is the mean prediction, and 2 i

is the predic- 

tive variance. The summation includes all the test samples and 

the index i corresponds to the sample. MSLL takes into account 

the predictive variance and we use it to evaluate the models for 

wind components that predict a distribution. Lower MSLL value 

corresponds to a better model, the values are typically negative. 

3. Results 

Several models are trained, tested on the same data, and 

compared in the figures of merit. The main distinction between 

different models is in the regressors they require. The main dis- 

tinction between different GP-NARX results is in how the re- 

gressor values are obtained. When all the necessary local me- 

teorological variables are measured, we speak of prediction. 

When the predicted value is used in regressors in further steps, 

this is multi-step prediction if the model is restarted at every 

time step and run for several time steps, or simulation if the 

model is started once and run for the whole test period. When 

measured values that are assumed to not be available are sub- 

stituted with equivalent NWP signals, we name the case NWP-

substituted model. 

 

3.1. NWP 

We are interested in the benefits of various different statis- 

tical parts of the hybrid model. We thus compare it to the model 

without a statistical part, that is, to the pure NWP model. The 

NRMSE value for the 2D wind in the 4 weeks of testing as pre- 

dicted by WRF NWP is -0.082, PCC for W-E component is 

0.577, and PCC for S-N component is 0.313. MSLL values are 

not available because variance is not predicted. 

 

Table 3. Figures of Merit for Simulation Results from 

Sections 3.1 to 3.4 

Section Model 
MSLL NRMSE PCC  

W-E S-N  W-E S-N 

3.1 NWP -- -- -0.082 0.577 0.313  

       Hybrid models       

3.2 NWP-based 

GP-NFIR 

-0.258    -0.044 0.164 0.660 0.341  

3.3 GP-NFIR 15 

decimate 

-0.734    -0.509 0.405 0.877 0.672  

3.3 GP-NFIR 30 

decimate 

-0.785    -0.508 0.445 0.877 0.770  

3.3 GP-NFIR 30 

smart 

-0.664    -0.308 0.445 0.882 0.776  

3.4 GP-NARX 

decimate 

-0.466 -0.335 0.323 0.806 0.648  

3.4 GP-NARX 

smart 

-0.562 -0.151 0.357 0.834 0.691  

Note: The simulations are performed for 14 days both in June and in 

December 2017. The “Section” column refers to the section of the article 
describing the model for easier navigation. 

 

3.2. NWP-Based GP-NFIR 

The next model tested is one that does not include any mea- 

surements. It is a GP-NFIR with 44 regressors. 40 are derived 



M. Perne et al. / Journal of Environmental Informatics 41(2) 88-103 (2023) 

96 

from NWP and ANN signals by delaying them from t – 2Δt to 

t + 2Δt for each one of 8 signals, where t is defined to be the 

time for which the output is being calculated. The remaining 4 

are the derived signals (sines and cosines of scaled time with 

periods of 1 day and 1 year) without delay. The training data is 

decimated for a factor 19 so 2570 training points remain to a- 

void too big matrices in the learning phase. Prediction for test 

data is then used, NRMSE, PCC, and MSLL values are obtained: 

NRMSE is 0.164, PCC for W-E component is 0.660, PCC for 

S-N component is 0.341. MSLL for W-E component is –0.258, 

and MSLL for S-N component is -0.044. Judging by NRMSE 

and PCC, the model is an important improvement over pure 

NWP results. 

 

