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aJožef Stefan Institute,
Jamova cesta 39, SI-1000 Ljubljana, Slovenia

bUniversity of Nova Gorica,
Vipavska 13, SI-5000 Nova Gorica, Slovenia

cMEIS d.o.o.,
Mali Vrh pri Šmarju 78, SI-1293 Šmarje-Sap, Slovenia

Abstract

Being able to predict high concentrations of tropospheric ozone is impor-
tant because of its negative impact on human health. In this paper eight
regressor-selection methods are utilised in a case study for ozone prediction
in the city of Nova Gorica, Slovenia. The comparison of the selected methods
proved to be useful for building models that successfully predict the ozone
concentrations for the treated case. Different regressors are selected for dif-
ferent models, with different methods based on the validation procedure’s
cost functions. Namely, for the model to predict the maximum daily ozone
concentration, ten regressors are selected; for the average concentration of
ozone between 8.00 and 20.00 hours, fifteen regressors are selected; and for
the average daily concentration, ten regressors are selected. The result of
the study is a regressor selection that is specific for a particular geographical
location. Moreover, the study reveals that regressor selection, as well as the
obtained models, differ depending on the kind of averaging interval of the
ozone concentration.
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1. Introduction

The generation of ozone at ground level depends on many factors, but
primarily on meteorological variables and pollution. Even though ozone mod-
elling is a matter of intensive research, the physical and chemical mechanisms
of ozone generation are not understood in detail. This means that experi-
mental modelling methods can be very useful. The ozone concentration can
be modelled and predicted, or forecasted, using a variety of methods, and
the methods that describe the nonlinear dynamics from the available data
are particularly useful. The accuracy of these models depends crucially on
the set of regressors as well as on the input variables or the features that are
used when modelling with regression methods.

The United States Environmental Protection Agency (EPA) issued guide-
lines for ozone prediction [1] in which it lists nitrogen oxides (NOx), volatile
organic compounds (VOCs) of various origins and various meteorological
variables as being influential. The final selection of the regressors, however,
is left to the model developers and depends on the modelling method being
used, the regressor-selection method, the geographical site and the profes-
sionals’ judgement.

An overview of recent literature reveals that there are a variety of mod-
els for the ozone prediction in cities and regions, e.g., Kuwait city, Kuwait
[2], Delhi, India [3], Hsinchu, Taiwan [4], Malaga, Spain [5], Beijing, China
[6], Lisbon and Tagus valey, Portugal [7], Baltimore, Maryland, USA [8], 6
regions in the state of Kentucky, USA [9], Athens, Greece [10], Mexico City,
Mexico [11], Bourgas, Bulgaria [12], the Hamilton region, Ontario, Canada
[13], and the Dallas-Fort Worth region, Texas, USA [14]. Various black-box
models obtained with a range of regression methods from Principal Com-
ponent Regression to Takagi-Sugeno fuzzy models are used, as are different
regressor selection methods. The objectives of ozone prediction also differ
and one can find models for the prediction of hourly ozone values, e.g., [2],
[5], [6], [9], [12], [13], maximum ozone values, e.g., [3], [4], [7], [10], [11], [14],
or different average ozone values, e.g., [7], [8], [14]. These models use various
selections of pollutants and various meteorological variables and their lagged
values as the regressors.

From this overview it can be inferred that regressor selection differs de-
pending on the sort of averaging interval of the ozone, the geographical region
and most likely also from the availability of the measurements. No gener-
alisation whatsoever can be made based on the research results regarding
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regressor selection for the various sorts of averaging interval of the ozone
concentrations in other places, different from the particular place of interest.

The objective of this case study is to systematically select a method for
regressor selection that will later be used for the development of a regression
model for the short-term prediction of the ozone concentration in the city of
Nova Gorica, Slovenia.

The paper is structured as follows. The problem description is given in
Section 2. In Section 3, an overview of the methods for regressor selection is
briefly reviewed together with the criteria for regressor selection. The results
are discussed in Section 4, and the concluding remarks end the paper.

2. Problem description

At ground level, ozone (O3)[15] is an air pollutant that damages human
health and the equilibrium of the ecosystem [16]. Overexposure to ozone
can cause serious health problems in plants and people. Ozone levels tend
to increase during periods of high temperatures and sunny skies. The ozone
content changes in the troposphere, and the complexity of the processes
defining these changes is the reason why atmospheric ozone dynamics is the
subject of intensive research.

