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Abstract. Quadratic programs resulting from a model predictive con-
trol problem in real-time control context are solved using a dual gradi-
ent method. The projection operator of the method is modified so as to
implement soft state constraints with linear and quadratic cost on con-
straint violation without directly calculating values of slack variables.
Evolution of iterates and residuals throughout iterations of the method
is studied. We notice that in most iterations, the set of the constraints
that are active and the ones that are violated does not change. Observ-
ing the residuals through multiple iterations in which the active and
violated sets do not change leads to interesting results. When the dual
residual is transformed into a certain base, its components are decaying
independently of each other and at exactly predictable rates. The trans-
formation only depends on the system matrices and on the active and
violated sets. Since the matrices are independent of the system state,
so is the transformation, and the decay rate of the components stays
constant through multiple iterations. The predictions are confirmed by
numerical simulations of MPC control, which is shown for the AFTI-16
benchmark example.
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1 Introduction

Model predictive control (MPC) is traditionally limited to processes with rel-
atively slow dynamics because of the computational complexity of online opti-
mization [21]. In the last decade, a considerable advance has been made in the
field of fast online optimization [3–5, 10, 15, 16, 25].

The advantages of MPC appear promising for the implementation of ad-
vanced plasma current and shape control in a tokamak fusion reactor [6]. For
MPC purposes, a relatively low accuracy of the solution is sufficient, diminishing
the importance of convergence rate for selection of the method. We are focusing
on fast online implementations of first-order methods adapted for use with MPC
[7, 9, 14, 18]. They converge sublinearly, in strongly convex case linearly [23].
In contrast, active set methods converge in a finite number of iterations [23]
and interior point methods have a superlinear convergence rate [2]. However,
first order methods have certain advantages. It is possible to implement them in
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restricted hardware as each iteration is simple. Although they tend to require
more iterations than second-order methods to achieve the desired accuracy, each
iteration typically requires much less computation, possibly resulting in lower
total computational time.

When moderate accuracy is required, observing the change of residual from
one iteration to the next one is of interest [19]. The concept of decay of residuals
is closely related to both complexity certification and to convergence rate. As
defined in [23], the computational complexity certificate for an iterative solution
method comes as a fixed, a priori computable upper iteration bound from a
non-asymptotic convergence rate analysis of the method. It is a proof, valid for
every possible system state included in a given set, that the calculated control
input will be at most for a certain amount ε away from (or costlier than) the
optimal control input after a certain number of iterations N of the solver. In
contrast, convergence rate is a theoretical concept describing the relative decrease
of the error contributed by one additional iteration in the limit when the number
of iterations N → ∞. Convergence rate is the last rate of the local decay of
residuals, the one that is valid from some number of iterations on indefinitely.
As the complexity certificate is the quality of the solution after a given number
of iterations, generalized to a set of cases, all the local decay rates of the residuals
throughout the iterations are of interest when obtaining it.

The MPC problem may not have a feasible solution, meaning that its con-
straints may be in disagreement. However, in practice we want the controller
to produce a sensible output also when the constraints cannot be satisfied. In
many cases this may be achieved by relaxing the state constraint, allowing it
to be violated, while adding a term corresponding to the violation to the cost
function, with a high violation penalty [1, 11, 13, 17, 26, 26, 27].

We examine the rates of decay of residuals observed with a dual gradient
method in the presence of soft state constraints, where the violation is penalised
with linear and quadratic cost. We derive an expression for the decay rates in
intervals within which the sets of active and violated constraints do not change.
The predicted decay rates depend on the particular set of active constraints and
set of violated constraints, explaining the differences in decay rates observed in
practical calculations. In contrast with [19], the cost on constraint violation has
a quadratic term in addition to a linear one, and the emphasis of the work is
on constraint vioaltion. The dual gradient method that is used implements both
linear and quadratic cost on constraint violation without explicitly calculating
the slack variables. The result is demonstrated on a MPC application to the
AFTI-16 control benchmark [7, 12].

The computational problem and the studied solution algorithm are presented
in Sect. 2. In Sect. 3, it is described how the residual in a given iteration is
determined by the previous one. The resulting rates of decrease are presented
in Sect. 4. Section 5 describes some necessary tools for performing practical
calculations, and Sect. 6 presents the computational results that support the
theoretical conclusions.
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2 Problem Description

A MPC problem is defined by linear system dynamics, a quadratic cost function,
and linear constraints. The calculation of the optimal control input for a given
initial state is formulated as a quadratic program (QP). Some QPs directly
resulting from the MPC problem may not be feasible. The state constraints
of the MPC problem, and consequently of the QP, can be softened to ensure
feasibility and thus predictability of the control input.

