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a b s t r a c t

Changes in process states and properties can be observed through measured variables. In this way, by
classifying time series segments of measured data, changes in model parameters can be detected and
the system state can be inferred. Time series classification methods are used in many fields, but the
work presented here focuses mainly on the field of manufacturing. In the category of whole-series time
series classifiers, the Nearest Neighbor classifier is often used. The aim of this work is to introduce an
alternative supervised method for time series classification — Eigenresponse Fuzzy Clustering (EFC). We
introduce class eigenresponses, which are time series prototypes of a class. We propose the learning
eigenresponses for each class using a fuzzy clustering technique. Unlike some existing methods, we
propose the use of multiple prototypes per class to better describe a wider range of values for each
class. Moreover, the presented method is evaluated on several datasets. Using a dataset obtained on an
industrial test bench on an e-bike drive assembly line, the method correctly classifies all time series.
To further validate the performance, a set of publicly available datasets (UCR Archive) is used. For
the category of datasets most similar to the target industrial application, an improvement over the
benchmark approach is obtained.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, with Industry 4.0 standards [1] more prevalent,
roduction monitoring and fault detection are becoming a re-
uired capacity in the manufacturing industry [2]. However,
roduction machines, except for the most advanced ones, lack
uch capabilities. Therefore, a system that provides this capability
ould be of great importance [3,4]. The idea pursued in this
ork is that the above functionality can be achieved through an
lgorithm that enables event detection by analyzing omnipresent
ata, such as supply current or pneumatic line pressure.
To achieve this goal, a reliable, efficient and explainable

ethod is required that performs pre-processing, segmentation
nd classification of the data. Segmentation of time series is an
mportant step in time series analysis and several methods have
een proposed [5–7]. However, for the work in this paper, a
impler derivative-based heuristic method is sufficient. In this
aper, our main focus is on the classification of time series with
imited length.

Time series classification (TSC) is an active area of research. Its
rowing importance is fostered by the explosion of data sources

∗ Corresponding author at: ‘‘Jožef Stefan’’ Institute, Jamova cesta 39, Ljubljana,
lovenia.

E-mail address: ziga.strzinar@ijs.si (Ž. Stržinar).
ttps://doi.org/10.1016/j.asoc.2022.109859
568-4946/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
that generate time series: the Internet of Things (IoT), Indus-
try 4.0, the financial sector [8], health and medical devices [9],
weather stations and air quality monitors, GPS loggers, etc.

TSC applications include fault detection [10–12], object recog-
nition, energy consumption analysis [13], traffic pattern analy-
sis [14] and distracted driver detection [15]. In manufacturing,
there are several use cases for time series classification: (1) work-
piece defect detection, (2) machine monitoring for preventive and
predictive maintenance, (3) detection of unexpected/faulty ma-
chine operations, (4) workpiece categorization. We see potential
in an algorithm that is able to classify machine time series data
into actions that are performed by the machine. The sequence
of steps can then be analyzed by a downstream algorithm for
possible deviations from normal behavior indicating irregular
operation.

TSC techniques are categorized into five categories [16,17]:
(1) whole series (distance based) approaches, (2) phase based
intervals, (3) shapelet based, (4) dictionary based and (5) ensem-
ble approaches. The classification of multivariate time series is
discussed in [18].

In the whole series category of TSC methods, time series
are compared using all data points, either by a special time
series distance measure or by treating the time series as a high-
dimensional vector and using traditional classification
approaches. Several methods from this category are presented
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.asoc.2022.109859
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109859&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ziga.strzinar@ijs.si
https://doi.org/10.1016/j.asoc.2022.109859
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ž. Stržinar, B. Pregelj and I. Škrjanc Applied Soft Computing 132 (2023) 109859
Table 1
Table of symbols and indices.
Symbol Description

c Number of clusters (FCM), number of prototypes per class (EFC)
k Number of classes in the classification task, known a priori from the problem description
η FCM fuzziness parameter
i Cluster (FCM)/eigenresponse (EFC) index
j Sample index
N Number of samples
t Class index
a Index of sample awaiting classification
in [16], all of which use a combination of the nearest neigh-
bor classifier (1NN) and an elastic distance measure. Alternative
distance based methods are described in [19]. By far the most
commonly used elastic distance measure is Dynamic Time Warp-
ing (DTW) [20]. Alternatives include FastDTW [21,22], TWED [23],
WDTW [24], DDDTW [25], MSM [26], DDDTW [27]. Whole-series ap-
proaches to classifying time series are most appropriate when the
distinguishing features are present throughout the time series,
but may be subject to temporal shifts between individual time
series. An example of such a dataset is ‘FiftyWords’ from the UCR
archive [28].

The second category of TSC techniques are phase dependent
interval approaches, where the time series are analyzed in in-
tervals. This is advantageous when the distinguishing features
of classes are only present in certain regions (intervals) of the
entire time series. Examples of classifiers that use this approach
are Time Series Forest [29], Time Series Bag of Features [30], and
Learned Pattern Similarity [31].

Shapelet based algorithms focus on shapelets — short patterns
that define a class and can occur anywhere in the series [32,
33]. The defining feature of a class is the presence or absence
of a shapelet. Several approaches have been developed: Fast
Shapelets [34], Shapelet Transform [35], Learned Shapelets [36].

