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Abstract 

Sludge bulking is a common and undesired phenomenon in wastewater treatment plants that 

negatively affects biomass settling characteristics, deteriorates treatment efficiency and causes severe 

operational problems. First-principles models for this phenomenon are not yet available. Therefore, 

data-driven models have been developed to predict sludge bulking. In this paper, the bulking 

phenomenon is studied from the control point of view and operating variables that can be used to 

control sludge bulking are identified. Identification is performed by designing a data-driven model 

using available process data as well as clustering and various classification methods. A global sensitivity 

analysis is applied to select the operating variables with the highest impact on sludge bulking. 

Application of the proposed approach to full-scale data has shown that increasing aeration intensity 

and limiting nitrogen sources are the most promising control actions for bulking control. 
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1. Introduction 

Nowadays, wastewater treatment before discharge into the environment is an essential step to 

protect nature and human health. Most often, wastewater is treated in biological wastewater 

treatment plants (WWTPs), where a mixture of bacteria degrades the contaminating water 

components in an activated sludge process. The coexistence of different types of bacteria and the 

proper balance between them are among the most important operational challenges that, if they fail, 

can lead to operational problems and degradation of treatment performance. 

One of the most serious operational problems in biological WWTPs is sludge bulking, which causes 

problems in solid-liquid separation. Bulking occurs when the suspended solids in the activated sludge 

process, i.e. biomass flocs, do not separate from the treated water by gravity settling in the settling 

tank. That is a common problem in modern biological nutrient removal (BNR) plants where long sludge 

retention times (SRTs) are used. Long SRTs favour the growth of filamentous bacteria. An appropriate 

balance between floc forming and filamentous bacteria improves sludge settling, but an excess of 

filamentous bacteria can lead to poor settling, foaming on the reactor surface, and dewatering 

problems in the sludge treatment process. 

Bulking can be related to the characteristics of the wastewater and/or the operating conditions of the 

plant. However, the various causes have not been fully explored, and there are no first-principles or 

generally applicable models linking sludge bulking to process conditions. Also, recommended 

operational adjustments to limit the occurrence of bulking are inconsistent and often contradictory, 

e.g., increasing or decreasing various operational parameters such as sludge age, return sludge flow, 

waste sludge flow, oxygen concentration, etc. Due to the knowledge gaps and lack of formal theoretical 

descriptions of sludge bulking, data-driven models have been developed. 

Data-driven models relate sludge bulking and process conditions based on empirical relationships 

derived from process data. Most commonly, models are designed as bulking prediction models aiming 

at forecasting the occurrence of bulking in advance (Liu et al., 2020). Bulking prediction models are 
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designed as time-series models (Liu et al., 2016a), multivariate models derived from other process data 

(Lou and Zhao, 2012, Bagheri et al., 2015, Deepnarain et al., 2019, Szeląg et al., 2020) or a combination 

of both (Liu et al., 2016b). Various methods have been proposed already, e.g. Artificial Neural Networks 

(ANN) (Capodaglio et al., 1991, Bagheri et al., 2015, Han et al., 2016), Principal Component Regression 

(PCR) (Lou and Zhao, 2012), Gaussian Processes Regression (GPR) (Liu et al, 2016b), Principal 

Component Analysis (PCA) and decision trees (Deepnarain et al., 2019). In most cases, the focus is on 

the quality of model prediction, i.e. whether the model can predict the occurrence of sludge bulking 

with high accuracy. 

The issues of sludge bulking diagnosis have also been considered (Cheng et al., 2019, Han et al., 2021). 

On-line diagnosis consists of two steps. First, a data-driven model is used to detect the occurrence of 

bulking, and in the second step, the causes are identified. Liu et al. (2020) propose two further steps, 

i.e. remaining useful life prediction and maintenance strategy. In the preventive maintenance stage, 

the operating parameters should be adjusted to compensate for the incipient fault and keep sludge 

bulking below the control limit. 

As presented above, on-line monitoring and diagnosis of sludge bulking involve data-driven prediction 

and identification of the causes of sludge bulking based on the temporal dynamics of process variables. 