Fixed measurements of the hourly ozone concentrations, in compliance
with the European Directive on ambient air quality and cleaner air for Eu-
rope [17], give continuous information about the evolution of the surface
ozone pollution at a large number of sites across Europe. The European
standards that guarantee human-health protection are as follows: ‘health
protection level’, 120 µg/m3 eight hours mean concentration; ‘informing the
public level’, 180 µg/m3 one hour mean concentration; and ‘warning the
public level’, 240 µg/m3 one hour mean concentration. Therefore, predicting
the ozone concentration and informing the population when the air-quality
standards are not being met are important tasks.

As was stated in the previous section the selection of regressors for mod-
elling differs for various geographical locations. Our problem is to find meth-
ods for regressor selection and, consequently, sets of regressors for three dif-
ferent models of ozone in the city of Nova Gorica, Slovenia: for the prediction
of the maximum daily ozone concentration, for the prediction of the average
concentration of ozone between 8.00 and 20.00 hours, and for the prediction
of the average daily concentration.
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The data used are obtained from the database of the measurement sta-
tion in Nova Gorica and Bilje in the close vicinity of Nova Gorica. The data
are available to the public via the web page of the Slovenian Environment
Agency. Ground-based measurements of the air quality are in the form of a
series of simultaneous observations of the time evolution of the surface ozone
concentrations. In addition, ground-level meteorological measurements and
other air-pollutant concentration measurements are available. As the ozone
concentration depends on the present, and not only on the past, conditions,
the forecasts of variables were added, as is common in this type of investi-
gations. To avoid the forecasts’ uncertainty we applied the measurements of
these variables, which, in our opinion, provides a more accurate picture of
the regressors’ relevance.

The utilised data contain hourly and half-hourly concentration measure-
ments of various pollutants and meteorological variables for the years 2012
and 2013. Since the ozone changes dynamically, lagged regressors also need
to be incorporated for the modelling of the system’s dynamics.

3. Methods used for the regressor selection and its validation

Our goal is to select only as many regressors for each of the models as are
really necessary. Every additional regressor increases the complexity of the
regression model and makes the optimisation of the model more demanding.
While the input dimension increases linearly, the complexity of the model
increases exponentially [18] and we end up with the so-called curse of dimen-
sionality.

A quick look at the literature reveals lots of methods and algorithms
for regressor selection. However, the various authors divide the methods up
differently. We adopt the division of the regressors’ selection into three major
groups [19],[20], [21],[18]: wrappers or wrapper methods, embedded methods
and filter methods.

Wrapper methods are the so-called brute-force methods for regressor se-
lection. The basic idea behind these methods is that they form a kind of
wrapper around the system model, which is considered as a black-box. The
search for the optimal vector of regressors is initiated from some basic set
of regressors. After the model’s optimisation and cross-validation, the re-
gressors are added to, or removed from, the model. The successful models,
according to the selected performance criteria, are kept, while the poorly per-
forming models are rejected. Some of these methods or groups of methods
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are [18]: forward selection, backward elimination, nested subset, exhaustive
global search, heuristic global search, single-variable ranking and other rank-
ing methods. The wrapper methods are also known by the names Validation-
based regressor selection or Exhaustive search for the best regressors [22].

Embedded methods have the regressor selection built into the model’s op-
timisation procedure. For example, if a certain sort of model has a property
that the values of the model’s parameters correspond to the importance of the
used regressors, then properly selected, lower-valued regressors can be elim-
inated. This property assumes that the global minimum of the parameter-
optimisation cost function is achieved. Some other embedded methods are
coupled with model optimisation, e.g., the direct optimisation method, or
are weight-based, e.g., stepwise regression, recursive regressor elimination.

Filter methods do not rely on the model structure that we identify, like the
other two groups of methods. The measure of relevance for the regressors or
combinations of regressors is extracted directly from the identification data.
The relevant regressors are then selected on the basis of this measure. The
relevance measure is usually computed based on the statistical properties of
identification data, or based on measures from information theory, or based
on other properties. These methods are attractive because they are compu-
tationally efficient in comparison with the wrapper and embedded methods.
This computational efficiency comes from the fact that multiple optimisation
runs are not necessary and from the relatively straightforward computation
of the filter-method measures.

The other possible division is on the methods that focus on subsets of
regressors and others that focus on regressor ranking [20].

