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Abstract. This contribution presents a new development in the design
of control system based on evolving Gaussian-process (GP) models. GP
models provide a probabilistic, nonparametric modelling approach for
black-box identification of nonlinear dynamic systems. They can high-
light areas of the input space where prediction quality is poor, due to the
lack of data or its complexity, by indicating the higher variance around
the predicted mean. GP models contain noticeably less coefficients to be
optimised than commonly used parametric models. While GP models are
Bayesian models, their output is normal distribution, expressed in terms
of mean and variance. Latter can be interpreted as a confidence in predic-
tion and used in many fields, especially in control system. Evolving GP
model is the concept approach within which various ways of model adap-
tations can be used. Successful control system needs as much as possible
data about process to be controlled. If the prior knowledge about the sys-
tem to be controlled is scarce or the system varies with time or operating
region, this control problem can be solved with an iterative method which
adapts model with information obtained with streaming data and con-
currently optimises hyperparameter values. This contribution provides:
a survey of adaptive control algorithms for dynamic systems described
in publications where GP models have been used for control design, a
novel and improved closed-loop controller with evolving GP models and
an example for the illustration of proposed control algorithm.

Keywords: Dynamic systems modelling, Gaussian-process regression,
Evolving Gaussian-process model, adaptive control.

1 Introduction

Increasingly complex systems are expected to be handled with new technologies
among them with control-system technologies. There exist a range of control de-
sign methods depending on the sort of system model and amount of information
that is available. Various adaptive, self-learning or other learning approaches, are
frequent to tackle the problem of low initial prior knowledge about the system to
be controlled or in the case of time-variant or nonlinear systems. Often various
kinds of computational intelligence methods for model development that result



in so-called black-box models are used for these kinds of control problems. This
paper deals with control system design based on Gaussian process (GP) models.

GP models provide a probabilistic, nonparametric modelling approach for
black-box identification of nonlinear dynamic systems. They can highlight areas
of the input space where model-prediction quality is poor, due to the lack of data
or its complexity, by indicating the higher variance around the predicted mean.
This property can be incorporated in the closed-loop control design. GP models
contain noticeably less coefficients to be optimised than parametric models that
are frequently used in control design.

The aim of this chapter is to present an improved closed-loop controller
with evolving GP models and place it within contemporary research on adaptive
control methods based on GP models and to demonstrate a proposed control
algorithm based on GP model.

The chapter is structured as follows. First the modelling with Gaussian pro-
cesses in general and the modelling of dynamic systems with GP models is ex-
plained. Then a short review of adaptive-control methods based on GP models
is given. Adaptive control with evolving GP model is introduced next. The con-
trol method is demonstrated with an illustrative example. This example demon-
strates the performance and the adaptation of closed-loop tracking control in
different operating regions with a computer simulation study.

2 Systems Modelling with Gaussian Processes

A GP model is a flexible, probabilistic, nonparametric model that enables the
prediction of output-variable distributions. Contrary to parametric modelling
methods where a structure is usually presumed and the parameters are opti-
mised with regression, the GP-based modelling is different in the sense that the
structure of the mapping function is not presumed, but the data themselves
are used to describe the mapping function. The modelled system is, therefore,
not approximated by fitting the parameters of the selected basis functions, but
rather with the relationship among the measured data. The model of the non-
linear mapping function is called the GP model as the output of the GP model
is by prior belief considered to be a GP. GP model’s properties and application
potentials are reviewed in [28].

A GP is a collection of random variables that have a joint multivariate
Gaussian distribution. Assuming a relationship of the form y = f(x) between
the input x and the output y, we have y1, . . . , yN ∼ N (0,Σ), where Σpq =
Cov(yp, yq) = C(xp,xq) gives the covariance between the output points corre-
sponding to the input points described by vectors xp and xq. Thus, the mean
µ(x) and the covariance function C(xp,xq) fully specify the Gaussian process.

