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Abstract

The Gaussian process model is an example of a flexible, probabilistic, nonpara-
metric model with uncertainty predictions. It offers a range of advantages for mod-
elling from data and has been therefore used also for dynamic systems identifica-
tion. One of the noticeable drawbacks of the system identification with Gaussian
process models is computation time necessary for modelling. The modelling pro-
cedure involves the inverse of covariance matrix which is as large as the length of
input samples vector. The computation time for this inverse regardless of the use
of efficient algorithm is rising with the third power of input data number. Inten-
sive research is going on for finding algorithms that would accelerate the training
of Gaussian process models. The purpose of this paper is to show approach from
the used hardware point of view. The assessment of computational efficiency of
two different hardware platforms for GP model identification are given in the pa-
per. These are: single core personal computer and personal computer with graphic
card used for computations. The assessment has been done with comparison of
computational load on a toy case study of nonlinear dynamic system identifica-
tion. The assessment reveals that the parallel computation solutions are efficient
for larger amount of data when the initial and communication overhead of parallel
computation becomes sufficiently small part of the whole process.
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1 Introduction
Gaussian process (GP) models form a new, emerg-
ing complementary method for nonlinear system iden-
tification. GP model is a probabilistic nonparametric
black-box model. It differs from most of the other fre-
quently used black-box identification approaches as it
does not try to approximate the modelled system by fit-
ting the parameters of the selected basis functions but
rather searches for the relationship among measured
data. Gaussian processes models are closely related
to approaches such as Support Vector Machines and
specially Relevance Vector Machines [7]. Because GP
model is a Bayesian model, the output of Gaussian pro-
cess model is a normal distribution, expressed in terms
of mean and variance. Mean value represents the most
likely output and the variance can be viewed as the mea-
sure of its confidence. Obtained variance, which de-
pends on amount of available identification data, is im-
portant information distinguishing the GP models from
other non-bayesian methods. Gaussian process can be
used for model identification when data are heavily cor-
rupted with noise, when there are outliers or gaps in the
input data. Another useful attribute of GP model is the
possibility to include various kinds of prior knowledge
into the model, e.g. local models, static characteristic,
etc.

Applications of the GP model for the identification of
dynamic systems are presented in e.g. [1], [2] and [4].

A noticeable drawback of the system identification with
Gaussian process models is computation time necessary
for modelling. Gaussian process regression involves
several matrix computations which load increases with
the third power of the number of input data, such as ma-
trix inversion and the calculation of the log-determinant
of used covariance matrix. This computational greed
restrict the number of training data, to at most a few
thousand cases.

To overcome the computational limitation issues and
make use of the method also for large-scale dataset
application, numerous authors have suggested various
sparse approximations. Authors of [6] have provided
a unified view of sparse Gaussian process approxima-
tion, which includes a comparison of work published
by various authors. Common to all these approximation
methods is that only a subset of the variables is treated
exactly, with the remaining variables given some ap-
proximate, but computationally cheaper approach.

The purpose of this paper is to approach the computa-
tion problem from utilised hardware technology point
of view. This approach might seem inefficient, but it
is undoubtedly effective. The assessment of compu-
tational efficiency of four different hardware platforms
for GP model identification that are affordable for most
of research groups is the topic of this paper.

The paper is composed as follows. The next section will
briefly describe the modelling of dynamic systems with
Gaussian process models. The description of dynamic
systems simulation will follow in Section 3. Hardware
configurations to be assessed are given in Section 4

and the assessment with a benchmark case study is de-
scribed in the Section 5. Conclusions are given at the
end of paper.

2 Modelling of Dynamic Systems with
Gaussian Processes

A Gaussian process is an example of the use of a flex-
ible, probabilistic, non-parametric model with uncer-
tainty predictions. Its use and properties for modelling
are reviewed in [7].

A Gaussian process is a collection of random variables
which have a joint multivariate Gaussian distribution.
Assuming a relationship of the form y = f(x) be-
tween an input x and output y, we have y1, . . . , yn ∼
N (0,Σ), where Σpq = Cov(yp, yq) = C(xp,xq) gives
the covariance between output points corresponding to
input points xp and xq . Thus, the mean µ(x) (usu-
ally assumed to be zero) and the covariance function
C(xp,xq) fully specify the Gaussian process. Note that
the covariance function C(., .) can be any function hav-
ing the property of generating a positive definite covari-
ance matrix.