Dictionary based approaches focus on repetitive patterns in
time series. Examples include: Bag of Patterns [37], SAXVSM [38],
BOSS [39].

Ensemble approaches are very competitive in general clas-
sification problems and are also becoming popular in time se-
ries classification. Prominent examples are DTWF and COTE [40],
HIVE-COTE [41], HIVE-COTE v1.0 [42], HIVE-COTE v2.0 [43].

Above we have explained the characteristics of the different
categories for classifying time series. For our task, a suitable cate-
gory of TSC methods should be selected. In the case of continuous
measurements of, for example, pneumatic pressure, segmented
into meaningful segments (‘meaningful’ segments in this context
are segments corresponding to the operations performed by the
production machine, each segment only corresponding to exactly
one operation), the task is to classify the segments and thus
identify the exact series of operations performed by the machine.
The whole series category seems to be the most appropriate,
because it is expected that each operation results in a distinct
response, the distinguishing feature of the time series segments is
their overall shape. This will be demonstrated later in the article.

In the whole series TSC category, a number of researchers have
made considerable efforts to develop different elastic distance
measures, but the classifier has remained largely the same — 1NN.
The use of 1NN comes with some disadvantages: (1) classification
requires searching the entire training set and is therefore an
expensive operation as the training set increases, (2) sensitivity
to outliers in the sample, (3) the ‘model’ (the entire set of training
time series) cannot be visualized.

In the past, a subset of whole series TSC methods called Dis-
tance features and Distance kernel methods, were presented [19].
The Distance features methods are of particular interest, they

involve three steps: (1) computing a square distance matrix of

2

the distances between training time series, (2) alternatively rep-
resenting each training time series as distance matrix rows, (3)
using well-known classifiers such as Support Vector Machine
(SVM). Several methods have been proposed to reduce the com-
putational cost of these methods [19].

Literature has explored the use of fuzzy clustering and classi-
fication in time series analysis. For clustering of time series, [44]
lists Fuzzy C-means alongside Crisp partitioning methods. In [45],
DTW and fuzzy clustering techniques are used, with the authors
proposing their own fuzzy clustering algorithm. In [46], a fuzzy
clustering algorithm is applied to switching time series. Recently,
fuzzy methods have been applied to the analysis of COVID-19
data [47]. In [48], fuzzy class representation is used for a time
series classification task. In [49], fuzzy clustering was applied to
the change point detection problem (CPD [5]).

Our paper introduces Eigenresponse Fuzzy Clustering (EFC).
Compared to the established combination of 1NN and elastic dis-
tances, the proposed approach aims to overcome the mentioned
drawbacks of 1NN. Our approach differs from existing applica-
tions of fuzzy time series clustering and classification approaches
by using multiple prototypes per class. The described approach
also differs from the distance features category as it operates
directly on raw time series and not in the features space (also
called the dissimilarity space [50]).

The paper is structured as follows: Section 2 describes our
contribution — the Eigenresponse Fuzzy Clustering (EFC) method.
Section 3 describes the datasets used in this work to evalu-
ate the algorithm. Section 4 evaluates the approach using the
datasets defined in the previous Sections. Section 5 presents the
conclusions.

Table 1 summarizes and describes the various symbols and
indices used in this work. Throughout the paper, matrices (in
capital letters) and vectors are shown in bold.

2. Eigenresponse Fuzzy Clustering

The contribution of this article is the introduction of an ap-
proach for time series classification — the Eigenresponse Fuzzy
Clustering (EFC) method and the application of EFC.

When training a fuzzy model for time series data, usually one
prototype per class is usually computed [44–46,48]. However,
a single class can encompass a considerable range of values.
It would be wise to model such a class with more than one
class prototype. For this reason, Eigenresponse Fuzzy Clustering
proposes the use of a configurable number of prototypes per class.
This concept is illustrated in Fig. 1.

In EFC, classes are represented compactly, retaining only the
truly representative shapes — those that define a class. EFC im-
plements this by representing each class with c prototypes. After
training, only the prototypes are kept, not the entire training set.
The prototypes of class i are learned from all training time series
belonging to class i. Since learning is done per class, paralleliza-
tion is possible when using multi-core CPUs. During classification,
only the class prototypes – eigenresponses – are queried, not

the entire training data set. The problem of outliers has been
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Fig. 1. Time responses of four classes, for each class three (c = 3) prototypes are determined.
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entioned. We distinguish two cases of outliers: (1) outlier time
eries, (2) outlier samples. In the first case, an unusual time series
ccurs in the training set. In our experience, such outliers have
ot occurred frequently so far. Resilience to such outliers could
e increased by replacing the FCM algorithm with for example,
ossibilistic c-means; this could be an avenue for further re-
earch. The second type is the sample outlier, where a single
ample in a time series is irregular. This can be caused by noise
r a defective sensor. The proposed algorithm provides improved
esilience to this type of outlier, as the outlier is not included in
he eigenresponses. Since only a small number of eigenresponses
re used to represent a class, visualization is possible and the user
an gain insight into the learned model.
In the following sections, FCM is briefly explained

Section 2.1), followed by the introduction of EFC — training the
odel in Section 2.2 and use for classification in Section 2.3. Then

n Section 2.4 the hyperparameters of EFC are discussed and in
ection 2.5 the issue of distance measures is addressed.