The value of the covariance function C(xp,xq) expresses the correlation be-
tween the individual outputs f(xp) and f(xq) with respect to the inputs xp and
xq. Note that the covariance function C(·, ·) can be any function that generates
a positive semi-definite covariance matrix. It is usually composed of two parts,

C(xp,xq) = Cf(xp,xq) + Cn(xp,xq), (1)



where Cf represents the functional part and describes the unknown system we
are modelling, and Cn represents the noise part and describes the model of the
noise.

For the noise part it is most common to use the constant covariance function,
presuming white noise. The choice of the covariance function for the functional
part also depends on the stationarity of the data used for modelling. Assum-
ing stationary data the most commonly used covariance function is the square
exponential covariance function. The composite covariance function is therefore

C(xp,xq) = v1 exp

[
−1

2

D∑
d=1

wd(xdp − xdq)
2

]
+ δpqv0, (2)

where wd, v1 and v0 are the ’hyperparameters’ of the covariance function, D is
the input dimension, and δpq = 1 if p = q and 0 otherwise. In contrast, assuming
non-stationary data the polynomial or its special case, the linear covariance
function, can be used. Other forms and combinations of covariance functions
suitable for various applications can be found in [28]. The hyperparameters can
be written as a vector Θ = [w1, . . . , wD, v1, v0]

T . The parameters wd indicate
the importance of the individual inputs: if wd is zero or near zero, it means the
inputs in dimension d contain little information and could possibly be neglected.

To accurately reflect the correlations present in the training data, the hyper-
parameters of the covariance function need to be optimised. Due to the prob-
abilistic nature of the GP models, the common model optimisation approach,
where model parameters and possibly also the model structure are optimised
through the minimisation of a cost function defined in terms of model error
(e.g., mean square error), is not readily applicable. A probabilistic approach to
the optimisation of the model is more appropriate. Actually, instead of minimis-
ing the model error, the probability of the model is maximised.

GP models can be easily utilised for a regression calculation. Consider a ma-
trix X of N D-dimensional input vectors where X = [x1,x2, . . . ,xN ]T and a
vector of the output data y = [y1, y2, . . . , yN ]. Based on the data (X,y), and
given a new input vector x∗, we wish to find the predictive distribution of the
corresponding output y∗. Based on the training input data X, a covariance ma-
trix K of size N × N is determined. The overall problem of learning unknown
parameters from data corresponds to the predictive distribution p(y∗|y,X,x∗)
of the new target y∗, given the training data (y,X) and a new input x∗. In
order to calculate this posterior distribution, a prior distribution over the hy-
perparameters p(Θ|y,X) can first be defined, followed by the integration of the
model over the hyperparameters

p(y∗|y,X,x∗) =

∫
p(y∗|Θ,y,X,x∗)p(Θ|y,X)dΘ. (3)

The computation of such integrals can be difficult due to the intractable nature
of the nonlinear functions. A solution to the problem of intractable integrals
is to adopt numerical integration methods such as the Monte-Carlo approach.



Unfortunately, significant computational efforts may be required to achieve a
sufficiently accurate approximation.

In addition to the Monte-Carlo approach, another standard and general prac-
tice for estimating hyperparameters is the maximum marginal-likelihood estima-
tion, i.e., to minimise the following negative log-likelihood function [28]:

L(Θ) = −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π). (4)

As the likelihood is, in general, nonlinear and multi-modal, efficient optimi-
sation routines usually entail the gradient information. The computation of the
derivative of L with respect to each of the parameters is as follows

∂L(Θ)

∂θi
= −1

2
trace

(
K−1 ∂K

∂θi

)
+

1

2
yTK−1 ∂K

∂θi
K−1y. (5)

For performing a regression, the availability of the training input data de-
scribed with matrix X and the corresponding output data described with vector
y is assumed. As already mentioned, the aim is to find the distribution of the
corresponding output y∗ for some new input vector x∗ = [x1(N + 1), x2(N +
1), . . . , xD(N + 1)]T .