Covariance function C(xp,xq) can be interpreted as a
measure of distance between input points xp and xq .
For systems modelling it is usually composed from two
main parts:

C(xp,xq) = Cf (xp,xq) + Cn(xp,xq) (1)

where Cf represents functional part and describes the
unknown system we are modelling and Cn represents
noise part and describes the model of noise.

A common choice is

Cf (xp,xq) =

v1 exp

[
−1

2

D∑
d=1

wd(xdp − xdq)2

]
+ δpqv0,

(2)

where ΘΘΘ = [w1 . . . wD v0 v1]T are the ‘hyperpa-
rameters’ of the covariance functions, D is the input
dimension and δpq = 1 if p = q and 0 otherwise.
The square exponential covariance function represents
smooth and continuous functional part and the constant
covariance function represents the noise part when it is
presumed to be the white noise. Other forms of covari-
ance functions suitable for different applications can be
found in [7]. For a given problem, the parameters are
learned or identified using the data at hand. After the
learning, one can use the w parameters as indicators
of ‘how important’ the corresponding input regressors
are: if wd is zero or near zero it means that the inputs
in dimension d contain little information and could
possibly be removed.

Consider a set of N D-dimensional input vectors X =
[x1,x2, . . . ,xN ] and a vector of output data y =
[y1, y2, . . . , yN ]T . Based on the data (X,y), and given



a new input vector x∗, we wish to find the predictive
distribution of the corresponding output y∗. Unlike
other models, there is no model parameter determina-
tion as such, within a fixed model structure. With this
model, most of the effort consists in tuning the param-
eters of the covariance function. This is done by max-
imisation of the log-likelihood

L(ΘΘΘ) = log(p(y|X))

= −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π)

(3)

where ΘΘΘ is the vector of hyperparameters and K is the
N ×N training covariance matrix. The number of pa-
rameters to be optimized is small (D + 2, see equa-
tion (2)), which means that optimization convergence
might be faster and that the ‘curse of dimensionality’
so common to black-box identification methods is cir-
cumvented or at least decreased.

The described approach can be easily utilized for re-
gression calculation. Based on training set X a covari-
ance matrix K of size N × N is determined. As al-
ready mentioned, the aim is to find the distribution of
the corresponding output y∗ at some new input vector
x∗ = [x1(N + 1), x2(N + 1), . . . , xD(N + 1)]T .

For a new test input x∗, the predictive distribution of the
corresponding output is y∗|(X,y),x∗ and is Gaussian,
with mean and variance

µ(x∗) = k(x∗)T K−1 y, (4)

σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗),

(5)

where k(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is the
N × 1 vector of covariances between the test and train-
ing cases, and k(x∗) = C(x∗,x∗) is the covariance
between the test input and itself.

Gaussian processes can, like other machine learning
methods, e.g. neural networks, be used to model static
nonlinearities and can therefore be used for modelling
of dynamic systems [1], [2], [4] if delayed input and
output signals are fed back and used as regressors. In
such cases an autoregressive model is considered, such
that the current output depends on previous outputs, as
well as on previous control inputs.

x(k) = [y(k − 1), y(k − 2), . . . , y(k − L),

u(k − 1), u(k − 2), . . . , u(k − L)]T ,

y(k) = f(x(k)) + ε, (6)

where k denotes the consecutive number of data sam-
ple. Let x denote the state vector composed of the pre-
vious outputs y and inputs u up to a given lag L, and ε
is white noise.

When only the mean values of the model predicted val-
ues are fed back the simulation was named ‘naive’. This
is the sort of simulation that will be used for the case
study simulation in the paper. However, to get a more
realistic picture of the dynamic model multi-step-ahead

prediction we could take account of the uncertainty of
the future predictions, which provide the ‘inputs’ for es-
timating further means and uncertainties. More details
on such kind of simulation can be found in [4].

As can be seen from the presented relations, the ob-
tained model not only describes the dynamic character-
istics of nonlinear system, but also provides informa-
tion about the confidence in these predictions by means
of prediction variance. The Gaussian process can high-
light areas of the input space where prediction quality
is poor, due to the lack of data, by indicating the higher
variance around the predicted mean.

The algorithms for identification or training of Gaus-
sian process dynamic model and its simulation is in our
case pursued with a set of routines [3] that are based
on Matlab programme package and are upgrade of the
GPML toolbox [7] for machine learning with Gaussian
processes.

3 Acceleration with various hardware
configurations

In order to show how the computation problem of the
GP modeling and prediction can successfully be tack-
led with the use of currently avaliable hardware, we de-
scribe the computing architectures that were used in our
tests.