However, prior knowledge of the key process variables associated with the conditions for sludge 

bulking is required. In addition, once the cause variable is identified, subsequent knowledge of the 

most promising control actions and adjustments of process operating parameters is also required 

(Nittami et al., 2021). Since this knowledge is very specific to each case and difficult to obtain directly 

from plant operations, it is expected to be obtained through data-driven model development. The 

model should include both potential causes and control variables that have been discovered to be 

related to sludge bulking conditions. Such a model will also provide information on the regions of 

bulking and non-bulking conditions in the space of plant operating parameters, which is important for 

control purposes. 
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For this purpose, the design of a data-driven model is considered in this paper. Modelling is intended 

for knowledge discovery, i.e. finding variables that are highly related to sludge bulking conditions. 

Therefore, the selection of model input variables is considered as one of the most important outcomes 

of modelling. 

Different methods can be used for input variable selection. They can be divided into model-based and 

model-free (filter) methods. Model-based methods are further divided into wrapper methods and 

embedded methods (Guyon and Elisseeff, 2003). Filters are used to select a subset of variables as a 

pre-processing step, regardless of the modelling approach. Examples of filters are statistical analysis 

methods based on Pearson correlation coefficient, coefficient of determination R2, F-test, or other 

similar criteria. Wrappers use a selected model to evaluate subsets of variables according to their 

predictive power. Some well-known wrapper methods in classical statistical approaches for variable 

selection in regression are forward selection and backward elimination (Andersen and Bro, 2010). In 

these cases, regressors in the selected model are systematically added or removed one by one until 

cross-validation results confirm the minimal set of regressors that provides the best model accuracy. 

A common feature of wrapper methods is that they are computationally intensive and can become 

intractable when the number of input variables is large. Embedded methods perform variable selection 

in the process of model training and are usually specific to a selected modelling approach. In this case, 

the task of variable selection is delegated to the model learning phase. An example of an embedded 

method is ANN training based on a pruning strategy where the irrelevant and/or redundant weights of 

a network are gradually removed. 

When developing data-driven sludge bulking models, pre-existing knowledge is usually used to 

constrain the initial set of candidate variables. Variable selection is then based on statistical tests of 

candidate variables and/or a model-based search for the most appropriate combinations of input 

variables. Methods used include correlation analysis (Lou and Zhao, 2012), the Chi-squared test 

(Deepnarain et al., 2019), the variable importance in projection (VIP) method (Liu et al., 2016b, 
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Chmielowski et al., 2019), PCA and forward selection (Bagheri et al., 2015), the Fischer-Snedecor test 

followed by a search for different combinations of independent variables (Szeląg et al., 2020). In many 

of these cases, linear methods are used for pre-processing the input variables, e.g., correlation analysis 

and PCA, which may not discover the significant input variables in the case of nonlinear relations 

(Šindelář and Babuška, 2004). On the other hand, when using wrapper methods, even if the 

combinatorial problem of input variable selection is not extreme, the choice of input variables can be 

difficult when the differences in the performance of models with different sets of variables are small. 

This problem occurred in the development of binary classification models (Szeląg et al., 2020). 

This paper proposes a model-based approach for the selection of input variables of sludge bulking 

models. The procedure follows the general scheme of wrapper methods (May et al., 2011) with the 

addition of variable ranking. Variable ranking allows the identification of the most influential model 

variables and is performed in our case by applying Global Sensitivity Analysis (GSA). GSA is a set of 

statistical techniques used to investigate the extent to which variation in model output can be 

attributed to variation in model inputs. Many GSA methods have been proposed in the literature, 

usually calculating a set of sensitivity indices for the various factors of the model. These indices can be 

used to estimate the impact of individual variables or groups of variables on model output. In this 

paper, we use the Variance-Based Sensitivity Analysis (VBSA or Sobol’s method) (Sobol’, 2001), which 

is one of the most popular methods in many disciplines (Wei et al., 2015, Makrygiorgos et al., 2020). Its 

advantages are that it provides global sensitivity over the entire input space, as opposed to local 

sensitivity at a particular model solution, and that it can be used for nonlinear and nonadditive systems. 

It is applied, among other things, to understand the dominant controls of a system (model) (Pianosi et 

al., 2015), which is the subject of this work. Performing a sensitivity analysis within the operating region 

of the process variables allows us to evaluate the impact of potential control variables on the process 

performance and thus estimate their ability to control sludge bulking. The approach is useful in cases 

where many combinations of process variables result in a similar performance, making it difficult to 

reduce input variables based on model performance alone. A similar machine learning framework for 
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identifying relationships between operational variables and effluent parameters in WWTPs was 

proposed by Wang et al. (2021). In their case, permutation importance (PI) was used as a measure of 

variable importance. 