For the collection of random variables [y1, . . . , yN , y∗] we can write:

[y, y∗] ∼ N (0,K∗) (6)

with the covariance matrix

K∗ =


K k(x∗)

kT (x∗) κ(x∗)

 , (7)

where y = [y1, . . . , yN ] is a 1×N vector of training targets. The predictive dis-
tribution of the output for a new test input has a normal probability distribution
with a mean and variance [28]

µ(y∗) = k(x∗)TK−1y, (8)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗), (9)

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is the N × 1 vector of covariances

between the test and training cases, and κ(x∗) = C(x∗,x∗) is the covariance
between the test input itself.

The obtained model, in addition to the mean value, provides information
about the confidence in the prediction by the variance of the predictive distri-
bution. Usually, the confidence of the prediction is depicted with a 2σ interval,
which is about 95% confidence interval. This confidence region can be seen in
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Fig. 1: Using GP models: in addition to the prediction mean value (full line), we
obtain a 95% confidence interval (gray band) for the underlying function y.



the example in Fig. 1 as a grey band. It highlights the areas of the input space
where the prediction quality is poor, due to the lack of data or noisy data, by
indicating a wider confidence band around the predicted mean.

GP models can, like neural networks, be used to model static nonlinearities
and can therefore be used for the modelling of dynamic systems [1, 15, 16] as well
as time series, if lagged samples of the output signals are fed back and used as
regressors. A review of recent developments in the modelling of dynamic systems
using GP models and its applications can be found in [14]. It is important to
stress that the model prediction in the form of GP is just an approximation
when the Gaussian assumption is not fulfilled, which is in line with common
engineering practice.

A dynamic GP model is trained as the nonlinear autoregressive model with
an exogenous input (NARX) representation, where the output at time instant k
depends on the delayed output y and the exogenous control input u:

y(k) = fS(y(k − 1), . . . , y(k − n), u(k − 1), . . . , u(k − n)) + ν(k), (10)

where fS denotes a function, ν(k) is white noise disturbance with normal distri-
bution and the output y(k) depends on the state vector x(k) = [y(k − 1), y(k −
2), . . . , y(k − n), u(k − 1), u(k − 2), . . . , u(k − n)] at time instant k. This model
notation can be generalised to mutivariable cases, i.e., cases with multiple inputs
and outputs.

For the validation of obtained dynamic GP model the nonlinear output-error
(NOE), also called parallel, model is used. This means that the NARX model is
used to predict a further step ahead by replacing the data at instant k with the
data at instant k+1 and using the prediction ŷ(k) from the previous prediction
step instead of the measured y(k). This is then repeated indefinitely. The latter
possibility is equivalent to simulation. Simulation, therefore, means that only on
the basis of previous samples of a process input signal u(k − i) can the model
simulate future outputs. Frequently, the mean value of prediction ŷ(k) is used
to replace y(k), which is called ‘naive’ simulation. Other possibilities, where the
entire distribution is used, are described in, e.g., [16].

3 Adaptive Control Algorithms Based on Gaussian
Process Models

Control is the activity that makes a system behave in the desired way. There
are many reference books available describing a variety of control methods, their
design procedures and their applications. This section provides only a review of
some of the adaptive control methods that are based on GP model and were
published in literature. Reader is referred to [13] for more comprehensive review
of control methods based on GP model.

Adaptive controller is the controller that continuously adapts to some chang-
ing process. Adaptive controllers emerged in early sixties of the previous century.
At the beginning these controllers were mainly adapting themselves based on lin-
ear models with changing parameters. Since then several authors have proposed



the use of nonlinear models as a base to build nonlinear adaptive controllers.
These are meant for the control of time-varying nonlinear systems or of time-
invariant nonlinear systems that are modelled as parameter-varying simplified
nonlinear models.

Various divisions of adaptive control structures are possible. One possible
division [12] is into open-loop and closed-loop adaptive systems.

Open-loop adaptive systems are gain-scheduling or parameter-scheduling con-
trollers. Closed-loop adaptive systems can be further divided to dual and non-
dual adaptive systems.