.1. Fuzzy C-means

Clustering is an unsupervised learning approach — a process
hat aims to group a set of data points (samples, objects) into mul-
iple groups (clusters) [51]. Clustering methods can be divided
nto several categories. The category of partitioning methods aims
o partition the sample space into regions associated with each
luster. There are generally two types: crisp and fuzzy.
In crisp methods, each sample xj is assigned to exactly one

luster [51]. Let µi be the membership function to cluster Ci. In
risp methods, µ takes only from {0, 1}.
Fuzzy methods, on the other hand, allow fuzzy boundaries

etween clusters. The membership function can take any value
n the interval [0, 1]. For c clusters (C = {C1, . . . , Cc}):

i(xj) ∈ [0, 1];
∑
Ci∈C

µi(xj) = 1 (1)

The Fuzzy C-Means clustering algorithm (FCM) was first in-
roduced in [52], improved in [53], and frequently implemented,
dapted, and revised since then.
The algorithm aims to minimize the following objective func-

ion

η =

∑
Ci∈C

Ni∑
j=1

µ
η

ijd(xj − vi); 1 < η <∞ (2)

here η is a tuning parameter that determines the fuzziness of
he clustering. i is the cluster index, j is the sample index. v is
i

3

he ith cluster prototype. c is the number of prototypes. µij is
i(xj) - membership function value of sample xj to cluster Ci. N
s the number of all samples. d(xj − vi) is a distance function, for
xample squared euclidean ∥xj − vi∥2.
The objective function computes a sum of the weighted dis-

ances between all sample–cluster-prototype pairs. The weight is
aken from the fuzzy partition matrix, where each element µij
escribes the membership of the sample xj to the ith cluster rep-
esented by the cluster prototype vi. The membership function is
ormalized to the sum of the distances from xi to the prototypes
f all clusters:

ij =

(∑
Cl∈C

(d(xj − vi)
d(xj − vl)

) 1
η−1

)−1
(3)

FCM is an iterative algorithm that is repeated until it converges
or the iteration limit is exceeded.

In FCM, initialization is an important step. The traditional
approach is to use random initialization. This may result in more
iterations of the algorithm being required or the solution reaching
a local-minima solution [54]. We have observed that when using
high-dimensional data (i.e.g., time series), random initialization
causes the cluster prototypes to converge against the mean of
the data set. Several alternative initialization approaches have
been proposed, for example, Fuzzy C-means++ (FCM++) [54]. In
FCM++, cluster prototypes are seeded using samples from the
dataset. FCM++ aims to select diverse samples as the initial cluster
prototypes.

2.2. Training phase

The first step of training is to group the training time series
according to their class designations. Each group is then passed
to the FCM clustering algorithm

The result of clustering for each class is a set of c cluster
prototypes - eigenresponses. The total number of prototypes is
c · k (k is the number of classes in the classification task). Fig. 1
shows the initial series (black lines) and the prototypes (red lines)
for each class (one class per figure quarter).

The eigenresponses for each class are stored in the matrix Vt
and later used to classify new time series. The entire procedure
of the train phase is shown in Fig. 2 and in the algorithm:

Require: c, η
1: initialize EFC model
2: for t = 1 : k do

3: Xt ← Xtrain if ytrain == t {Grouping by class}
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Fig. 2. Learning phase of EFC clustering of eigenresponses. One FCM clustering is performed per class (four classes in above Figure). The cluster prototypes of all
FCM clusterings are saved as the trained EFC model — the prototypes are considered eigenresponses.
4: vt,1, . . . , vt,c ← FCM(Xt , c, η)
5: Vt ← [vt,1, . . . , vt,c]
6: end for
7: return Vt; t = 1, . . . , k

Line 3 of the above algorithm is to be interpreted as a selection
step, where the training samples of class t are extracted from

train and assigned to Xt . Xt is then used in the FCM (line 4).

.3. Classification phase

The classification is based on the eigenresponses obtained in
he training phase (cluster prototypes).

Three approaches to classify a new sample xa are proposed: (1)
econstruction-based, (2) distance-based, (3) membership-based.
ach of these approaches is explained in the following Sections.

.3.1. Reconstruction based classification
When a new sample xa is received for classification, the stored

eigenresponses (Vt; t = 1, . . . , k) are used to reconstruct the
iven sample. The reconstruction is performed in two steps:

1. By solving the (overdetermined) system of Eqs. (4) for ut,a,
an optimal (in terms of Squared Error) weights vector ut,a
is obtained.

xa = ut,a Vt + et,a (4)

xa is the new sample vector to be classified, Vt is the matrix
of prototypes of class t , et,a is the residual error term,
ut,a is the solution — an optimal weights vector for the
reconstruction of xa using the prototypes Vt. The solution is
optimal in minimizing et,aTet,a. The optimal ut,a is obtained
for all classes t = 1, . . . , k.

2. Among all generated ut,a, the one with the lowest squared
reconstruction error et,aTet,a is chosen.

t̂a = argmin
t=1,...,k

et,aTet,a (5)

t̂a is the result — the index of the class in which the given
sample xa is classified.