2.1 Model Predictive Control

Consider a discrete time linear system with the dynamics described as

x (t+ 1) = Ax (t) + Bu (t) , (1)

where t is the time index, x is the system state, u is the system input, the
matrices A and B model the dynamics. To optimally control the system over a
time horizon N , a quadratic cost function J is introduced [7] as

J =
1

2

N∑
k=0

(xk − xref)
T

Q (xk − xref) + (uk − uref)
T

R (uk − uref) . (2)

The signals are constrained to polyhedra x ∈ X ,u ∈ U where X =
{
x ∈ Rl|C ′

x x � b ′
x

}
,

U = {u ∈ Rm|C ′
u u � b ′

u }. The question of finding the minimizer of the cost for
a given value of x(0) is the QP [2, 19]

minimize
(x0,...,xN ,u0,...,uN )

J (xk,uk) (3a)

subject to xk+1 = Axk + Buk , (3b)

xk ∈ X ,uk ∈ U , (3c)

x0 = x (0) . (3d)

With the receding horizon implementation, u0 is applied as the current value of
the controller output u(0).

2.2 Quadratic Program Formulation With Soft Constraints

Working around the infeasibility problem with the constraints-softening ap-
proach, we relax the state constraint (3c) while adding a term for its violation
to the cost function. We obtain

minimize
(x0,...,xN ,u0,...,uN )

J (xk,uk) +
1

2

N∑
k=0

(
sTk Ssk + sTlinsk

)
(4a)

subject to xk+1 = Axk + Buk , (4b)

C ′
x xk � b ′

x + sk , (4c)

C ′
u uk � b ′

u , (4d)

x0 = x (0) , (4e)

sk � 0 . (4f)
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The vectors sk ∈ Rp are called slack variables, the linear cost on them slin ∈ Rp

has only positive components, slin � 0. The matrix S ∈ Rp×p is diagonal positive
semidefinite.

We proceed by eliminating the state variables as in Ullmann and Richter [24],
using (4b,4e) in (4c) to obtain the condensed form of the QP

minimize
z,s

1

2
zTHz + cTz +

1

2
sTWs + wTs (5a)

subject to Cxz � bx + s , (5b)

Cuz � bu , (5c)

s � 0 . (5d)

The vectors z ∈ R(N×m) and s ∈ R(N×p) are the optimization variables con-
structed as

z =


u0

u1

...
uN

 , s =


s0
s1
...

sN

 .

By construction, the vector w ∈ R(N×p) has only positive components and the
matrix W ∈ R(N×p)×(N×p) is diagonal positive semidefinite. The only QP con-
stants dependent on x(0) are bx and c.

2.3 Dual Proximal Gradient Method Algorithm

As described in Perne et al [19] and Perne et al [20], yk of the iteration

yk =−H−1
(
CTvk + c

)
(6a)

vk+1 =vk + Cyk − p̃roxb,W,w

(
vk + Cyk

)
(6b)

converges to the solution z∗ of the QP (5) as k →∞. The vectors yk ∈ R(k×m)

are the approximate primal solution and vk ∈ Rr is the dual variable, r is the
number of all the constraints. The parameters of (5b, 5c) are used to construct
C and b as

C =

[
Cx

Cu

]
, b =

[
bx

bu

]
. (7)

The operator p̃roxb,W,w (t) is defined by component as

p̃roxb,W,w (t)i :=


ti if i inactive
bi if i active

ti+Wjjbi−wj

Wjj+1 if i violated.
(8)

For soft constraints, the matrix or vector element with the index j is the one
that corresponds to the constraint i. Inactive constraints are the ones for which
ti ≤ bi, for active ones bi < ti and if i is soft, ti ≤ bi + wj . Violated are the
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soft constraints for which ti > bi + wj . The sufficient condition for convergence
is that the eigenvalues of M := CH−1CT are smaller than or equal to 1, and
it can be ensured by scaling the cost function (5a) which does not change the
solution of the QP.