• Single core computer (SC). Here the standard PC
equipped with Intel Pentium 4 processor was used.
The processor is a one-core version. The proces-
sor runs @3.2 GHz and uses DDR2 memory. This
configuration was primarily used to set the base
level to which all other results could be compared.

• Personal computer with GPU. This configura-
tion includes high performance PC with the In-
tel i7 860 Processor running @2.8GHz. The
computer is equipped with the NVIDIA Tesla
C1060 computing processor board, which is build
around the NVIDIA Tesla T10 graphics process-
ing unit (GPU). The processor includes 240 pro-
cessor cores running @1.296 GHz, with memory
interface running @800 MHz. The board contains
4GB of GDDR3 memory capable of 102 GB/s
peak bandwidth. In this configuration the board
is capable of peak performance of 933 GFLOP/s.

The GPU processor evolved from the needs of the
3D graphics intensive applications. This need dic-
tated the design of the processor so that more tran-
sistors were dedicated to the data processing rather
than to the control and data caching as in regular
CPU. Next, the processor was designed to be able
to execute data-parallel algorithms, consequently,
the GPU architecture is sometimes described as a
SIMD architecture.

The current tools for GP modelling and prediction are
packed as a custom Matlab toolbox that is optimized
for single processor architecture. The code is mainly



written in Matlab with time critical section written in C
mex files.

We have written a small benchmark program based on
the GP toolbox, which tests execution times of a typical
GP training and prediction cycle. The program gath-
ers computation times in relation to the size and dimen-
sion of input data. This approach gives the view on the
impact different architectures have on the computation
time from user’s perspective.

The fact that the GP toolbox is written for single core
configuration, we had to implement the critical func-
tions of the toolbox to be able to run on GPU. The func-
tions had to be written in a way not to disturb the current
structure of the toolbox.

The NVIDIA GPU comes with the API, which had to
be integrated into Matlab’s mex functions. Additionally
several other programming libraries had to be used in
order to implement time critical operations such as ma-
trix factorization and inverse. For this purpose we used
CUBLAS, which is the NVIDIA’s implementation of
the popular library BLAS. Next, we used CULA Pre-
mium libraries for the implementation of time critical
Cholesky factorization. Additionally, several other op-
erations had to be implemented, with custom code and
by using special functions called kernels, which when
called are executed N times in parallel in N different
threads.

By using C code in mex files only minor changes had to
be performed on the user side of the GP toolbox in order
to use the complex high-performance GPU architecture.

The GPU is currently a low-cost High Performance
Computing alternative. With its intrinsic parallel struc-
ture allows significant speedup in comparison to the
single processor architecture. Although it is relatively
easy to setup and perform basic operations it quickly
becomes more complex when dealing with more de-
manding numerical problems. Additionally, special
care must be taken, when performing memory opera-
tions. These can present a significant bottleneck when
insufficient care is taken in designing the algorithm.
Therefore all the data transfers are performed only at
the begining and the end of the algorithm.

4 Case study
The following example is intended for assessment of
the potential of various hardware configurations for ac-
celerating learning and simulation of Gaussian process
model of dynamic systems. Consider the nonlinear dy-
namic system [5] described by

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) + ε (7)

where u is system’s input signal, y is system’s output
signal, ε is white noise of normal distribution and stan-
dard deviation 0.05 that contaminates the system re-
sponse and the sampling time is one second. The non-

linearity in the region of interest for the benchmark sys-
tem is depicted in Figure 1.
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Fig. 1 The nonlinearity of the dynamic nonlinear system
benchmark used for the case study

The segment of input signal used for system identifi-
cation is given in Figure 2. The input signal is gener-
ated with random generator with uniform distribution of
magnitudes in the interval [-1.5,1.5] and sampling time
10 s.
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Fig. 2 Input signal used for identification - the segment
of first 200 samples

The segment of response of the system corresponding
to the input signal segment in Figure 2 is given in Figure
3.

The segment of input signal used for model validation
is given in Figure 4. The input signal for validation is
generated with random generator in the same way as
identification, but with different sequence to obtain sig-
nal that is different from the one used for identification.

The segment of response of the system corresponding
to the input signal segment in Figure 4 is given in Figure
5.