The weight vector ut,a is optimal (in terms of Squared Error)
only if the distance metric used for the evaluation is Euclidean
distance. This approach should be used appropriately.
4

2.3.2. Distance based classification
This approach uses the 1-nearest neighbor (1NN) classifier

given in algorithm:

Require: sample xa
Require: collection of labelled training samples Xtrain
1: best_dist←∞
2: for all xtrain,i in Xtrain do
3: dist← d(xtrain,i, xa)
4: if dist < best_dist then
5: best_idx← i
6: dest_dist← dist
7: end if
8: end for
9: ŷa ← class_of(xtrain,best_idx)

10: return ŷa

During the learning phase, c prototype responses were deter-
mined for each of the k classes. In distance-based classification
approach these prototypes are used as labeled (their class iden-
tifier) training samples for a 1NN classifier. For a test sample xa,
the distances to all training samples (class prototypes = eigenre-
sponses) are calculated and the sample is assigned to the class
whose prototype was closest.

ŷa = argmin
t=1,...,k

[
min

i=1,...,c

[
d(xa, vt,i)

]]
(6)

2.3.3. Membership-based classification
The FCM algorithm uses fuzzy memberships. EFC can make use

of them in the classification phase. The membership of sample xj
to cluster i represented by prototype vi is calculated using (3). For
better readability, the equation is re-written here.

µij =

( c∑
l=1

(d(xj, vi)
d(xj, vl)

) 1
η−1

)−1
(7)

In the proposed EFC model, each class is represented by c pro-
totypes. The prototypes – eigenresponses – can be used to classify
a new sample xa using appropriate membership functions. Three
possible approaches have been developed by the authors of this
paper and are presented here:
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a
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Fig. 3. Hyperparameters η and c effect on training time and success rate using
30 fold stratified resampling on UCR dataset ‘ECG200’.

1. Competing classes approach is given in (9). For each class
t , membership of xa are computed to all cluster prototypes
vt,i, i = 1 . . . c . Maximum memberships across classes are
then compared and the class with the highest membership
is selected as ŷa.

µt,i,a =

( c∑
l=1

(d(xa, vt,i)
d(xa, vt,l)

) 1
η−1

)−1
(8)

ŷa = argmax
[

max
[
µt,i,a

]]
(9)
t=1,...,k i=1,...,c

5

2. Competing prototypes approach is given in (10). In this
approach, all prototypes are considered in the membership
calculation. A new sample xa is assigned to class t of the
best matching vt,i.

ŷa = argmax
t̂=1,...,k

[
max

i=1,...,c

c
k∑

l=1
t=1

(
d(xa, vt̂,i)
d(xa, vt,l)

) 1
η−1

) −1]
(10)

3. Competing aggregates approach is based on (11). The ap-
proach is an extension of competing prototypes, with the
difference that instead of individual prototype member-
ships, those representing the same class (µt,i, t = 1, . . .)
can be summed to represent the aggregate membership
to a class µt (xa) =

∑
i=1,...,c µt,i(xa).

ŷa = argmax
t̂=1,...,k

[ c∑
i=1

( c
k∑

l=1
t=1

(
d(xa, vt̂,i)
d(xa, vt,l)

) 1
η−1

)−1]
(11)

Eqs. (5), (6), (9), (10), (11) describing the five classification
pproaches, are the fundamental equations of this paper.
Sections 2.2 and 2.3 have introduced the Eigenresponse Fuzzy

lustering algorithm. The trained model consists of c · k eigenre-
sponses. The learnt eigenresponses are then used in classification.
Five approaches to classification have been proposed.

2.4. Hyperparameters

The proposed approach includes two hyperparameters: the
number of prototypes per class (c in (2)) and the fuzziness pa-
rameter (η in (2)). The values used in this paper are c = 4, η = 2.
Our choice of c is guided by knowledge of the dataset. η = 2
is commonly used for the Fuzzy C-Means algorithm and is also
used in our evaluation of EFC. A possible future research topic is a
data-driven approach for hyperparameter selection, see Fig. 3(a)–
3(d) for justification. Currently, the hyperparameters are constant
across all classes, which may not be optimal.

2.5. Distance metrics

The algorithm described in Sections 2.2 and 2.3 uses a distance
metric on several occasions:

1. the FCM algorithm requires a distance metric for comput-
ing distances between objects (samples),

2. the training phase of EFC applies the FCM algorithm,
3. the classification phase of EFC uses a distance metric in all

classification approaches (reconstruction-based, distance-
based and typicality based).

In this work, d(x, y) was used to indicate the distance between
time series x and y of equal length. The time series community
has invested considerable effort in developing various (elastic)
distance metrics for use in classification. In addition to Euclidean
distance, the Dynamic Time Warp distance is the most commonly
used. Several authors have proposed additional distance metrics:
TWED [23], WDTW [24], DDDTW [25], MSM [26], DDDTW [27], etc.

Since the distance formula is computed numerous times dur-
ing the training and classification phases, its computational com-
plexity is important. Many of the elastic measures are com-
putationally intensive and therefore their computation is slow
compared to, for example, Euclidean distance. We have imple-
mented and used several elastic distances (DTW, cDTW, CID,
dDTW, . . . ), but none of them have led to outstanding perfor-
mance improvements. Therefore, only DTW, the most popular
elastic distance, is discussed in this article. In Tables 5 and 6, we
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Fig. 4. Industrial machine dataset.