3 Behaviour of Residuals of Dual Gradient Method

Consider three iterations, k, k + 1, k + 2, for which the sets of the constraints
that are active and of constraints that are violated remain constant. Let us define
dual residuals to be

∆k = vk+1 − vk (9a)

∆k+1 = vk+2 − vk+1 (9b)

like in Perne et al [19] and analyse the relationship between ∆k and ∆k+1.
We see from (9b) and from (6b) with the index k advanced for 1 that

∆k+1 = Cyk+1 − p̃roxb,W,w

(
vk+1 + Cyk+1

)
(10)

and applying (6a) we obtain

∆k+1 = −Mvk+1 −CH−1c− p̃roxb,W,w

(
vk+1 −Mvk+1 −CH−1c

)
. (11)

Substituting vk+1 from (9a), equation (11) further expands into

∆k+1 =−M
(
vk + ∆k

)
−CH−1c

− p̃roxb,W,w

(
vk + ∆k −M

(
vk + ∆k

)
−CH−1c

)
.

(12)

Using (11) again, this time with index k in place of k + 1, it follows from (12)
that

∆k+1 = ∆k −M∆k −∆prox . (13)

In (13), we substituted

∆prox :=p̃roxb,W,w

(
vk + ∆k −M

(
vk + ∆k

)
−CH−1c

)
− p̃roxb,W,w

(
vk −Mvk −CH−1c

)
.

(14)

Taking into account that the sets of the active and of the violated constraints
do not change in the studied iterations, it can be shown from (8) that

(∆prox)i =


(
∆k −M∆k

)
i

if i inactive
0 if i active

1
Wjj+1

(
∆k −M∆k

)
i

if i violated .
(15)

The vector ∆prox is thus a linear function of ∆k and (13) can be written in the
form

∆k+1 = P∆k . (16)

We can see how the matrix P is constructed from (13) and (15):
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– If i is inactive, the i-th line of P only contains zeros.
– If i is active, the i-th line of P is equal to the i-th line of (I−M).
– If i is violated, the i-th line of P is equal to the i-th line of (I−M) multiplied

by Wjj/ (Wjj + 1).

The symbol I denotes an identity matrix. To investigate the local decay of resid-
uals, we demonstrate that the eigenvalues of P are in the interval [0, 1].

The matrix M is positive semidefinite [19] and we ensured that its eigen-
values are in the interval [0, 1]. By construction, the matrix (I−M) is positive
semidefinite as well and its eigenvalues are also in the interval [0, 1]. It is evident
from construction that P is a product of a a positive semidefinite diagonal ma-
trix that can be labelled F and the matrix (I−M). The diagonal elements of F
are in the interval [0, 1] by construction of P. The matrix P is thus a product of
two matrices with eigenvalues in the interval [0, 1] so its eigenvalues are in the
interval [0, 1].

4 Rates of Decrease of Residuals

Equation (16) can be diagonalized using eignedecomposition into

dk+1 = Ddk . (17)

Here, D = Q−1PQ, dk,k+1 = Q−1∆k,k+1, columns of Q are eignevectors of P,
D is diagonal with eigenvalues λi of P on the diagonal.

In each iteration, the i-th component of dk gets multiplied by λi. If 0 < λi <
1, the component is decreasing toward 0. As long as all eigenvalues of P are
below 1, the residual is decreasing toward 0.

The case when 1 is an eigenvalue of P deserves further attention. Consider
a vector ∆ for which it is P∆ = ∆. It follows that

F (I−M) ∆ = ∆ . (18)

Since eigenvalues of both F and (I−M) are in the interval [0, 1], this can only
be the case if

(I−M) ∆ = ∆ , F∆ = ∆ . (19)

From the left equation it follows that M∆ = 0, and the right equation tells
us that the non-zero components of ∆ all correspond to active constraints (not
to violated ones). It is shown in Perne et al [19] that these eigenvectors do not
influence the primal solution and they are equal to 0 for feasible active sets.

Only eigenvalues of P that are λi < 1 thus influence the decay of residuals
influencing the primal solution. The smaller the λi, the faster the decay of the
corresponding component of dk and the corresponding linear combination of
components of ∆k. The slowest component of the residual to decay corresponds
to the biggest λi < 1; the components of the residual proportional to smaller
λi’s have faster dynamics. If the P being studied is the final one and the active
and violated sets do not change in subsequent iterations, the biggest λi < 1
determines the convergence rate.
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5 Practical Extensions

In this section, we introduce preconditioning and a way of treating upper and
lower bounds on the same signals at the same time. If done properly, precondi-
tioning improves the convergence rate. On the other hand, treating upper and
lower bounds together has no influence on the behaviour of the iteration proce-
dure but it reduces the computational complexity. Both improvements can be
used together.