The methods that focus on subsets of regressors construct models with
different subsets of regressors to build a good model for a specific purpose,
i.e., frequently to be a good predictor. The majority of wrapper methods
can be classified as these kinds of methods.

The methods that focus on regressor ranking score regressors in terms of
their information content. The majority of filter methods can be classified as
regressor-ranking methods. Nevertheless, wrapper methods can also be used
as regressor-ranking methods, when the aside-developed models are not used
as the final predictors.

In this paper we focus on some of the possible regressor-selection methods
from the literature that can be employed to rank the candidate regressors.
The drawback of such an approach is that the most relevant regressors do
not necessarily yield an optimal model. Therefore, we further enhance the
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use of regressor-selection methods with model-based selection. The set of
regressor-selection methods is, in our case, limited to the following methods
that are contained in the ProOpter-IVS programme package utilised in [23]:
Pearson’s correlation coefficient - CCorr [18], distance correlation - dCorr [24],
partial correlation - PCorr [18], mutual information - MI [25], partial mutual
information - PMI [26], the method of model linear in the parameters - LIP
[27], analysis of variance - ANOVA [22] and method with sensitivity analysis
and regularisation of a neural network model - NNSA [28]. While LIP and
NNSA are embedded methods, the others are filter methods. This list of
used methods for regressor ranking is not exhaustive and can be expanded
further.

The complete procedure is carried out in two stages. The first stage is
pursuing the regressor-ranking and the selection of most informative regres-
sors for each of the used methods. The second stage is to use previously
selected regressors and the attached methods and validate them with regres-
sion modelling for the prediction. In this stage we reduce the number of used
regressors and determine the method by which the best set of regressors is
obtained.

For the validation of the prediction results, five criteria are used. The first
three are standard criteria used in computational intelligence applications,
while the last two are specific to the validation of ozone-concentration models.

• The mean standardised log loss - MSLL[29] is obtained by subtracting
the loss of the model that predicts using a Gaussian with the mean
E(y) and the variance σ2

y of the measured data from the model log
predictive density.

MSLL =

1

2N

N∑
i=1

[
log(σ2

i ) +
(E(ŷi)− yi)

2

σ2
i

]
− 1

2N

N∑
i=1

[
log(σ2

y) +
(yi − E(y))2

σ2
y

]
.

(1)

where yi and ŷi are the system’s output measurement, i.e., observation,
and the model output in the i-th step, respectively, σ2

i is the model
output variance in the i-th step, and N is the number of used measure-
ments. The MSLL is approximately zero for the simple models and
negative for the better ones.
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• The standardised mean-squared error - SMSE:

SMSE =
1

N

∑N
i=1(E(ŷi)− yi)

2

σ2
y

. (2)

This measure normalises the mean-squared error between the mean
of the model output and the measured output of the process by the
variance of the outputs of the validation data.

• The mean-relative-square error - MRSE:

MRSE =

√∑N
i=1(E(ŷi)− yi)2∑N

i=1 y
2
i

. (3)

Some authors call this performance measure the relative-root-mean-
square error (RRMSE).

• The success index - si, proposed by the European Environment Agency[30]
with a threshold 140 µg/m3:

si =

(
a

m
+

N + a−m− f

N −m
− 1

)
· 100%, (4)

where a is the number of correctly predicted values of the ozone con-
centration above the threshold, m is the number of measured values of
the ozone concentration above the threshold and f is the number of all
the predicted values of the ozone concentrations above the threshold.
A larger value of the index means a better model prediction.

• The performance index - p6[31]:

p6 =
1

N

N∑
i=1

J6
i , (5)

where J6
i is the cost function, which equals 1, meaning ‘correctly classi-

fied’, if there is no case of a false alarm and the measured concentration
is high and if, at the same time, the absolute error is less than 20 µg/m3

or if the relative error is less than 20%, and equals 0 otherwise.
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4. Results and discussion

In general, we are interested in predicting the ozone concentration in the
air for the following day, so the population can be informed about a possible
high ozone concentration one day in advance. For that purpose, we are mod-
elling the maximum ozone concentration, the average ozone concentration
and the average ozone concentration between 8.00 and 20.00 hours, when
the daily cycle of the ozone concentration has its highest values. The predic-
tion of the ozone concentration for the following day can be made right after
the last measurement for the current day is available.