Table 4. The Regressors for Calculating W-E Component of 

the Wind Using GP-NFIR Model as Selected with ProOpter 

IVS LIP Method 

Source Variable Delay 

Cerklje Airport W-E wind 1 

Krško W-E wind 1 

Brežice W-E wind 1 

NWP + ANN W-E wind -2 

Time Cosine 1 day 0 

Krško S-N wind 1 

SODAR S-N wind 1 

Stolp S-N wind 2 

Cerklje Airport W-E wind 2 

SODAR W-E wind 2 

Krško Relative humidity 1 

Brežice S-N wind 3 

SODAR S-N wind 2 

Stolp Global solar radiation 1 

NWP+ANN Global solar radiation 2 

SODAR S-N wind 1 

SODAR S-N wind 4 

SODAR Vertical wind 5 

Krško W-E wind 2 

SODAR W-E wind 1 

Cerklje Air temperature 4 

Cerklje Airport Air pressure 5 

NWP+ANN W-E wind 1 

Cerklje Airport S-N wind 2 

SODAR W-E wind 3 

Stolp Air temperature 1 

Stolp global solar radiation 5 

Brežice S-N wind 1 

NWP + ANN W-E wind 0 

Krško Air temperature 1 

Note: Delay is measured in time steps from the time to which the model 
output corresponds. A positive delay means that the signal value 

corresponds to a time before the time to which the prediction corresponds, 

and vice versa. Delay 0 corresponds to the time for which the prediction 
is made. 

 

3.3. Hybrid Models with GP-NFIR 

In the GP-NFIR model, we allow measured regressors as 

well. We start from 274 regressor candidates: from each one of 

46 local meteorological variable signals, 5 delayed signals are 

used, from t – 1Δt to t – 5Δt. For each one of the 8 NWP and 

ANN signals, 5 delays are used, t – 2Δt to t + 2Δt, and a single 

delay for each mathematical signal, t – 0Δt. We use LIP to rank 

the regressors. As the total number of data points with all the 

regressors available is too big for the method, decimation is 

used and every 10th is kept, resulting in 1673 points. The re- 

gressors are listed in Tables 4 and 5 from the best on, the mod- 

els use either the first 15 or all 30 of them. Decimation with the 

quotient s = 19 results in an acceptable number of training points: 

for 15 regressors, 2619 points for W-E component and 2596 for 

S-N component, for 30 regressors, 2543 points for W-E compo- 

nent and 1550 for S-N component. With 30 regressors, we also 

use the smart selection method to select the same number of 

training data points as when we use decimation. The results are 

summarised in Table 3 together with the other simulation re- 

sults as “GP-NFIR 15 decimate”, “GP-NFIR 30 decimate”, and 

“GP-NFIR 30 smart”. We see that the results are better than with 

the model that does not take measurements into account and that 

the increase of regressor number from 15 to 30 and smart train- 

ing data selection do not bring much improvement. 

 

3.4. Hybrid Models with GP-NARX 

We allow the use of delayed output signal in regressors to 

obtain GP-NARX models. In theory, GP-NARX models require 

fewer delays and regressors than GP-NFIR models, so we be- 

gin with 122 regressor candidates. From each one of 47 local 

meteorological variable signals, 2 delayed signals are used, t – 

1Δt and t – 2Δt. For each one of the 8 NWP and ANN signals, 

3 delays are used, t – 1Δt to t + 1Δt, and a single delay for each 

mathematical signal, t – 0Δt. 15 regressors are selected using 

LIP. As the total number of data points with all the regressors 

available is too big for the LIP method, decimation is used and 

every 10th is kept, resulting in 4422 points. The best 15 regres- 

sors for each wind component are listed in Table 6 from the 

most to the least important. 

With GP-NARX models, there is a difference between pre- 

diction and simulation (see 1.1). In the initial step, all the re- 

gressor values are read from the database of the available signal 

values. The model output is calculated, the predictive distribu- 

tion for the wind component at time t is obtained. Now two con- 

flicting pieces of information on the wind component at time t 

are available: the measurement and the model prediction. If the 

model prediction is used as the regressor value when calculat- 

ing the component at t + 1Δt with the GP-NARX model, and the 

new prediction is used when calculating the value at the next 

time step and so on to the end of the data set, we talk of simula- 

tion. If only measured values and no model outputs are used, it 

is called (one step) prediction. We can also do n-step predic- 

tion, where in the process of calculating the wind component 

value at t + nΔt, the model is initialized with measured values 

of the component up to time t and predicted values for later 

times are used. 