5.1 Preconditioning

Consider the following quadratic program:

minimize
z,s

1

2
zTHz + cTz +

1

2
sTE −2

x Ws + E −1
x wTs

subject to ExCxz � Exbx + s ,

EuCuz � Eubu ,

s � 0 .

(20)

where Ex and Eu are diagonal positive definite matrices and E =

[
Ex 0
0 Eu

]
. The

quadratic program (20) is equivalent to (5). It has the same form as well, so it
can be solved through the same algorithm (6), applied as

yk =−H−1
(
CTEvk + c

)
(21a)

vk+1 =vk + ECyk − p̃roxEb,E −2
x W,E −1

x w

(
vk + ECyk

)
. (21b)

While yk converges to the same solution as in (6), provided that eigenvalues of
ECH−1CTE are smaller than or equal to 1, the iteration steps and the con-
vergence rate are not the same. The better the choice of E, the smaller the
eigenvalues of the encountered sets P, the faster the decay of residuals and the
convergence rate.

5.2 Upper and Lower Boundaries

The same signals are often bound from above and from below in MPC, leading
to the same linear functionals of the optimization variable in QP having both
upper and lower bounds as well [19]. If the QP is given in the form of (5), Cx

and Cu can thus be written as

Cx =

[
Cx1

−Cx1

]
, Cu =

[
Cu1

−Cu1

]
. (22)
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The QP (5) can be reformulated as

minimize
z,s

1

2
zTHz + cTz +

1

2
sT1 W1s1 + wT

1 s1 (23a)

subject to bx1 − s1 � Cx1z � bx2 + s1 , (23b)

bu1 � Cu1z � bu2 , (23c)

s � 0 . (23d)

A solver for this QP can be implemented more efficiently because some problem
dimensions are smaller. The implementation is

yk =−H−1
(
C T

1 vk + c
)

(24a)

vk+1 =vk + C1y
k − p̃roxb2,W1,w1

(
vk + C1y

k
)

− p̃rox−b1,W1,w1

(
vk −C1y

k
)
,

(24b)

where C1 =

[
Cx1

Cu1

]
and the dimension of v is half what it is in (6). In the

definition of M, the matrix C is replaced with C1. If preconditioning is used
together with combining upper and lower boundaries, it is done with matrix E
of half the size as well.

6 Example

A discrete-time form of the AFTI-16 benchmark model as in [7] has the system
matrices

A =


0.9993 −3.0083 −0.1131 −1.6081
−0.0000 0.9862 0.0478 0.0000

0.0000 2.0833 1.0089 −0.0000
0.0000 0.0526 0.0498 1.0000



B =


−0.0804 −0.6347
−0.0291 −0.0143
−0.8679 −0.0917
−0.0216 −0.0022


in (1). The constraints are:

X =
{
x ∈ R4;−0.5− s1 ≤ x2 ≤ 0.5 + s1, −100− s2 ≤ x4 ≤ 100 + s2}

U =
{
u ∈ R2;−25 ≤ u1 ≤ 25, −25 ≤ u2 ≤ 25} , (25)

where s1, s2 stand for slack variables corresponding to soft constrained compo-
nents of the system state. The cost matrices are

Q = diag(10−4, 102, 10−3, 102) ,

R = diag(10−2, 10−2) . (26)
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Following the procedure from Ullmann and Richter [24] implemented in QP-
gen [8, 22] modified as in [20], we obtain QPs in the form (5) and then (23) for
N = 10. Cost on slack has to be chosen: we choose W1 = 1000 × I ∈ R20×20,
w1 is a vector of length 20 with all components equal to 1300. The linear cost
vector c reflects the chosen reference vector xref = [0, 0, 0, 10]

T
and the cur-

rent state. We simulate 10 samples and the initial condition is x0 = [0, 0, 0, 0]
T

.
The matrices C ∈ R40×20 and H ∈ R20×20 are constant. The preconditioning
diagonal matrix E is chosen so as to minimize the condition number of the non-
singular part of M while setting the highest eigenvalue of M to 1. QPgen finds
E = diag(10.4796, 3.5413, 9.9973, 10.0080, 9.9987, 10.0005, 10.0000, 10.0037,
9.9990, 9.9997, 10.0001, 10.0033, 9.9989, 9.9979, 10.0003, 10.0036, 9.9999, 9.9965,
9.9972, 10.0034, 0.2058, 0.0918, 0.1003, 0.1000, 0.1007, 0.1001, 0.1005, 0.1000,
0.1004, 0.1001, 0.1007, 0.1000, 0.1004, 0.1001, 0.1009, 0.0999, 0.1004, 0.1000,
0.1013, 0.1000). The model is initially simulated in closed loop with 106 itera-
tions in every sample. The system state x is recorded at every sample and used as
the input initial state for observing convergence of the resulting QPs. Algorithm
behaviour is analysed in all samples for 1 to 2000 iterations.