Dual adaptive systems [11, 35] are those where the optimisation of the in-
formation collection and the control action are pursued at the same time. The
control signal should ensure that the system output cautiously tracks the desired
set-point value and at the same time excites the plant sufficiently to accelerate
the identification process. The solution to the dual control problem is based on
dynamic programming and the resulting functional equation is often the Bellman
equation. Not a large number of such controllers have been developed.

The difficulties to find the optimal solution for dual adaptive control lead to
suboptimal adaptive dual controllers [11, 35] obtained by either various approx-
imations or by reformulating the problem. Such a reformulated adaptive dual
control problem is when a special cost function is considered, which consists of
two added parts: control losses and an uncertainty measure. This is appealing
for application with the GP model that provides measures of uncertainty.

Many adaptive controllers in general are based on the separation principle
[35] that implies separate estimation of system model, i.e., system parameters,
and the application of this model for control design. When the identified model
used for control design and adaptation is presumed to be the same as the true
system then the adaptive controller of this kind is said to be based on certainty
equivalence principle and such adaptive control is named non-dual adaptive con-
trol. The control actions in non-dual adaptive control do not take any active
actions that will influence the uncertainty.

When using the GP model for the adaptive control, different from gain-
scheduling control, the GP model is identified on-line and this model is used in
the control algorithm. The block scheme showing the general principle of adap-
tive control with the GP model identification is given in Fig. 2. It is sensible
that advantages of GP models are considered in the control design, which re-
lates the GP model-based adaptive control at least to suboptimal dual adaptive
control principles. The uncertainty of model predictions obtained with the GP
model prediction are dependent, among others, on local learning-data density,
and the model complexity is automatically related to the amount and the dis-
tribution of the available data – more complex models need more evidence to
make them likely. Both aspects are very useful in sparsely-populated transient
regimes. Moreover, since weaker prior assumptions are typically applied in a
nonparametric model, the bias is typically lower than in parametric models.

The above ideas are indeed related to the work done on the dual adaptive
control, where the main effort has been concentrated on the analysis and de-
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Fig. 2: General block scheme of the closed-loop system with adaptive controller

sign of adaptive controllers based on the use of the uncertainty associated with
parameters of models with a fixed structure [11, 31].

The major differences in up-to-now published adaptive systems based on GP
models are in the way how the on-line model identification is pursued.

Increasing the size of the covariance matrix, i.e., ‘blow-up model’, with the
in-streaming data and repeating model optimisation is used in papers [19], [18],
[30], [29] and [31], where more attention is devoted to control algorithms and
their benefits based on information gained from the GP model and not on the
model identification itself.

Another adaptive control algorithm implementation is control with feed-
back for cancelling nonlinearities with the on-line learning of the inverse model.
This sort of adaptive control with the increasing covariance matrix with the
in-streaming data is described in [21]. Two sorts of on-line learning for the men-
tioned feedforward contained control is described in [22]. The first sort is with
moving window strategy, where the old data are dropped from the on-line learned
model, while the new data is accommodated, the second one accommodates only
new data with sufficient information gain. These applications of referenced in-
verse GP models do not use entire information from the prediction distribution,
but they focus on the mean value of prediction.

A lot of GP model-based adaptive-control algorithms from the referenced
publications are based on the Minimum Variance controller. One of the reasons
is that the Minimum Variance controller explores the variance that is readily
available with the GP model prediction.

The Minimum Variance controller in general [12] looks for a control signal
u(k) in time instant k, that will minimise the following cost function:

JMV = E(∥r(k)− y(k + p)∥2). (11)

In this case, JMV refers to the covariance of the error between the vector of set-
points r(k) and the controlled outputs p-time steps in the future, y(k+ p). The
desired controller is thus the one that minimises these variances, hence the name



Minimum Variance control. The optimal control signal uopt can be obtained by
minimising selected cost function. The minimisation can be done analytically,
but also numerically, using any appropriate optimisation method.

The cost function (11) can be expanded with a penalty terms and generalised
to multiple-input multiple-output case leading to Generalised Minimum Variance
control [30].