Fig. 5. Pressure and current measurements on EOL testing station — one run.

show that the use of DTW does not lead to improved performance
compared to ED. Nevertheless, we include the results to show
that distance measures other than ED can be used in combination
with the proposed classifier. Researchers working on time series
have proposed several elastic measures in recent years. Our in-
clusion of DTW is to show that other measures can be used and
perhaps provide better results for specific use cases.

In the rest of this paper, we will mainly use ED and DTW.
owever, it should be noted that DTW and most other elastic
easures are not in fact metrics, and should be used accordingly.
In this Section the EFC algorithm was introduced in two dis-

inct phases — learning and classification. For classification, five
pproaches were developed and presented. In the next Section
he datasets are presented, and later in Section 4 the algorithm is
valuated.

. Datasets

The algorithm, described in Section 2 is evaluated on multiple
atasets:

1. An industrial machine case study — 280 measurements
from 14 different classes. Each class corresponds to an ac-
tion on an industrial, automated, end-of-line test bench, on
e-bike drive assembly line developed at the ‘‘Jožef Stefan’’
Institute [10]. Data of 20 test runs is used, the dataset is
described in more detail in Section 3.1.

2. A selection of publicly available time series datasets, as

specified in Section 3.2.

6

Table 2
Industrial machine dataset labels and descriptions.
Index Label Description

1 S1 Hood lock
2 S3 Center apply 1
3 S4 Restraint apply
4 S5 Contact apply
5 S6–9 Center remove 1, test current on,

measure 1, test current off
6 S10 Center apply 2
7 S11 Holder apply
8 S12 Axis cylinder apply
9 S13 Bearing grip

10 S14–17 Axis cylinder remove, power supply
connect, measure 2,
power supply disconnect

11 S18–19 Bearing release, contact remove
12 S20 Center remove 2
13 S21 Holder remove
14 S22 Restraint remove

This Section describes the datasets used to evaluate the pro-
posed classification algorithm. The ‘industrial machine dataset’
is the primary-target use case, and the UCR archive is used
as a benchmark to compare the performance of the presented
approach. Since the used industrial machine dataset has not yet
been published elsewhere, the dataset is described in more detail,
including the pre-processing steps used to prepare it (normaliza-
tion, segmentation, etc.).

3.1. Industrial EOL machine dataset

The work presented in this paper is driven by the desire to
detect events in a real-world industrial process using a ubiquitous
signal such as supply current or pneumatic line pressure. With
this in mind, the approach is evaluated using a real-world dataset
of 280 time series. This Section describes the generating process
and the preprocessing steps performed.

Originating process. An industrial end of line (EOL) testing station
was developed at the ‘‘Jožef Stefan’’ Institute. The station is spe-
cialized in testing e-bike motors and is shown in Fig. 4. The main
testing procedure is preceded and followed by a sequence of rapid
actuator actions. These actions include clamping the device on
multiple sides, lowering the test equipment onto the motor, etc.
A total of 14 detectable actions were manually identified. These
events are listed in Table 2.

The EOL station was equipped with additional sensors. The
pressure sensor is of importance for this article. The observed
actuators on the EOL testing station are electrically controlled
but pneumatically driven. Therefore, every action of these ac-
tuators has an effect on the line pressure, which can be seen
in the collected measurements — see Fig. 5. An extensive set of
measurements was made, spanning several months. From these
measurements, a set of 20 ‘runs’ was randomly selected. A ‘run’
is an entire sequence of events necessary for the testing station
to process (test) a single electric motor. Runs with incomplete or
invalid data were ignored.

Normalization. The Z-normalization (13) is commonly used in
machine learning applications, but for our data, the min–max
normalization (12) was chosen for two reasons:

1. The distribution of pressure measurements is not normal,
it is skewed, as shown in Fig. 6. There are long tails (see
values < 6.0) and an additional peak is visible (between
6.1 and 6.2). The line pressure is usually bounded upward
by the central pressure lines of the plant, resulting in the

observed peak.
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Fig. 6. Histogram of raw pressure measurements. All available measurements
used (not only those included in the dataset). Number of bins = 250.

Table 3
Industrial machine dataset duration distribution.
Index Name Mean [s] Std [s] % of total (mean)

1 S1 0.498 0.045 0.57%
2 S3 0.541 0.021 0.62%
3 S4 0.485 0.004 0.56%
4 S5 1.446 0.034 1.66%
5 S6–9 1.867 0.025 2.14%
6 S10 0.541 0.029 0.62%
7 S11 0.829 0.006 0.95%
8 S12 1.009 0.005 1.16%
9 S13 0.222 0.006 0.25%

10 S14–17 76.879 10.224 88.12%
11 S18–19 1.421 0.007 1.63%
12 S20 0.396 0.005 0.45%
13 S21 0.642 0.005 0.74%
14 S22 0.469 0.007 0.54%

2. A run contains the actions of the actuators before and after
the test that one wants to analyze further. However, it also
contains measurements taken during the test. These vary
greatly in length (see Table 3) and make up a large portion
of the measurements of the entire run, and would have a
disproportionate effect if one were to use z-normalization
of the entire run data — see long period of stationary
conditions in Fig. 5 and row 10 (S14–17) in Table 3.