Figure 1 shows the active and violated constraints through the iterations.
The white columns delimit samples.

Consecutive number of set of constraints

20 40 60 80 100 120 140 160

N
u
m

b
e
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o
f 
c
o
n
s
tr

a
in

t

5

10

15

20

25

30

35

40

active lower

inactive

active upper

violated upper

Fig. 1. Activity of constraints for the first 10 samples. The constraints are listed from
the bottom to the top: the first 20 correspond to the soft constraints on x from 1st to
N -th time step within the prediction horizon, the following 20 are from constraints on
u for 10 steps and are hard. Samples are listed from left to right, the white columns
separate blocks corresponding to different samples. For a given sample, the first list of
active and violated constraints is in the leftmost column of the block and every change
in the activity or violation during iterations results in a new column
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In Fig. 2, convergence through the active set changes in sample 2 is shown
graphically.

Iteration
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0

10
5

Fig. 2. Convergence of the quadratic norm of the primal (blue) and the dual (red)
solution in sample 2 as a function of the iteration number. The yellow circles mark
iterations in which the set of active constraints changes, the purple x’s mark changes
in the set of violated constraints

We see from Fig. 2 that the last two changes in the sets of active and violated
constraints in sample 2 happen in iterations 121 and 227. In Fig. 1, we see
that some constraints are violated both from iteration 121 on and from 227
on. These two intervals are thus chosen for further study. The dual residual
is decomposed into components corresponding to eigenvectors of the matrix P
corresponding to both sets of active and violated constraints and plotted in
Figs. 3 and 4. Each component seems to decay exponentially in the relevant
interval, just as predicted by (17). We can also check the decay rates. The highest
three eigenvalues of P for iterations 121 to 226 are λ1 = 0.9846, λ2 = 0.8898,
λ3 = 0.8673. The ratio d 226

i /d 121
i is expected to be equal to λ 226−121

i and in all
three cases λ 226−121

i /
(
d 226
i /d 121

i

)
= 1 is accurate to 6 decimal places. Similarly,

for iterations from 227 on, the highest three eigenvalues of P are λ1 = 0.9844,
λ2 = 0.8887, λ3 = 0.8646. Equivalent calculations show that the ratio of λi to
the ratio of the components di in different iterations is 1 to 3 decimal places. The
initial iteration in observing the decrease of di is 227 in all three cases and for
the final iteration we take the last one where the residual is above 10−10 to avoid
numerical errors. The final iteration is number 1675, 373, and 347 respectively.
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Fig. 3. The components of the dual residual dk between iterations 121 and 226 (red
frame) for sample 2 as a function of the iteration number

Iteration
0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
o

m
p

o
n

e
n

t 
o

f 
re

s
id

u
a

l 
(2

2
7

+
)

10
-15

10
-10

10
-5

10
0

10
5

Fig. 4. The components of the dual residual dk from iteration 227 on (red frame) for
sample 2 as a function of the iteration number
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7 Conclusions

The local decay of residuals when solving a QP a gradient method with linear and
quadratic cost on violation of soft constraints is predicted. It is determined only
by the system matrices and the current sets of active and violated constraints. It
is independent from the vectors defining the QP, or in the case of MPC case, it is
not directly dependent on the system state, the reference, and the limit values.
The predictions are confirmed by a numerical example, explaining varying rates
of convergence through samples and iterations.

The local decay of residuals is determined by the eigenvalue of the matrix P
that is the highest among the ones that are smaller than 1. For a given QP, the
matrix P is determined by the set of active constraints and the set of violated
constraints, so the set of possible P is limited. Thus there exists an upper bound
smaller than 1 for the eigenvalues of P smaller than 1. The better one is able
to select the choices of possible matrices P, the stricter upper bound could be
obtained.
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