The approach is presented for a full-scale WWTP where a severe problem of a sludge bulking 

phenomenon is encountered throughout the year. Microscopic analysis revealed that the filamentous 

bacterium Microthrix parvicella was present in the biological reactors of the WWTP. Its presence can 

be in theory associated with certain operating conditions. These conditions and associated process 

variables were considered as potential model regressors in the data-driven model design. The model 

was designed using various classification methods in the Matlab classification toolbox. As a pre-

processing step for classification, the model output, i.e., measured sludge settleability was clustered 

into bulking and non-bulking states. 

The original contributions are as follows: 

- The procedure for selecting input variables based on global sensitivity analysis as a variable 

importance measure. 

- The application of various machine learning methods to design data-driven models of sludge 

bulking. 

- The demonstration of the proposed method on a full-scale WWTP case study. 

This paper is organised as follows. In the next section, we first present the WWTP case study, followed 

by the description of the proposed procedure for input variable selection as well as the clustering and 

classification methods. In Section 3, we demonstrate the proposed method on a full-scale WWTP and 

discuss the results. The paper ends with the conclusions describing the main results and perspectives 

for future work. 

 

2. Materials and methods 
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2.1 WWTP case study 

The case study under consideration is a WWTP for 95000 PE (population equivalent) treating municipal 

and industrial wastewater. The plant was upgraded in 2016 for complete nitrogen and phosphorus 

removal with biological treatment and chemical precipitation, respectively. The treatment facilities 

consist of mechanical treatment (screens, grit and grease chamber, primary clarifier), a biological stage 

with suspended biomass activated sludge process (nine mixed and/or aerated reactors) and sludge 

treatment (thickening, anaerobic digestion, dewatering). The reactors of the biological stage with 

active biomass are operated as a three-cascade system, each cascade consisting of three tanks, i.e. 

denitrification reactor (DN), combined reactor operated as denitrification or nitrification reactor 

(DN/N) and nitrification reactor (N). Sludge settling takes place in secondary clarifiers, where solid 

particles are separated from treated wastewater by gravity settling. The plant operation is monitored 

by laboratory analyses and on-line sensors as shown in Fig. 1. All data, together with other measured 

signals, are stored in a supervisory control and data acquisition (SCADA) system and are available for 

data-driven analysis and modelling of sludge bulking. 

 

 

Fig. 1. Schematic layout of WWTP with indicated laboratory measurements and on-line sensors. Laboratory 

measurements include 5-day biological oxygen demand (BOD5), chemical oxygen demand (COD), total 

suspended solids (TSS), mixed liquor suspended solids (MLSS) and settled sludge volume (SV). On-line 

measurements and sensors include flow (Q), temperature (T), pH, orthophosphate (PO4-P), ammonia-nitrogen 
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(NH4-N), nitrate-nitrogen (NO3-N), total nitrogen (TN), total organic carbon (TOC), total suspended solids (TSS) 

for return sludge and dissolved oxygen concentration (DO). 

 

Sludge settleability is measured using a standard laboratory test in which 1 litre of the mixed activated 

sludge sample from the biological reactors is settled for 30 minutes (Jin et al., 2003). The settled sludge 

volume (SV) after 30 minutes and the measured mixed liquor suspended solids concentration (MLSS) 

in the reactor are then used to calculate the sludge volume index (SVI) as follows 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆 (mL/L)
𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 (g/L)

 
(1) 

The generally accepted threshold value for SVI is 150 mL/g. Sludge settling is considered as appropriate 

if SVI < 150 mL/g, while for SVI > 150 mL/g poor settling and sludge bulking occurs. 

In the considered case study, the problem of sludge bulking is severe and occurs throughout the year. 

It is indicated by poor settling of solids, lifting of the sludge in the settling test (Fig. 2) and by very high 

SVI values, which rarely fall below 150 mL/g. Occasional microscopic images of sludge samples show 

that the presence of filamentous bacteria is significant, with Microthrix parvicella recognised as the 

predominant type (Fig. 2). Despite bulking, effluent quality is most of the time below the legislation 

limits (daily average effluent values of TN < 15 mg/L, NH4-N < 10 mg/L, TP < 2 mg/L), but some very 

restrictive measures have to be taken in plant operation, e.g. limited influent flow to the biological 

stage to reduce the risk of solids washout from the secondary clarifiers during the first flush and rain 

events, low MLSS concentrations in the biological reactors to prevent sludge accumulation and 

foaming. 
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a b c 

Fig. 2. Severe bulking conditions presented with a) foam on the reactor surface, b) poor settling and sludge uplift 

in the 30-minute laboratory test, and c) the presence of filamentous bacteria Microthrix parvicella in the 

microscopic image of the sludge sample. 