It is of note that at this point the entire run is normalized, not
esponses to individual actuator actions (classes)

(t) =
xraw(t)−min(xraw)

max(xraw)−min(xraw)
(12)

(t) =
xraw(t)−mean(xraw)

std(xraw)
(13)

egmentation. After normalization, each run is divided into the
4 actions. A significant drop in line pressure indicates an action
nd is suitable for segmentation. Out of 20 runs, 280 segments
re retrieved. Each segment is labeled with an appropriate la-
el. The entire dataset was manually reviewed to ensure correct
egmentation and labeling. Fig. 7 shows the derivative-based
egmentation. The segments are shown in alternating colors.
The segmentation level can be chosen as follows:

1. calculate the derivative of the data,
2. determine the noise level in the measurements,
3. calculate the standard deviation of the measurements

whose derivative is greater than the noise level,
4. the calculated standard deviation can be used as the seg-

mentation threshold.
 r

7

Segmentation is a fundamental part of data processing prior
to segment classification. In real-world scenarios, this is a dif-
ficult task. The broader problem of time series segmentation is
beyond the scope of this paper, but should be addressed in further
research in this area.

Length correction. The raw sensor data was sampled at 100 Hz.
The segments obtained vary in length. Most time series analysis
works (best) on time series of equal length, so all segments
are length corrected. They are resampled to 500 data points.
Where necessary, missing data points are obtained through linear
interpolation of the two adjacent data points.1

Nomenclature. In the remainder of this paper, the segments ob-
tained here are referred to as ‘responses’, and their associated
labels are ‘task’ or ‘class’ indicators.

The final dataset is shown in Fig. 8.

Indistinguishable classes. The classes labeled S3 and S10 are in-
distinguishable, so they are considered one interchangeable class
for the sake of this article. This brings the total number of classes
from 14 to 13.

Train test breakdown. The following Section introduces the UCR
Archive datasets. They are all pre-split into training and test
datasets. To simplify the work with the Industrial machine
dataset, it is also split into two sets. In the original dataset, all
classes are equally represented. This equal representation is also
ensured in the generated training and test datasets. Apart from
the requirement of equal representation, the selection of the
training and test sets is done randomly.

A single split between training and test series was made, and
this split is used throughout this paper.

3.2. UCR archive

In 2002, researchers at the University of California, Riverside,
published an archive (referred to here as the UCR Archive, or sim-
ply the archive) of 16 datasets for use in time series classification.
Over the years, the archive has grown and been expanded several
times, most recently in 2018 [28,55]. The archive is now very
diverse and includes 128 datasets.

All datasets are already divided into training and test sets. The
authors of the archive also provide detailed descriptions of most
of the data sets.

The archive includes a wide range of time series types: Shape
contours (e.g., ‘ArrowHead’), spectral measurements (e.g., ‘Coffee’,
‘Beef’), simulated (e.g., ‘TwoPatterns’), medical (e.g. ‘TwoLead-
ECG’, ‘NonInvasiveFetalECGThorax1’), traffic count (e.g. ‘Dodger-
LoopGame, ‘MelbournePedestrian’), power consumption (e.g.
‘ItalyPowerDemand’, ‘LargeKitchenAppliances’), and many more.
Some of these categories may surprise the reader (outlines of
shapes, spectral measurements) because they are not temporal
data. However, the defining characteristic of time series over
other types of data is that the attributes are ordered. Whether
the order is temporal or not is in fact irrelevant [16]. The shape
contours, also called the outlines or, simply ‘images’ category is
the most similar to the time series relevant to our ultimate goal
of detecting machine operations based on shapes.

In URC Arhive, individual datasets contain between 2 and 128
classes. Some datasets are long (2844 samples per time series in

1 From the Table 3 it can be seen that the segments are very well dis-
inguishable by their length alone. However, this is usually not the case in
ther real-world applications. After length correction, the information about
he original length of a segment is no longer present in the dataset, and the
valuation results in Section 4 are therefore not biassed by this property of the
aw data.
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Fig. 7. Example of a segmented time series in Industrial machine dataset.
he ‘Rock’ record), others are very short (15 samples per time
eries in the ‘SmoothSubspace’ dataset). The archive also contains
ata sets with different time series lengths and even data sets
ith missing values.
All 128 datasets were analyzed and 48 of them were selected

or further evaluation. The selection process could be described as
ne of elimination. A list of conditions was established. If a record
id not meet one of these conditions, it would not be included in
he final selection:

• The size of the training and testing datasets must be 500 or
less. Larger sets lead to very long learning and evaluation
times and were therefore not practical for us, especially
because of the inclusion of edit-distance based distance
measures.
• data sets with time series longer than 512 samples each

were not included. The reason for this omission was that
longer time series lead to time-consuming calculations of
certain edit-distance-based distance measures.
• The algorithm as proposed in this paper defines 4 (our value

for c) eigenresponses per class. Datasets with fewer than 4
exemplars of each class in the training set were therefore
discarded. This condition must be satisfied for all classes
represented in the training data.