Two different GP-NARX models are constructed for each 

wind component. In the first example, the training data is deci- 

mated with s = 19 to decrease the number of training points to  
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(a) W component 

 
 

(b) S component 

 
 

Figure 6. NWP-substituted decimated GP-NARX prediction results 2 steps ahead as an illustration. NWP forecasts are also 

shown for comparison. 

 

a reasonable level, 2545 for W-E component and 2104 for S-N 

component. Simulations result in NRMSE of 0.323, MSLL of 

–0.466 in W-E direction and MSLL of –0.335 in S-N direction. 

The second example is constructed with the same number of 

training points for each component, but smart training point se- 

lection is used. Simulations of these models result in NRMSE 

of 0.357, MSLL of –0.562 in W-E direction and MSLL of –

0.151 in S-N direction. The results are a huge improvement on 

NWP results and much better than the NWP-based GP-NFIR 

results obtained without taking measurements into account. The 

decrease of performance compared to GP-NFIR arises from the 

use of the inaccurate forecasted signal in regressors in simula- 

tion: in single-step prediction, where there is no such inaccura- 

cy, GP-NARX model outperforms GP-NFIR. 

The performance of the GP-NARX models with smart 

training point selection is also evaluated on a part of the train- 

ing data set, in particular on the data from the last 14 days of 

May and the last 14 days of November 2017. One would expect 

the performance on this data to be slightly better because a small 

part of the data points is also used in training. The achieved 

NRMSE is 0.412, MSLL is –0.609 in W-E direction and –0.003 

in S-N direction, PCC is 0.882 in W-E direction and 0.626 in 

S-N direction. Three of the figures of merit are slightly better 

than for the test data set, but the two specific to the S-N direc- 

tion are worse. The explanation is that the weather in these peri- 

ods is different and the S-N component is more challenging to 
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Figure 7. NRMSE decrease along prediction, shown graphically. “Persistence” means using measured wind velocity in step 0 as 

prediction for steps 1 to 10. “GP-NARX” is the classical decimated GP-NARX model, regressor signals are measured (except the 

output signal, where the predicted value is used from step 1 on). “NWP-substituted GP-NARX” is the classical decimated GP-

NARX model, regressor signals are approximated with NWP forecasts from step 1 on (except as the output signal from step 1 on 

the predicted value is used). Horizontal lines represent simulation values. NWP-based GP-NFIR model requires no online 

measurements. Persistence and NWP-substituted GP-NARX only require measurements up to time 0. Best GP-NFIR and GP-

NARX rely on measurements taken before the time for which the prediction is made. The NWP-substituted GP-NARX model 

NRMSE decays below the NWP-based GP-NFIR model one because the latter one uses the NWP information appropriately while 

the former one treats the NWP information as if it were measurements which is suboptimal. 

 

predict than in the original test period. It is confirmed by the re- 

sults of the one-step ahead persistence prediction, which achieves 

NRMSE of 0.543, PCC of 0.932 in W-E direction and 0.795 in 

S-N direction – the PCC for S-N direction is much worse than 

for the original test period. This observation suggests that the 

numerical values of the figures of merit are strongly dependent 

on the weather in the chosen test period, but the same kind of 

weather is beneficial for the performance of at least GP-NARX 

and persistence models. 

Multi-step prediction results are evaluated in Table 7. It 

can be seen that smart training point selection results in better 

NRMSE and PCC values than decimation. In MSLL, the roles 

are mostly reversed, decimation mostly results in better values 

than smart selection. It follows that the model obtained by deci- 

mation gives better information on prediction uncertainty. 

Figure 6 presents the results of NWP-substituted GP-NARX 

model prediction. In these calculations, measured local meteo- 

rological variables are used as regressors in decimated GP-

NARX model up to t = 0 and replaced with equivalent NWP 

signals further on. The exception is the output variable, where 

the model output is used. Table 9 lists figures of merit for this 

model. The prediction figures of merit are also shown in Figure 7. 

The prediction variance, shown in grey in Figure 6, illus- 

trates the model’s confidence. The variance depends on the out- 

put noise and the density of the training data points in the part 

of the input space for which the prediction is made (Kocijan, 

2016, Ch. 2.8). We do not explore the effect of this variance on 

the atmospheric dispersion model predictions in the scope of 

this paper but it is a possible topic of further research. 