 

2.2 Prior knowledge of bulking conditions 

The filamentous bacterium Microthrix parvicella is commonly found in activated sludge WWTPs and is 

most often responsible for solid-liquid separation problems. The microbiological review paper (Nielsen 

et al., 2009) indicates that M. parvicella is well adapted to the hydrolysis, uptake and growth on lipids 

and greases. Substrates are taken up under both aerobic and anaerobic conditions and stored as lipid 

reserves, but filaments grow only under conditions with nitrate or oxygen as an e-acceptor. The growth 

characteristics of M. parvicella presented in Rossetti et al. (2005) show that several factors influence 

its growth and can be used in control strategies to prevent bulking: 

i. M. parvicella requires fairly high sludge ages for its survival in WWTPs (solids retention times SRTs 

> 10 d), which is in agreement with its presence in nutrient removal plants with longer SRTs for 

nitrification. Besides, it may proliferate in scums and physical barriers where the retention time is 

higher than the nominal sludge age. 

ii. M. parvicella grows at appreciable rates at low temperatures (T < 12-15 oC), which implies a 

significant competitive advantage over other bacteria during the cold season. 
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iii. It appears to be sensitive to high oxygen tensions, suggesting a microaerophilic preference. 

Therefore, it proliferates in conventional plants with spatial or temporal low DO concentrations or 

in nutrient removal plants with anoxic-aerobic zones (Comas et al., 2008, Guo et al., 2012, Zhang 

et al., 2017). 

iv. Another factor promoting the growth of M. parvicella is also the availability of nitrogen 

compounds. It has been hypothesized that incomplete denitrification and formation of nitric oxide 

may cause toxic effects on floc-forming organisms preventing them to utilize slowly biodegradable 

substrate and thus outcompete filamentous bacteria. Besides, it has been suggested that 

incompletely nitrifying BNR plants have available ammonia under aerobic conditions that can be 

used as a preferential nitrogen source for M. parvicella. In a set of laboratory experimental 

investigations, it has been shown that in the alternating anoxic-aerobic conditions the AA bulking 

may occur (Casey et al., 1993), which is associated with a group of low F/M (food to mass ratio) 

bacteria, including M. parvicella. AA bulking was observed to be related to the presence of nitrate 

(NO3-N) or nitrite (NO2-N) in the anoxic zone or on the transition between anoxic to the aerobic 

zone. The process conditions inducing AA bulking are as follows: (i) either nitrate or nitrite or both 

are present in the anoxic zone immediately preceding the aerobic zone (NO3-N > 5 mg/L and/or 

NO2-N > 1 mg/L) (Lakay et al., 1999, Musvoto et al., 1999), (ii) residual ammonia is present under 

aerobic conditions (NH4-N > 1 mg/L) (Tsai et al., 2003), (iii) an aerobic mass fraction between 30-

40 % of the total if nitrite is present in excess (Musvoto et al., 1999). High concentrations of NO3-

N in the secondary clarifier influent were also identified as critical conditions for the development 

of rising sludge in the activated sludge systems (Comas et al., 2008). 

Besides the literature review on M. parvicella growth conditions, the plant personnel observe that 

some operating conditions may favour the increased filamentous growth. For example, the plant is 

hydraulically underloaded, therefore bulking is more severe at low input flows. Besides, the mixing of 

the reactors is not sufficient, and in severe bulking conditions, the biomass retains in the poorly mixed 

parts of the reactors. Also, the occurrence of bulking seems to increase at higher input ammonia loads. 
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Based on the theoretical knowledge and practical observations above, the following potential reasons 

for sludge bulking were identified: 

- low temperatures, 

- low dissolved oxygen concentrations, 

- low aeration intensity contributing to insufficient mixing of reactors, 

- availability of excess ammonia and nitrate. 

The related process variables were considered in the data-driven analysis as candidate input variables 

for the bulking control model design. 