Modelling was pursued with both hardware configura-
tions named in the previous section: single core per-
sonal computer and personal computer with graphic
card used for computations.
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Fig. 3 Gaussian process model response on identifica-
tion signal and comparison with the system response
(top figure) and absolute value of model residuals with
95% confidence band (bottom figure) - the segment of
first 200 samples
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Fig. 4 Input signal used for validation - the segment of
first 200 samples

The comparison of identification computation times
with different input data dimensions are given in Fig-
ure 6.

For the identification the computation of a matrix in-
version is needed. Its time complexity rises with third
power of amount of data. It can be seen that the iden-
tification for relative small amount of data (in our case
smaller than approximately 250 data) is faster on single
core computer. For larger amount of data the identifi-
cation is considerably faster on GPU - it’s factor rises
with power (note that scale of Figure 6 is logaritmic).
In our case the identification on GPU for 1000 data is
approximately 1.4 times faster and approximately 2.5
times faster for 2000 data than on SC computer.

Relatively poor performance for smaller input data
sizes is due to initial memory initialisation required by
a parallel computation and data transfer. These opera-
tions are needed only at the begining and the end of the
process. A communication between GPU and RAM is
more consuming than a communication between CPU
and RAM. Therefore the identification is faster on SC
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Fig. 5 Gaussian process model response on validation
signal and comparison with the system response (top
figure) and absolute value of model residuals with 95%
confidence band (bottom figure) - the segment of first
200 samples
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Fig. 6 Figure of computation times for the model identi-
fication versus input data dimension for different hard-
ware configurations

computer until this overhead is majority of the whole
computation time. Once the initial and communication
overhead becomes sufficiently small part of the whole
process, then a GPU turns out as more efficient solution.

The comparison of iterative dynamic model simulation
is compared in two ways.

First, the computation times versus identification input
data dimension for different hardware configurations
were calculated. This comparison reveals acceleration
of prediction with different sizes of the inverse of co-
variance matrix. Therefore the time complexity rises
with a square. The results are depicted in Figure 7.

Similar to the identification also a simulation is faster
on SC computer until the boundary of amount of data,
where initial and communication overhead becomes
sufficiently small part of the whole process, is reached.
In our case this boundary is approximately 105 data
which is quite lower than at the identification. After
this boundary the simulation is likewise faster on the
GPU and its factor rises similar to the identification.



The GPU in comparison to the SC computer is approx-
imately 2.9 times faster for 500 data, for 1000 data ap-
proximately 4.0 times faster and for 2000 data approxi-
mately 5.3 times faster.

Second, the computation times versus validation input
data dimension for different hardware configurations
were calculated. This comparison reveals acceleration
of simulation procedure with the fixed nonparametric
dynamic system model. Therefore the time complexity
rises linearly. The results are depicted in Figure 8.
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Fig. 7 Figure of computation times of the model simula-
tion versus input data dimension for different hardware
configurations
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Fig. 8 Figure of computation time of the model sim-
ulation versus validation data dimension for different
hardware configurations

Also for simulation with a fixed model holds that for
small amount of data a computation is faster on a SC
computer. Once the boundary is reached a computation
on GPU becomes faster. In this case the boundary is
approximately 80 data. Since a time complexity of this
case has linear scale its factor of improvement is con-
stant and is approximately 1.4. That means the compu-
tation on a GPU is 1.4 faster than on a SC computer for
more than approximately 150 data.

5 Conclusions
The Gaussian process models are a flexible tool that can
be used for dynamic system’s identification. A draw-
back of the method is that its computational time rises
with the third power of the number of input data used
for model identification. This paper gives an assess-
ment of different hardware configuration that can ac-
celerate the computation.

For computations were used a single core personal
computer and personal computer with graphic card. In
the first case for a computation was used a CPU (only
one core), while in the second case a GPU (all cores)
were used.

From the case study it was obtained that a parallel com-
putation is efficient for amount of data larger than the
boundary when the initial and the communication over-
head becomes sufficiently small part of the whole com-
putation. Once this boundary is exceeded the paralleli-
sation is reasonable. However, this parallel implemen-
tation of GP models on GPU is still work in progress,
therefore, we believe there still exists room for im-
provements.

This study was performed from the user point of view
to test the usability different computational platforms,
therefore our future plans include implementation of the
described algorithms on nowadays multi-core CPUs.

As hardware capabilities are improving constantly and
research on efficient algorithms is on going the pre-
sented assessment might not be of a long term value.
However, it offers the state-of-the-art comparison of af-
fordable hardware configuration that might help to cir-
cumvent the computational issue in intermediate time
before more efficient algorithms or better technology
arise. With this it fulfills the purpose for which it was
intended.
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