 

3.5. Persistence Model 

A trivial way of predicting the wind component in the next 

time step is predicting that the value will equal the current val- 

ue. Nevertheless, this kind of model is useful only for one-step 

prediction, i.e. half an hour in advance. The NRMSE value 

achieved using this so-called persistence method is 0.484, and 

PCC is 0.895 in W-E direction and 0.818 in S-N direction. Of 

our more advanced predictions, only GP-NARX predictions 

take the wind component measurements into account and they 

achieve higher NRMSE value than persistence predictions, ful- 

filling the basic criterion for a reasonable prediction model. 

 

3.6. Influence of Improved Wind Prediction on Dispersion 

Modelling Results 

Lagrangian particle atmospheric dispersion model (Tinarel- 

li et al., 2000) simulations are run for pollutant emitted at ground 

level and at the temperature of the environment at the location 

of Krško NPP. The models’ resolution is 50 m, domain size 5 

km × 5 km centred on the pollutant source, while the other pa- 

rameters are as described in Mlakar et al. (2019). The weather 

signals entering the model are temperatures at 2, 10, 40, and 70 

m levels, global solar radiation at 2 m, and wind speed and 

direction at 10 m level at Stolp weather station. The tempera- 

tures and global solar radiation are obtained from measure- 

ments, while the three simulations differ in the source of the 

wind signal. 
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Table 5. The Regressors for Calculating S-N Component of 

the Wind Using GP-NFIR Model as Selected with ProOpter 

IVS LIP Method 

Source Variable Delay 

SODAR S-N wind 1 

Cerklje Airport S-N wind 1 

Krško S-N wind 1 

Brežice W-E wind 1 

Brežice S-N wind 1 

Stolp Global solar radiation 1 

SODAR W-E wind 2 

SODAR S-N wind 2 

Stolp Air temperature 4 

Cerklje Airport S-N wind 2 

NWP + ANN S-N wind 0 

Krško W-E wind 1 

SODAR W-E wind 4 

Cerklje Airport Air pressure 3 

SODAR W-E wind 5 

Krško Relative humidity 1 

Cerklje Airport Relative humidity 3 

NWP + ANN Global solar radiation 1 

SODAR S-N wind 3 

SODAR S-N wind 2 

SODAR W-E wind 1 

Stolp Relative humidity 4 

Cerklje Airport Relative humidity 1 

Stolp Air temperature 1 

Lisca Air pressure 2 

NWP + ANN Relative humidity 2 

SODAR S-N wind 1 

Cerklje Airport Relative humidity 2 

Lisca S-N wind 3 

Stolp Relative humidity 2 

Note: Delay is measured in time steps from the time to which the model 
output corresponds. A positive delay means that the signal value 

corresponds to a time before the time to which the prediction corresponds, 

and vice versa. Delay 0 corresponds to the time for which the prediction 
is made. 

 

One simulation utilizes the measured wind speed and direc- 

tion. It is known from atmospheric dispersion model validation 

studies (Grašič et al., 2011) that the agreement between atmo- 

spheric dispersion model simulations with measured weather 

signals and measured pollution dispersion tends to be good. We 

thus use this result as the reference. The second simulation uses 

decimated hybrid GP-NARX model one-step-ahead prediction 

as described in Section 3.4. The third simulation uses the avail- 

able NWP prognosis of WRF-ARW version 3.4.1, which is the 

signals this study improves on. 

It is shown in Table 7 and Section 3.1 that the decimated 

hybrid GP-NARX model one-step-ahead prediction is better 

than the NWP prognosis in NRMSE and PCC figures of merit. 

The question is whether the improvement in the wind predic- 

tion translates into an improvement in the pollutant concentra- 

tion predictions. Judging by Figure 8, the results based on hy- 

brid model predictions (middle column) are closer to the refer- 

ence (left column) than the results based on NWP predictions 

(right column). The improved wind prediction thus helps with 

the atmospheric dispersion modelling. 