From the available databases the following measurements are selected:
ozone concentration (O3), solid particles (PM10), nitrogen oxides concentra-
tion (NOx), nitrogen dioxide concentration (NO2), air temperature, relative
humidity, global solar radiation, diffuse solar radiation, wind speed, wind
direction and precipitation. The measurements in the database are hourly
based, but were averaged for our purpose. Depending on the model’s objec-
tive the maximum or average values on a daily basis were built. As ozone
forming is a dynamic process the preprocessed measurements were taken for
four consecutive days. A total of 43 regressors are obtained this way to form
the initial set for the regressor ranking.

The problems of predicting the maximum ozone concentration for the
next day, the average ozone concentration between 8.00 and 20.00 hours for
the next day and the average daily ozone concentration for the next day will
be described next.

4.1. The first stage

The first stage of our investigation is the regressor ranking with selected
regressor-selection methods. The relevance scores from the used methods are
scaled between 0 and 1 for a visual comparison, though the absolute values
of the relevance scores of the different methods do not have exactly the same
meaning.

Maximum daily value of the ozone concentration
The ranking of the regressor selection for the selected methods is given in
Table A.5 in Appendix A. From the results of the regressor selection for the
maximum daily ozone concentrations in Table A.5 it is clear that the methods
MI, CCorr and dCorr favor lagged ozone-concentration, air-temperature and
global-solar-radiation regressors. The nnSA method puts an emphasis on the
air temperature. The methods PCorr, PMI and LIP put excessive weight on
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the regressors that they assess to be more informative, which in our case is
the lagged ozone concentration. The results of the ANOVA method, on the
other hand, do not show such large differences in the ranking weights of the
regressors.

Figure 1 shows the cumulative results of all the methods for ranking the
available 43 regressors for the prediction of the maximum daily value of the
ozone concentration.
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Figure 1: Box-and-whisker diagram of the cumulative regressor-ranking results for all
used regressor-selection methods for the prediction of the maximum daily value of the
ozone concentration. Regressors: ozone concentration (O3), solid particles (PM10), nitro-
gen oxides concentration (NOx), nitrogen dioxide concentration (NO2), air temperature
(AirTemp), relative humidity (RelHum), global solar radiation (GlSolRad), diffuse solar
radiation (DifSolRad), wind speed (WindSpd), wind direction (WindDir) and precipita-
tion (Precip). k − i, i = 0, . . . , 3 denotes consecutive time instants.

Average value of the ozone concentration between 8.00 and 20.00 hours
The ranking of the regressor selection for the selected methods is given in
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Table A.6 in Appendix A. From the results of the regressor selection for the
prediction of the average value of the ozone concentrations between 8.00 and
20.00 hours in Table A.6 it is clear that the methods CCorr and dCorr favor
a lagged ozone-concentration, air-temperature and global-solar-radiation re-
gressors, as well as NOx and NO2 concentrations. The MI method provides
similar results, but is not so clear. The nnSA method puts the most emphasis
among the listed regressors on the NOx concentration. The methods PCorr,
PMI and LIP put excessive weight on the regressors that they evaluate as
being more informative, which in our case are the lagged ozone concentra-
tion, followed by the global solar radiation, the relative humidity, the NO2

concentration and the wind speed. Again, the results of the ANOVA method,
on the other hand, do not show such large differences in the ranking weights
of the regressors.

Figure 2 shows the cumulative results of all the methods for the ranking
of the available 43 regressors for the prediction of the average value of the
ozone concentration between 8.00 and 20.00 hours.

Average daily value of the ozone concentrations
The ranking of the regressor selection for the selected methods is given in
Table A.7 in Appendix A. The results of the regressor selection for the pre-
diction of the average daily value of the ozone concentrations in Table A.7 is
similar to those for the prediction of the average value of the ozone concen-
tration between 8.00 and 20.00 hours. The methods CCorr and dCorr also
favor a diffuse solar radiation and wind speed with their lagged values. The
nnSA method this time puts an emphasis on the past ozone concentration,
the air temperature, the NO2 and the global solar radiation. The methods
PCorr, PMI, LIP and ANOVA provide comparable results as for the predic-
tion of the average value of the ozone concentration between 8.00 and 20.00
hours.

Figure 3 shows the cumulative results of all the methods for the ranking
of the available 43 regressors for the prediction of the average daily value of
the ozone concentrations.