The elimination process discarded a large number of UCR
atasets, leaving 48 datasets for evaluation.

. Results

In the previous Sections EFC was discussed. In this Section the
lgorithm is evaluated and compared to the most commonly used
lassifier for whole series classification.

.1. Setup and methodology

This Section explains the experimental setup, special condi-
ions, and the preprocessing used.

.1.1. Z-normalization
Z-normalization (13) is commonly used in machine learning

pplications. In Section 3.1, min–max normalization was used
nstead. However, it was noted that min–max normalization was
nly used per run. In this Section z-normalization is applied to
ach individual time series — each class response. This normaliza-
ion is used for both the Industrial machine dataset and all UCR

atasets used.

8

Table 4
Performance on Industrial machine dataset.

1NN EFC

20-fold cross validation accuracy 97.5% 100%

4.1.2. Ensemble of EFC classifiers
Section 2.3 presents five classification approaches:

reconstruction-based, distance-based, competing prototypes,
competing classes, and competing aggregates. When processing
a new dataset split into training and testing data, the training
dataset can be used to determine the best performing approach.
Assuming that the performance in the test and training datasets
is highly correlated, the best approach can be selected as the best
for that dataset.

The classifier that uses a classification approach determined in
the manner described above is referred to as the ‘‘EFC best’’ in the
Results section.

Other advanced ensembling techniques, such as weighted vot-
ing, should be explored in the future.

4.2. Industrial machine dataset performance

The Industrial machine dataset described in Section 3.1 was
used to evaluate the performance of the proposed algorithm. Both
the 1NN and EFC classifiers were used, both with ED. For EFC,
c = 4, η = 2 were used. Results were obtained by performing
20-fold cross-validation.

On the industrial dataset, the EFC classifier achieves 95.4%
accuracy. Under the same conditions, the 1NN classifier achieves
88.9%. However, closer inspection shows that the EFC classifier
makes errors between classes S3 and S10, which are indistin-
guishable from each other, see Section 3.1. If S3 and S10 are
considered interchangeable, as described in Section 3.1, the EFC
achieves 100% accuracy and the 1NN achieves 97.5% accuracy. The
results are summarized Table 4. The accuracy of 100% is crucial
in the field of manufacturing.

Thus, the proposed algorithm achieves its main goal by cor-
rectly classifying all time series from our case study on industrial
machinery. This leads us to compare the EFC with other more
general datasets. In the next section, we therefore further eval-
uate the algorithm on a set of publicly available datasets from
the UCR archive.

4.3. UCR-archive performance

This section evaluates the proposed approach and compares it
to the 1NN classifier using a number of datasets. The hypothesis
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Fig. 8. Industrial machine dataset — 20 runs.
ested here is that there are a number of time series datasets
here the proposed approach outperforms the most commonly
sed whole series approach, the 1NN classifier. The compari-
on made in this section focuses on the two distance measures
ost commonly used in time series classification: the Euclidean
istance (ED) and the Dynamic Time Warp distance (DTW).
Fig. 9 shows performance using ED or DTW, the two most

ommonly used distance metrics in time series classification. The
9

red dots show the results obtained using ED and the magenta
dots represent DTW. Each dot shows the results for one dataset.
Fig. 9 shows that the proposed approach performs better in 46.9%
datasets with ED. Moreover, Fig. 10 that there is a correlation
between training and testing results. This allows us to correctly
predict whether 1NN or the proposed approach will perform
better. The Tables 5 and 6 show whether test performance for a
single dataset was predicted correctly (TP, TN) or incorrectly (FP,
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Table 5
1NN vs EFC ‘best’, Euclidean distance.
Dataset UCR category Performance

Industrial machine dataset – TP
ECG200 ECG TN
ArrowHead Shape/Image TP
BeetleFly Shape/Image TP
BirdChicken Shape/Image TP
DistalPhalanxOutlineAgeGrp Shape/Image TP
DistalPhalanxTW Shape/Image TP
Fish Shape/Image TP
Herring Shape/Image TP
MiddlePhalanxOutlineAgeGrp Shape/Image TP
MiddlePhalanxTW Shape/Image TP
OSULeaf Shape/Image TN
ProximalPhalanxOutlineAgeGrp Shape/Image FP
ProximalPhalanxTW Shape/Image TP
CricketX Motion TN
CricketY Motion TN
CricketZ Motion TN
GunPoint Motion TN
GunPointAgeSpan Motion TN
GunPointMaleVersusFemale Motion TN
GunPointOldVersusYoung Motion TN
ToeSegmentation1 Motion FP
ToeSegmentation2 Motion FP
PowerCons Power TN
DodgerLoopDay Sensor FP
DodgerLoopGame Sensor TP
DodgerLoopWeekend Sensor TP
Earthquakes Sensor FP
GesturePebbleZ1 Sensor TP
GesturePebbleZ2 Sensor TN
Lightning7 Sensor FN
PickupGestureWiimoteZ Sensor TP
Plane Sensor TP
ShakeGestureWiimoteZ Sensor TP
Trace Sensor TN
BME Simulated FP
ShapeletSim Simulated FP
SmoothSubspace Simulated TN
SyntheticControl Simulated TP
UMD Simulated FP
Beef Spectro TP
Coffee Spectro TP
Ham Spectro NT
Meat Spectro FP
Wine Spectro FN
Chinatown Traffic TP
GestureMidAirD1 Trajectory FP
GestureMidAirD2 Trajectory TN
GestureMidAirD3 Trajectory TN

FN) by observing the training results. For Euclidean distance, the
F1 score is 0.778 and for DTW 0.424.