 

Table 6. The Regressors for Calculating Each Component of 

the Wind Using GP-NARX Model as Selected with ProOpter 

IVS LIP Method 

a) Best regressors for W-E wind 

 Source Variable Delay 

 Stolp W-E wind 1 

 NWP+ANN W-E wind –1 

 Cerklje Airport W-E wind 1 

 Krško W-E wind 1 

 Cerklje Airport W-E wind 2 

 Brežice W-E wind 1 

 Krško Air temperature 1 

 NWP+ANN Global solar radiation –1 

 Cerklje Airport S-N wind 1 

 NWP+ANN Global solar radiation 1 

 SODAR W-E wind, layer 1 1 

 Cerklje Airport Air temperature 1 

 Cerklje Air pressure 2 

 Stolp Air pressure 1 

 Krško S-N wind 1 

b) Best regressors for S-N wind  

 Source Variable Delay 

 Stolp S-N wind 1 

 Brežice S-N wind 1 

 Krško S-N wind 1 

 Cerklje Airport W-E wind 1 

 Cerklje Airport S-N wind 1 

 Cerklje Airport S-N wind 2 

 NWP+ANN S-N wind –1 

 SODAR S-N wind, layer 3 1 

 NWP+ANN Global solar radiation –1 

 Stolp Air temperature, 70 m 2 

 Lisca S-N wind 1 

 Krško Air temperature 1 

 NWP+ANN W-E wind –1 

 Cerklje Airport Air pressure 1 

 Cerklje Airport Air temperature 2 

Note: Delay is measured in time steps from the time to which the model 

output corresponds. A positive delay means that the signal value 
corresponds to a time before the time to which the prediction corresponds, 

and vice versa. Delay 0 corresponds to the time for which the prediction 

is made. a) Selection for W-E component; b) Selection for S-N component. 

4. Discussion 

We have shown that important improvements in spot wind 

forecasting compared to NWP are possible with statistical mod- 

elling. The improvement is significant if the statistical model is 

only post-processing the NWP forecasts, and much better if 

measured local meteorological variables are also included as the 

statistical model inputs. 

Validation of air pollution dispersion models is highly chal- 

lenging (Mlakar et al., 2015) so it was not feasible to directly  
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Table 7. Figure of Merit Values for Multi-Step Prediction and for Simulation throughout 672 Time Steps 

 MSLL NRMSE PCC  

Steps W-E S-N W-E S-N  

 Decimate Smart Decimate Smart Decimate Smart Decimate Smart Decimate Smart  

1 –0.851 –0.707 –0.592    –0.352 0.502 0.515 0.905 0.906 0.808 0.830  

2 –0.599 –0.566 –0.411    –0.223 0.392 0.415 0.846 0.861 0.714 0.743  

3 –0.537 –0.529 –0.379    –0.190 0.356 0.383 0.823 0.846 0.682 0.712  

4 –0.511 –0.516 –0.363    –0.179 0.342 0.370 0.815 0.840 0.668 0.701  

5 –0.489 –0.510 –0.349    –0.175 0.334    0.365 0.810 0.837 0.659 0.696  

Simulation –0.466 –0.562 –0.335 –0.151 0.323 0.357 0.806 0.834 0.648 0.691  

Note: Columns labelled “decimate” correspond to GP-NARX with decimation of training points, and “smart” refers to the GP-NARX with smart selection 

of training points. The “decimate” and “smart” models are compared to one another in each figure of merit and the better one is shown in bold. We see that 

the GP-NARX model outperforms the GP-NFIR model in the first prediction step, see Table 3 for comparison. According to MSLL, the “decimated” GP-
NARX model is better than the “smart” one in the first 3 prediction steps (1.5 h) for the W-E direction and in all 5 prediction steps (2.5 h) in the S-N 

direction. According to NRMSE and PCC, the “smart” model is consistently better than the “decimated” model. The two models not taking measurements 

into account, NWP and NWP-based GP-NFIR, are worse than these predictions. 