It was concluded from the ranking results that the 20 most relevant re-
gressors for each of the 8 methods out of all 43 regressors are selected for
each of the three models to enter the second stage. As the absolute values of
the different relevance indices cannot be directly compared, the number of
relevant regressors is selected so that it contains the most relevant regressors
for each of the used relevance-selection methods.
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Figure 2: Box-and-whisker diagram of the cumulative regressor-ranking results for all
the used regressor-selection methods for the prediction of the average value of the ozone
concentration between 8.00 and 20.00 hours. Regressors: ozone concentration (O3), solid
particles (PM10), nitrogen oxides concentration (NOx), nitrogen dioxide concentration
(NO2), air temperature (AirTemp), relative humidity (RelHum), global solar radiation
(GlSolRad), diffuse solar radiation (DifSolRad), wind speed (WindSpd), wind direction
(WindDir) and precipitation (Precip). k−i, i = 0, . . . , 3 denotes consecutive time instants.
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Figure 3: Box-and-whisker diagram of the cumulative regressor-ranking results for all
the used regressor-selection methods for the prediction of the average daily value of the
ozone concentration. Regressors: ozone concentration (O3), solid particles (PM10), nitro-
gen oxides concentration (NOx), nitrogen dioxide concentration (NO2), air temperature
(AirTemp), relative humidity (RelHum), global solar radiation (GlSolRad), diffuse solar
radiation (DifSolRad), wind speed (WindSpd), wind direction (WindDir) and precipita-
tion (Precip). k − i, i = 0, . . . , 3 denotes consecutive time instants.
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4.2. The second stage
The second stage of our investigation is the selection of a single method

and the set of the most informative regressors based on a test with a model
prediction.

A Gaussian-process (GP) model [32],[29] is used for the second stage.
Any other suitable regression method can be used for the modelling and the
prediction test. This method is selected arbitrarily, mainly because of the
method’s properties described in the continuation, and because it contains
a relatively small number of elements to be decided by the modeler, and
because it is one of the candidates for the final model. However, the study
for the selection of the regression method is not the focus of this paper.

A GP model is a probabilistic, nonparametric, kernel model based on the
principles of Bayesian probability. In other words, it provides a Bayesian
interpretation of the kernel methods. A GP model differs from most of the
other black-box identification approaches in that it searches for relationships
among the measured data, rather than trying to approximate the modelled
system by fitting the parameters of the selected basis functions. The output
of the GP model is a normal distribution, expressed in terms of the mean
and the variance. Their modelling properties are reviewed in [29], [33], and
[34] with applications in, e.g., [35], [12]. The idea of GP models is rather
simple. A GP model assumes that the output is a realisation of a GP with
a joint probability density function:

p(y) = N (m,K), (6)

with the mean and covariance being functions of the inputs x . Usually, the
mean function is defined as 0, while the covariance function or kernel

Kij = k(xi,xj) (7)

defines the characteristics of the process to be modelled, i.e. the stationarity,
smoothness, etc. The most commonly used function is the squared expo-
nential (SE) covariance function with an automatic relevance determination
(ARD) [29]. This covariance function is smooth and stationary and makes it
possible to determine the impact on the model for each input by an optimisa-
tion of the parameters, called hyperparameters. Once the covariance matrix
K is calculated, the predictive (normal) distribution for the new input x∗ is
simply calculated using:

µ = k(x∗)TK−1y,

σ2 = κ(x∗)− k(x∗)TK−1k(x∗), (8)
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where k(x∗) is the vector of covariances between the new input sample and
the training input samples, and κ(x∗) is the covariance between the new
input sample itself. As can be seen from Equations (8) the GP model, in
addition to the mean value, also provides information about the confidence
in the prediction by the variance. Usually, the confidence of the prediction
is depicted with a 2σ interval, which is an about 95% confidence interval. It
highlights the areas of the input space where the prediction quality is poor,
due to the lack of data or noisy data, by indicating a wider confidence interval
around the predicted mean.

It is not the purpose of this paper to explain the details of the mod-
elling method. The reader is referred to [32],[29] for more details about this
regression-modelling method. The square exponential covariance function,
combined with the white-noise covariance function, is used as the kernel,
and the marginal likelihood maximisation is used for the selection of the hy-
perparameters. To simplify the procedure, we test only the models obtained
from sets of the 5, 10, 15 and 20 most informative regressors for each of
methods we used in the first stage. This choice of sets is a compromise be-
cause the absolute values of the scores of different methods are not directly
comparable and we wished to avoid testing each and every regressor’s inclu-
sion and coming down to one of the time-consuming wrapper methods like
forward selection or backward elimination.