JGMV = E(||r(k + 1)− y(k + 1)||2Q) + ||uk||2R, (12)

where matrix Q is positive definite matrix and R is polynomial matrix with the
backward shift operator q−1. The matrix Q elements and matrix R polynomial
coefficients can be used as tuning parameters.

The method named Gaussian Process Dynamic Programming (GPDP) is a
Gaussian-process-model-based adaptive control algorithm with a proximity to
dual adaptive control. The details of the method are described in [8]. The fol-
lowing description is summarised from [8] and [10]. The evolution of the method
can be followed through time with publications [27], [9], [26],[10] and [8].

GPDP is an approximate dynamic programming method, where cost func-
tions, so-called value functions in the dynamic programming recursion are mod-
elled by GPs.

The reader is referred to [8] for details and a demonstration of the method.
Unfortunately, according to the method’s authors [8], ALGPDP cannot be di-
rectly applied to a dynamic system because it is often not possible to experience
arbitrary state transitions. Moreover GPDP method does not scale that well to
high dimensions.

More promising for engineering control applications is Probabilistic Inference
and Learning for COntrol (PILCO) method, described in [5], [6] and [7].

PILCO is a policy search method and an explicit value function model is not
required as in GPDP method. The general idea of the method is to learn the
system model with Reinforcement learning and control the closed-loop system,
taking into account the probabilistic model of the process. The algorithm can be
divided into three layers: a top level for the controller adaptation, an intermediate
layer for the approximate inference for long-term predictions and a bottom layer
for learning the model dynamics. A start state x0 is required by the algorithm
in the beginning.

The PILCO method was applied to real systems, e.g. robotic systems [7].

4 Evolving GP-model-based control

An adaptive Minimum Variance controller based on evolving Gaussian process
model [23] is presented in this section. The basic idea of control based on evolving
system model is that system GP model evolves with in-streaming data and the
information about system from the model is used for its control. One option
is that the information can be in the form of GP model prediction for one or
several steps ahead which is then used to calculate optimal control input in the
controlled system. The other option would be, for example, prediction of some



particular part of the model, e.g., parameters, like in [2], and on-line calculation
of controller.

The proposed control is actually a variation of the control proposed in [24].
The main difference is an on-line learning method used for adapting GP model.
It should be noted that an efficient adaptation of the GP model is crucial, as the
calculation of the optimal control input is based on the GP model’s prediction.
However, a noticeable drawback of GP model identification is the computation
load that increases with the third power of the amount of input data due to the
calculation of the inverse of the covariance matrix. This computational complex-
ity restricts the amount of training data to, at most, a few thousand cases. To
overcome the computational-limitation issues, only a subset of the most infor-
mative data is to be used. In the literature, such a subset is called the active set
or the basis vectors set [4] and its elements are called basis vectors [4], inducing
variables [25] or basis functions [17]. The basic idea is to retain the bulk of the
information contained in the full training dataset, but reduce the size of the
covariance matrix so as to facilitate a less computationally demanding imple-
mentation of the GP model. As the data is in-streaming the GP model should
be adapted continuously. In other words, the on-line learning method should
processes every new piece of streaming data sequentially.

In the previous version of the controller [24] we used Csato’s method Sparse
online Gaussian processes [4]. It’s main disadvantage is twofold. The first one
is a lack of ability to update hyperparameter values in an online fashion. In
other words, for adequately learning optimised hyperparameters are needed in
advance, so their values should be optimised before we apply controller to the
system. Usually, there is some available data that can be used for optimisation of
hyperparameter values, but obtained values are optimal only for the current data
presenting the system’s dynamics. But, if the data presents only one region of
the system’s dynamics or if the system is time variant, obtained hyperparameter
values most likely will not be optimal enough in other regions or time spans. The
second disadvantage is potential computational instabilities [33] or unguaranteed
convergence of the algorithm for nonlinear systems [3]. Therefore, we propose
evolving GP models [23] to be used for adapting controller’s GP model.