4.3.1. Shape outlines
The UCR archive contains datasets that are divided into sev-

ral categories. One of the categories is outlines. Time series of
utlines are obtained by mapping the outline of an object to
olar coordinates. The resulting time series has similar proper-
ies to the Industrial machine dataset in Section 3.1. 12 of the
atasets used in the evaluation belong to the category ‘outlines of
hapes’, also called ‘images’: ArrowHead, BeetleFly, BirdChicken,
istalPhalanxOutlineAgeGroup, DistalPhalanxTW, Fish, Middle-
halanxOutlineAgeGroup, MiddlePhalanxTW, OSULeaf, Herring,
roximalPhalanxOutlineAgeGroup, ProximalPhalanxTW. Out of
he 12 datasets, our proposed method using ED improved the
NN classifier in 10 datasets. The results corresponding to the 12
atasets are shown as outlined dots in Fig. 9.
10
Table 6
1NN vs EFC ‘best’, DTW distance.
Dataset UCR category Performance

Industrial machine dataset – TP
ECG200 ECG TN
ArrowHead Shape/Image TP
BeetleFly Shape/Image TP
BirdChicken Shape/Image TN
DistalPhalanxOutlineAgeGrp Shape/Image TN
DistalPhalanxTW Shape/Image FP
Fish Shape/Image TN
Herring Shape/Image FP
MiddlePhalanxOutlineAgeGrp Shape/Image FP
MiddlePhalanxTW Shape/Image TP
OSULeaf Shape/Image TN
ProximalPhalanxOutlineAgeGrp Shape/Image TN
ProximalPhalanxTW Shape/Image TN
CricketX Motion TN
CricketY Motion TN
CricketZ Motion TN
GunPoint Motion FP
GunPointAgeSpan Motion TN
GunPointMaleVersusFemale Motion TN
GunPointOldVersusYoung Motion FN
ToeSegmentation1 Motion FP
ToeSegmentation2 Motion TN
PowerCons Power FN
DodgerLoopDay Sensor FP
DodgerLoopGame Sensor FP
DodgerLoopWeekend Sensor FP
Earthquakes Sensor TN
GesturePebbleZ1 Sensor TN
GesturePebbleZ2 Sensor TN
Lightning7 Sensor TN
PickupGestureWiimoteZ Sensor FP
Plane Sensor TN
ShakeGestureWiimoteZ Sensor FP
Trace Sensor TN
BME Simulated FP
ShapeletSim Simulated FP
SmoothSubspace Simulated TN
SyntheticControl Simulated TN
UMD Simulated FP
Beef Spectro TP
Coffee Spectro TP
Ham Spectro FN
Meat Spectro FP
Wine Spectro FN
Chinatown Traffic TP
GestureMidAirD1 Trajectory FP
GestureMidAirD2 Trajectory TN
GestureMidAirD3 Trajectory FP

5. Conclusion

This paper presents an approach for time series classifica-
tion — Eigenresponse Fuzzy Clustering (EFC). EFC proposes learn-
ing multiple time series prototypes per class to better model
the wider range of each class. Training of the EFC model is
performed by fuzzy clustering with Fuzzy C-Means. In this pa-
per, we have presented five methods for classification using the
multiple-prototypes-per-class stored by the EFC model.

The developed EFC algorithm primarily aims to detect events
in production and enables monitoring and fault detection. Au-
tonomous fault detection is becoming an essential task in pro-
duction monitoring. Therefore, an efficient and reliable method
is of great importance. The results on a real-world dataset show
that the method is very accurate for the target application.

EFC is further evaluated on a selection of publicly available
datasets, the UCR Archive. This further evaluation shows that
the algorithm is competitive on some more complex datasets.
However, as mentioned in the previous sections, there is still
room for improvement. Among the UCR Archive datasets, the



Ž. Stržinar, B. Pregelj and I. Škrjanc Applied Soft Computing 132 (2023) 109859

F

c
s
t
w

i
B
W
p

D

c
t

D

A

0
A

R

Fig. 9. Comparison of EFC ‘best’ and 1NN. Each point is a single dataset–distance
combination. The two axes are the error rates of 1NN and EFC. The colors of the
points distinguish between the Euclidean distance and the Dynamic Time Warp
distance. Points below the diagonal line indicate dataset–distance combinations
where the EFC approach performs better than 1NN. The outlined dots indicate
the shape outlines category of the UCR Archive. For this category, EFC-ED gives
better performance than 1NN- ED.

Fig. 10. Comparison of EFC ‘best’ and 1NN — a texas sharpshooter plot (FN =
alse Negative, FP = False Positive, TN = True Negative, TP = True Positive).

ategory of shape outlines (images) stands out as being the most
imilar to the desired application of the proposed method. In
his category, the method outperforms the most commonly used
hole time series classification approach, the nearest neighbor.
11
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