 

Table 8. NRMSE and PCC Values for Multi-step Persistence 

Prediction 

Steps NRMSE 
PCC 

W-E    S-N 

1 0.484 0.895 0.818 

2 0.286 0.786 0.673 

3 0.188 0.712 0.598 

4 0.120 0.647 0.552 

5 0.062 0.589 0.509 

 

experimentally demonstrate that the proposed hybrid model re- 

sults in improved atmospheric modelling predictions. Howev- 

er, it can be presumed that the demonstrated improvement in lo- 

cal weather prediction is beneficial for atmospheric dispersion 

modelling. An ilustration of the benefit of hybrid modelling is 

in Figure 8. Compared to NWP, hybrid modelling leads to at- 

mospheric dispersion modelling results that are more similar to 

the ones based on measured meteorological quantities. 

The hybrid model results do not reach NRMSE values of 

much over 0.5. In principle that means that there is still plenty 

of room for improvement. However, we tested several more 

models with different parameters and choices of regressors 

without a significant change in figures of merit. A likely expla- 

nation is that not all of the dynamics that influences the wind 

velocity can be modelled with the available information. In this 

case, more measurements would be needed for improving pre- 

dictions. For example, a denser network of measurement sta- 

tions would better detect the wind phenomena on smaller scales 

(Schielicke et al., 2019) and better detect local causes of wind 

(Makarieva et al., 2013). The model performance is also limit- 

ed by the amount of training data it can handle and by the un- 

certainty of the observed data. 

Another concern with these models is their applicability. 

To use the model, the input regressor values have to be avail- 

able. For the NWP and the NWP-based GP-NFIR models, the 

NWP signals are available several days in advance; however, 

we use the latest and best NWP forecasts that become available 

several hours before the time for which the prediction is made. 

Longer term predictions are possible but would be based on less 

accurate NWP forecasts and thus perform worse. 

 
 

Figure 8. Atmospheric dispersion modelling results given as 

relative concentrations (Mlakar et al., 2019). Ground level 

emission at the site of Krško NPP in the center of the field is 

modelled with measured wind (left column), wind predicted 

by GP-NARX (middle column), and wind predicted by NWP 

(right column). We see that the similarity between the 

reference left column and the GP-NARX middle column is 

stronger than between the reference and the NWP right 

column. The results correspond to 2017-06-10. 

 

GP-NFIR and GP-NARX models use measured values of 

local meteorological variables, some of which are only avail- 

able one time step (1/2 h) before the time for which the predic- 

tion is made. To enable longer term predictions, the input signals 
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have to be predicted separately. Inaccuracies of those signals 

impair the model performance. In spite of it, using local meteo- 

rological variables as regressors is a promising approach be- 

cause of the measurements that are available and that improve 

the prediction. A proof is the NWP-substituted GP-NARX. As 

an example of replacing measurements with models, NWP fore- 

casts are used in place of local meteorological variables in in- 

puts of decimated GP-NARX model, see Table 9. All 5 present- 

ed prediction steps are better than NWP-based GP-NFIR re- 

sults in NRMSE and 4 or 5 steps in PCC. 

 

Table 9. NWP-Substituted Decimated GP-NARX Multi-Step 

Prediction 

Steps MSLL NRMSE PCC 

W-E S-N W-E   S-N 

1 –0.851    –0.592 0.502 0.905 0.808 

2 –0.311 –0.005 0.274 0.780 0.504 

3 –0.036 0.085 0.214 0.710 0.445 

4 0.128 0.146 0.183 0.670 0.412 

5 0.235 0.184 0.165 0.646 0.394 

Note: Measured meteorological variable signals other than the output 
signal are replaced with equivalent NWP signal starting with the first step 

of prediction. One-step prediction is calculated the same way with NWP-

substituted decimated GP-NARX and with ordinary decimated GP-
NARX so the numbers in the first line of the table are equal to the 

corresponding numbers in Table 7. 