The basic idea of evolving GP models is that all influential parts of the GP
model should be adapted on-line. The GP model is fully determined by the
training data and the covariance function. In the case of sparse approximation
which we use, the training data is actually represented by the active set. Usually,
the training data, especially in case of dynamic systems, has more than one input
dimensions, so-called regressors, which have various influence on output data.
Moreover, some regressors may be fallacious and can present additional noise to
model. Thus, selection of regressors is important part of modelling as well. As
described in Section 2, with selection of appropriate type or a combination of
various types of covariance function a prior knowledge of the system is included in
the model. Nevertheless, with optimization of hyperparameter values the model
is even more adjusted to real system. So, there are four parts that can evolve:

– regressors,



– active set,
– type of covariance function and
– hyperparameter values.

Although the proposed concept considers all four parts that can evolve, our
implementation is somewhat more facile. In dynamic nonlinear systems, where
the nonlinear mapping between input and output can not be easily formu-
lated, frequently the squared exponential covariance function is used presuming
smoothness and stationarity of the system. That means the covariance function
is fixed and does not need to evolve. Furthermore, the squared exponential co-
variance function can be used with automatic relevance determination (ARD)
which is able to find influential regressors [28]. With the optimization of the
hyperparameter values, uninfluential regressors have smaller values and as a
consequence have smaller influence to the result. Therefore, all available regres-
sors can be used. Consequently, only the active set and hyperparameter values
have left to be adapted sequentially.

With every incoming data, first its information gain regarding the current
GP model is estimated. This is done in two phases. In the first phase a prediction
of the current input data is calculated based on the current GP model. If the
difference between mean value of prediction and current data output is small
enough, it means that the current GP model can accurately predict the output
of the incoming data. Furthermore, if also the variance of the prediction is small,
the current data most probably does not contain any new information regarding
the current GP model, thus there is no need to include current data into the GP
model. Otherwise, we include current data into the GP model. If this inclusion
causes the excess of the pre-set maximal active set size, the less informative
data in the active set should be removed. The less informative data is found by
calculating the negative log-likelihood from Eq. (4) for all subsets of the active
set of length m = n−1, where m is the pre-set maximal size of the active set and
n is the size of the exceeded active set3. The subset with the lowest negative log-
likelihood is preserved and the remaining data is removed. After every update of
the active set, the hyperparameter values are optimised by minimising negative
log-likelihood. This can be done with any suitable optimisation method. In our
case the conjugate gradients optimisation method is used.

The described on-line learning method is, besides the selected control algo-
rithm, the main difference between the control we propose and PILCO method
[5]. Due to the nature of the policy search methods, PILCO is implemented as
batch learning method. That means the model is updated at the end of every
cycle, during which new measurements are collected. As the number of collected
measurements is usually high enough that a sequential learning is not convenient,

3 It should be noted that for calculation of the negative log-likelihood the inverse of
the covariance matrix is needed. In our case the inverse of the covariance matrix
should be calculated for every subset. But, this computational demanding task can
be speed-up by calculating the Cholesky decomposition of the exceeded active set
of length n only once and then downdates it for every data in it by using low rank
updates [32].



but rather off-line learning is used, since it can consider all recently collected
data. By default, a full GP model is used, but in case the number of data points
exceeds a particular threshold a Sparse Pseudo-input Gaussian process [34] can
be used.

An illustrative example that shows operation of minimum variance control
based on evolving GP model is given in the following section.

5 Illustrative example

To assess the proposed controller we used the nonlinear dynamic system [20]
described by

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) + ν, (13)

where u is system’s input signal, y is system’s output signal, ν is white noise of
normal distribution with standard deviation 0.005 that contaminates the system
response and the sampling time is one second. The nonlinearity in the region of
interest for the benchmark system is depicted by a gray mesh in Fig. 3.