The available data contained data instants for two years, i.e., 2012 and
2013. These data are divided into 11 subsets: 10-fold cross-validation is used
for the prediction validation on the 10 subsets, while the remaining, larger
data subset is used for testing the prediction.

Each prediction result is evaluated with the criteria described in Section 3.
The final table of results contains 160 values, i.e., the averages of 10-fold
cross-validation. From these results the most efficient method for regressor
selection used in the first stage and with the best selection of regressors can
be selected.

Maximum daily value of the ozone concentration
One of the important issues is which validation criterion is the most suitable
for a specific modelling objective. In the case of modelling the maximum
daily value of the ozone concentration, the success index si, described with
Eq. (4), is considered as the most suitable for the task at hand. This is due to
the purpose of the model to be developed, which is intended for informing the
public about the maximum daily value of the one-hour mean concentration
in line with environmental regulations [30].

14



Table 1 shows the results of the prediction validation with criteria from
Eqs. (1)–(5). The best performance is shown by the model with the most

Table 1: Results of the model validation for the maximum daily value of the ozone con-
centration for 5, 10, 15 and 20 regressors as listed in Table A.5.

CCorr5 PCorr5 MI5 PMI5 LIP5 nnSA5 ANOVA5 dCorr5 Cummul5

MSLL 0.66 0.66 0.60 0.71 0.63 0.63 0.63 0.65 0.52
MRSE 0.16 0.14 0.16 0.17 0.15 0.16 0.14 0.18 0.16
SMSE 0.18 0.14 0.15 0.18 0.14 0.16 0.12 0.19 0.13

si 72.46 73.16 57.55 65.11 68.34 74.34 81.52 61.31 65.08

p6 0.90 0.88 0.92 0.83 0.94 0.95 0.92 0.87 0.90

CCorr10 PCorr10 MI10 PMI10 LIP10 nnSA10 ANOVA10 dCorr10 Cummul10

MSLL 0.65 0.63 0.66 0.60 0.65 0.57 0.60 0.60 0.56
MRSE 0.16 0.13 0.16 0.14 0.13 0.16 0.12 0.14 0.16
SMSE 0.17 0.11 0.17 0.12 0.11 0.14 0.09 0.14 0.14

si 70.40 97.02 69.76 75.65 69.99 81.32 82.61 73.06 63.83

p6 0.94 0.90 0.85 0.95 0.97 0.90 1.00 0.89 0.92

CCorr15 PCorr15 MI15 PMI15 LIP15 nnSA15 ANOVA15 dCorr15 Cummul15

MSLL 0.64 0.64 0.65 0.64 0.51 0.64 0.61 0.68 0.59
MRSE 0.14 0.12 0.14 0.13 0.13 0.12 0.13 0.14 0.15
SMSE 0.13 0.10 0.14 0.11 0.09 0.10 0.10 0.13 0.13

si 57.28 73.07 68.77 85.10 70.10 84.21 75.41 54.78 73.10

p6 0.95 0.98 0.92 0.91 0.93 0.97 0.94 0.96 0.91

CCorr20 PCorr20 MI20 PMI20 LIP20 nnSA20 ANOVA20 dCorr20 Cummul20

MSLL 0.68 0.64 0.62 0.59 0.56 0.64 0.57 0.63 0.56
MRSE 0.14 0.14 0.15 0.14 0.13 0.12 0.14 0.13 0.15
SMSE 0.14 0.11 0.13 0.13 0.11 0.10 0.11 0.11 0.11

si 79.94 92.74 63.03 80.71 87.06 62.55 74.75 86.33 75.35

p6 0.91 1.00 0.94 0.89 0.96 0.97 0.92 0.92 0.90

informative ten regressors obtained with a partial correlation - the PCorr
method. The model contains the following regressors, which are labelled as
described in the caption of, e.g., Figure 1, and sorted by relevance: O3(k −
1), GlSolRad(k − 0), WindSpd(k − 0), AirTemp(k − 0), AirTemp(k − 1),
DifSolRad(k−0), NOx(k−0), NO2(k−0), RelHum(k−2),WindDir(k−0).