 

GP-NFIR and GP-NARX models use measured values of 

local meteorological variables, some of which are only avail- 

able one time step (1/2 h) before the time for which the predic- 

tion is made. To enable longer term predictions, the input signals 

have to be predicted separately. Inaccuracies of those signals 

impair the model performance. In spite of it, using local meteo- 

rological variables as regressors is a promising approach be- 

cause of the measurements that are available and that improve 

the prediction. A proof is the NWP-substituted GP-NARX. As 

an example of replacing measurements with models, NWP fore- 

casts are used in place of local meteorological variables in in- 

puts of decimated GP-NARX model, see Table 9. All 5 present- 

ed prediction steps are better than NWP-based GP-NFIR re- 

sults in NRMSE and 4 or 5 steps in PCC. 

5. Conclusion 

We successfully use hybrid modelling for short and medi- 

um term local wind forecasting. The novel contribution of the 

study is that the modelling is done in complex terrain with most- 

ly low wind speeds. Such conditions are of particular interest in 

atmospheric dispersion modelling. 

Post-processing a NWP model forecast with a GP-NFIR 

model that predicts local wind, forming a NWP-based GP-

NFIR model, offers a significant advantage over using crude 

NWP forecast as local meteorological variable. The method can 

be applied to the time period for which the NWP signals are 

available. For shorter term, predictions can be improved by tak- 

ing available measurements into account. We develop several 

GP models using both NWP predictions and local meteorologi- 

cal variables as regressors and test them with prediction, multi-

step prediction, and simulation. We compare them to one an- 

other using different figures of merit. We construct a NWP-

substituted GP-NARX model that only depends on information 

available in real time. It uses local meteorological variables for 

regressors so it is helped by the available measurements, and 

NWP forecasts are used in place of measurements for the fu- 

ture. Depending on the selected figure of merit, this model im- 

proves on the NWP-based GP-NFIR model for around 5 steps 

(2.5 h) of prediction. 

The hybrid model with NWP-substituted GP-NARX mod- 

el provides the best short-term local wind forecasts based only 

on available data. In medium term, the best results are obtained 

by the NWP-based GP-NFIR model. For atmospheric dispersion 

modelling, we propose combining the results of the two mod- 

els, using the hybrid model with NWP-substituted GP-NARX 

model results in the first several time steps and the NWP-based 

GP-NFIR model results further on, so that the best available 

prediction is used in every time step. We also propose recalcu- 

lating the model whenever new input information is available 

– measurements for the NWP-substituted GP-NARX model, 

NWP forecasts for both models. 

Modelling of other variables that are used in atmospheric 

dispersion modelling, such as temperatures at various heights 

and global solar radiation, is ongoing. Modelling of the local me- 

teorological variables that are used as regressors in the NWP-

substituted GP-NARX model is planned. Their predictions will 

be used to replace the NWP forecasts in the NWP-substituted 

GP-NARX model to improve the model accuracy through im- 

proving the inputs. 

 

Nomenclature 

List of symbols 

  Training data 

D  Number of regressors, model dimension 

E(.)  Mean value, average measurement or prediction 

I  Identity matrix 

MSLL Mean standardised log loss 

  Gaussian distribution 

N  Number of data points 

NRMSE Normalised root-mean-square error 

PCC  Pearson’s correlation coefficient 

Z  Regression matrix, matrix of system input vectors 

f(.)  Stochastic process 

g(.)  System underlying function 

k(.)  Covariance function 

k  Covariance function of test independent variable  

and regression matrix 

ld  Scale parameter for regressor d 

m  Vector of mean values 

m(.)  Mean function 

m  Number of past inputs 

n  Model order, number of past outputs 

p(.)  Probability density function 

t  Time 

u  Model, system input 
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y  Model, system output 

y  Training vector, vector of system outputs 

z  Vector independent variable 

z*  Test independent variable vector 

Δt  Time step 

Θ  Hyperparameters 

Σ  Covariance matrix 

Σv  Noise covariance matrix 

κ  Covariance function of test independent variable 

with itself 

λ  Noise variance ratio 

μ  Vector of predicted values 

μ  Mean of the predictive distribution 

v  Noise, error 

σ  Standard deviation 
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