The requirement of the closed-loop control is to follow the set-point, depicted
in Fig. 4, as close as possible. We start off with an empty GP model’s active set
and with some default hyperparameter values log θ = [0; 0; 1;−1], which are quite
different comparing to the optimal ones. The set-point signal is a combination
of periodic pulses in three various regions. The first region is between 0.5 and
1.5, the second one between 3 and 4, and the last one between -0.5 and -1.5.
The priority of such a signal is to show that the proposed approach for control
system based on evolving GP models is able to learn from scratch, without any
prior model, and to update regarding the dynamics changes. The data stream
contains only 388 data points (shown in Fig. 4), which serves the demonstration
requirements. We pre-set the maximal active size to 50 data points. The used
control cost function is variation of minimum variance cost function from Eq.
(11)

J(k) = [r(k)− {y(k − 1)− E(ŷ(k − 1))} − E(ŷ(k))]2. (14)

The term {y(k − 1)−E(ŷ(k − 1))} is to make the control algorithm insensitive
to errors in the steady-state gain with subtracting the discrepancy between the
latest plant output and the latest model most likely output.

As the controller has no prior knowledge about the system, the system’s
output oscillates at the beginning, Fig. 4. Nevertheless, the controller observes
enough data to successfully, but with some overshoot, follow the first step. After-
wards, the controller easily follows the set-point signal, even in the second and
the third region, where the nonlinearity is locally different. The complete non-
linearity, including all three regions, can be seen in Fig. 3, where orange pluses,
green crosses and blue stars denote first, second and third region respectively.
However, at the beginning of these regions also some overshoots appear, but the
output quickly gets settled.

The final active set is depicted in Fig. 3. The most informative data points,
selected from in-streaming data with the proposed evolving method, are denoted



with red circles. It is clear that the selected data points are evenly distributed
through all nonlinear space, which indicates that the proposed method success-
fully adapts the GP model according to operating regions. The times when the
GP model is updated are depicted in Fig. 5 as dashed light blue lines. It can be
seen that most updates occur, as expected, at changes of the set-point signal,
especially at changes in dynamics. Similarly holds for hyperparameter values,
whose traces through the process are also shown in Fig. 5, denoted as coloured
solid lines. It can be seen that hyperparameter values are mostly changing in
a region of the first three steps, when most new information about the system
is obtained. Once near-optimal values are reached, hyperparameter values are
changing in a much smaller scale.
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The main purpose of this implementation of the closed-loop control is the
model adaptation according to system’s dynamics. Therefore, once enough data
about the system is obtained, the controller easily follows the set-point signal and
adapts the GP model. But the controller can be further improved to somehow
explore unknown space, especially at the beginning of the process or in any
other cases when it is not possible to follow the set-point signal due to the lack
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Fig. 4: Simulation of controller based on evolving GP model. The black dashed
line denotes the set-point signal and the red dashed line denotes the output of
the system, while the blue solid line denotes a mean value of the prediction and
a gray band denotes the 95% prediction confidence interval based on the current
GP model.
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Fig. 5: Traces of the hyperparameter values changing through time and the active
set updates. Coloured solid lines denote hyperparameter values and dashed gray
lines denote time instants when the GP model was updated with new data.

of information about the dynamics. With such an improvement the controller is
able to follow almost arbitrary changes in process dynamics.
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Fig. 6: Optimal control signal u(k) based on the minimum variance controller
using GP model’s predictions.

6 Conclusions

In this chapter an adaptive closed-loop control based on evolving GP models is
described. Evolving GP model is the model where not only hyperparameters,
but also the content of covariance matrix is changing with new in-streaming
data that have enough information content in comparison with the previously
contained data. This way the model keeps-up with the dynamics which changes
with the change of operating region.

The evolving GP model is upgraded with minimum variance controller that
completes the proposed adaptive closed-loop system.

The illustrative example shows the satisfactory performance of the adaptive
control with no initial knowledge and with a rapid change of operating region
during its operation.

The proposed control algorithm which, we believe, is an improvement over
similar and previously proposed algorithms is meant as a step forward in con-
trol of nonlinear and time-variable dynamic systems with possible presence of
uncertainties and disturbances. Potential applications of the proposed control
are foreseen in fields of rehabilitation engineering and biotechnology, robotics,
process and power engineering and elsewhere where nonlinear and time-variable
dynamic systems can be found.
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