Figure 4, shows the comparison between the measured and predicted
maximum daily ozone concentration of the winning model on the test data.
From Figure 4 it can be seen that the model predictions of the model with
the selected regressors on average predict the maximum values satisfactorily.
If a prediction tolerance band was added to the figure, then it would be clear
that the deviations from target values would be even more acceptable.

Average value of the ozone concentration between 8.00 and 20.00 hours
We use the same procedure with the prediction of the average concentration
of ozone between 8.00 and 20.00 hours and for the model to predict the
average daily concentration. It is important to note that for these two models
the average values of the measurements are used. The SMSE and MRSE are
selected as the most suitable validation criteria because of their generality
in comparison with other more specific measures and because of the special
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Figure 4: Measured O3 values versus the predicted values obtained by the model with the
most informative ten regressors obtained with a partial correlation.

interest in the mean value of the predictions.
Table 2 shows the results of the prediction validation with criteria from

Eqs. (1)–(3). The model for the prediction of the average concentration of
ozone between 8.00 and 20.00 hours of the day contains fifteen regressors
obtained by the method of model linear in parameters - LIP. The model con-
tains the following regressors sorted by relevance: O3(k−1), GlSolRad(k−0),
WindSpd(k− 0), NO2(k− 1), NO2(k− 0), PM10(k− 0), AirTemp(k− 0),
AirTemp(k−1), RelHum(k−0), NOx(k−0), Precip(k−0), AirTemp(k−3),
O3(k − 2), RelHum(k − 1), WindDir(k − 0).

Figure 5 shows a comparison between the measured and predicted average
ozone concentration between 8.00 and 20.00 hours of the winning model on
the test data.

Average daily value of the ozone concentrations
Table 3 shows the results of the prediction validation with the criteria from
Eqs. (1)–(3). The model for the prediction of the average concentration con-
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Table 2: Results of the model validation for the average value of the ozone concentration
between 8.00 and 20.00 hours for 5, 10, 15 and 20 regressors as listed in Table 2.

CCorr5 PCorr5 MI5 PMI5 LIP5 nnSA5 ANOVA5 dCorr5 Cummul5

MSLL 0.54 0.56 0.47 0.51 0.46 0.50 0.51 0.50 0.50
MRSE 0.14 0.16 0.13 0.13 0.15 0.17 0.16 0.16 0.14
SMSE 0.09 0.11 0.07 0.08 0.09 0.13 0.09 0.10 0.09

CCorr10 PCorr10 MI10 PMI10 LIP10 nnSA10 ANOVA10 dCorr10 Cummul10

MSLL 0.49 0.51 0.51 0.46 0.43 0.46 0.50 0.49 0.48
MRSE 0.13 0.12 0.12 0.13 0.13 0.14 0.13 0.16 0.13
SMSE 0.08 0.06 0.07 0.07 0.07 0.07 0.07 0.10 0.08

CCorr15 PCorr15 MI15 PMI15 LIP15 nnSA15 ANOVA15 dCorr15 Cummul15

MSLL 0.47 0.50 0.50 0.47 0.57 0.45 0.56 0.46 0.52
MRSE 0.14 0.12 0.12 0.12 0.11 0.13 0.12 0.12 0.12
SMSE 0.08 0.06 0.06 0.06 0.05 0.07 0.07 0.06 0.07

CCorr20 PCorr20 MI20 PMI20 LIP20 nnSA20 ANOVA20 dCorr20 Cummul20

MSLL 0.55 0.47 0.48 0.51 0.47 0.47 0.47 0.38 0.49
MRSE 0.12 0.12 0.12 0.11 0.12 0.13 0.11 0.11 0.13
SMSE 0.06 0.06 0.06 0.06 0.06 0.07 0.05 0.05 0.07

Table 3: Results of the model validation for the average daily value of the ozone concen-
tration for 5, 10, 15 and 20 regressors as listed in Table A.7.

CCorr5 PCorr5 MI5 PMI5 LIP5 nnSA5 ANOVA5 dCorr5 Cummul5

MSLL 0.50 0.55 0.45 0.49 0.46 0.44 0.49 0.49 0.48
MRSE 0.15 0.15 0.16 0.12 0.14 0.15 0.17 0.15 0.13
SMSE 0.11 0.12 0.10 0.08 0.09 0.10 0.13 0.12 0.09

CCorr10 PCorr10 MI10 PMI10 LIP10 nnSA10 ANOVA10 dCorr10 Cummul10

MSLL 0.46 0.44 0.47 0.46 0.42 0.44 0.43 0.42 0.46
MRSE 0.13 0.12 0.15 0.11 0.13 0.12 0.15 0.15 0.12
SMSE 0.07 0.06 0.09 0.06 0.07 0.06 0.09 0.10 0.06

CCorr15 PCorr15 MI15 PMI15 LIP15 nnSA15 ANOVA15 dCorr15 Cummul15

MSLL 0.53 0.46 0.44 0.42 0.45 0.43 0.44 0.50 0.46
MRSE 0.13 0.12 0.12 0.12 0.12 0.13 0.12 0.13 0.12
SMSE 0.10 0.06 0.05 0.06 0.07 0.08 0.07 0.08 0.07

CCorr20 PCorr20 MI20 PMI20 LIP20 nnSA20 ANOVA20 dCorr20 Cummul20

MSLL 0.47 0.47 0.47 0.44 0.39 0.44 0.43 0.48 0.45
MRSE 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12
SMSE 0.07 0.07 0.08 0.06 0.06 0.07 0.06 0.07 0.06

tains ten regressors obtained by partial mutual information - PMI. The model
contains the following regressors: O3(k−1), WindSpd(k−0), GlSolRad(k−
0), NOx(k−0), AirTemp(k−0), NO2(k−0), RelHum(k−0), PM10(k−0),
AirTemp(k − 1), O3(k − 2).

Figure 6 shows the comparison between the measured and predicted av-
erage daily ozone concentration of the winning model on the test data.

Table 4 shows the regressors for the three final models. Be aware that
the values with no delay, e.g., AirTemp(k), correspond to meteorological
and pollution forecasts, as mentioned in Section 2. It is clear from Table
4 that the regressors, even though they are similar, are different for the
different models. What is common to all three models is that they contain
meteorological and pollution variables.
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Figure 5: Measured O3 values versus the predicted values obtained by the model with the
most informative ten regressors obtained with a partial correlation.
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Figure 6: Measured O3 values versus the predicted values obtained by the model with the
most informative ten regressors obtained with a partial correlation.
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Table 4: Regressors for the three final models.

Maximum con. 8.00-20.00 average Daily average
1 O3(k − 1) O3(k − 1) O3(k − 1)
2 AirTemp(k) O3(k − 2) O3(k − 2)
3 AirTemp(k − 1) AirTemp(k) AirTemp(k)
4 GlSolRad(k) AirTemp(k − 1) AirTemp(k − 1)
5 WindSpd(k) AirTemp(k − 3) WindSpd(k)
6 DifSolRad(k) RelHum(k) GlSolRad(k)
7 RelHum(k − 2) RelHum(k − 1) RelHum(k)
8 WindDir(k) NO2(k) NOx(k)
9 NOx(k) NO2(k − 1) NO2(k)
10 NO2(k) GlSolRad(k) PM10(k)
11 WindSpd(k)
12 WindDir(k)
13 PM10(k)
14 Precip(k)
15 NOx(k)
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5. Conclusions

The paper provides a comparison of the different methods for regressor
ranking for a prediction model for ozone concentrations in the city of Nova
Gorica, Slovenia. The case study confirms that regressor selection as well as
modelling depends on the location and it cannot be generalised. It was shown
that for three different sorts of averaging interval of the ozone concentration
three different models with three different sets of regressors obtained by three
different regressor-ranking methods had to be developed.

On the basis of the presented experiments, no particular regressor-selection
method can be claimed to be superior for all of the models in our case. Re-
gressor selection should be based on the consideration of different methods
and the important inputs should be selected for every case study, when one
notices consistent results among the methods. Case-specific models proved
to be the best for our purpose.

In the next step, which is outside the scope of this paper, is the selection
of the type of modelling method that is going to be used for studies at this
and other geographical locations. Even though the GP regression modelling
is used in this study, this might not be the final solution. The decisions about
whether the modelling is on-line, recursive and which regression method is
used are still to be made.

Future work on the modelling of different sorts of averaging intervals
for ozone concentrations is envisaged not only for the present geographical
location, but also for other locations with different geographical and meteo-
rological conditions.

Appendix A. Results of the regressor selection
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