 

2.3 Procedure for input variable selection 

The problem of input variable selection is to choose a (small) subset from the available variables that 

gives the optimal form of the model. The optimal input variable set contains the fewest input variables 

required to describe the behaviour of the output variable, with a minimum degree of redundancy and 

with no uninformative variables. Such a set of variables results in a more accurate, efficient, cost-

effective and easily interpretable model. The procedure for variable selection applied in this paper is 

presented in Fig. 3. The first three steps are based on a general conceptual approach of wrapper 

algorithms presented in May et al. (2011) with the addition of variable importance ranking based on 

global sensitivity analysis (GSA) and adjusted for the sludge bulking model design. The procedure 

consists of the following steps: 

Step 1: Selection of candidate input variables based on a priori knowledge of the process. 

Step 2: Training the model with all possible input variables using machine learning. 

Step 3: Selection of the model with the best cross-validation performance. 

Step 4: Variable importance ranking for the selected model using global sensitivity analysis. 

Step 5: Reduced model training, i.e., performing Step 2, Step 3 and Step 4 with the reduced set of input 

variables. 
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Fig. 3. Procedure for input variable selection based on global sensitivity analysis. 

 

By performing Steps 1-3, this procedure first generates a complete model with all possible input 

variables and then in Step 4 removes those variables that have little influence on the model output. 

This is essentially a backward elimination procedure, but the inclusion of global sensitivity analysis for 

variable importance ranking avoids the need to repeatedly generate new models to test each 

combination of variables. The sensitivity analysis indicates whether a particular process variable 

significantly affects the process output in the tested area. 

 

 Global sensitivity analysis 

Global Sensitivity Analysis (GSA) and the calculation of Sobol’s indices was performed by Matlab 

Toolbox SAFE (Pianosi et al., 2015). For the model under investigation, described by a function 𝑌𝑌 =

𝑓𝑓(𝐗𝐗), where 𝐗𝐗 = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) represents a 𝑛𝑛-dimensional set of input variables, the first-order 
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sensitivity indices 𝑆𝑆𝑖𝑖 and total-order sensitivity indices 𝑆𝑆𝑇𝑇𝑖𝑖 are calculated by observing variations in 𝑌𝑌 

when varying 𝑋𝑋𝑖𝑖  (Wei et al., 2015) 

𝑆𝑆𝑖𝑖 =
Var𝑋𝑋𝑖𝑖(𝐸𝐸𝐗𝐗~𝑖𝑖(𝑌𝑌|𝑋𝑋𝑖𝑖))

Var(𝑌𝑌)  
(2) 

𝑆𝑆𝑇𝑇𝑖𝑖 = 1 −
Var𝐗𝐗~𝒊𝒊(𝐸𝐸𝑋𝑋𝑖𝑖(𝑌𝑌|𝐗𝐗~𝑖𝑖)

Var(𝑌𝑌)
 

(3) 

where Var(𝑌𝑌) is the total variance of model output, Var𝑋𝑋𝑖𝑖 is the variance when varying 𝑋𝑋𝑖𝑖, Var𝐗𝐗~𝒊𝒊 is 

the variance when varying all variables except 𝑋𝑋𝑖𝑖. 𝑆𝑆𝑖𝑖 represents the “main effect”, i.e. the contribution 

to the output variance by varying 𝑋𝑋𝑖𝑖  alone. 𝑆𝑆𝑇𝑇𝑖𝑖 represents the “total effect”, i.e. all contributions to 

the output variance from 𝑋𝑋𝑖𝑖, including the variance caused by all its interaction with other variables. 

The sensitivity indices have the property 0 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝑆𝑆𝑇𝑇𝑖𝑖 ≤ 1. In variable importance ranking, more 

influential model variables have higher 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑇𝑇𝑖𝑖 values. For 𝑋𝑋𝑖𝑖  to be non-influential, 𝑆𝑆𝑖𝑖 = 0 is a 

necessary but not sufficient condition, while 𝑆𝑆𝑇𝑇𝑖𝑖 = 0 is a necessary and sufficient condition (Saltelli et 

al., 2004). Therefore, 𝑆𝑆𝑖𝑖 is used for selecting important variables while 𝑆𝑆𝑇𝑇𝑖𝑖 is more suitable for 

screening non-influential variables. 

Numerical calculation of sensitivity indices was performed by Monte Carlo simulation, which involves 

generating a sequence of randomly distributed points in the space of input variables. For the 

calculation of sensitivity indices, a sequence of 10000 𝑿𝑿 data points was generated based on uniform 

distribution and Latin Hypercube Sampling in the defined space of input variables. The range of each 

𝑋𝑋𝑖𝑖  variable was determined based on full-scale measured data as lower adjacent (𝑀𝑀𝐿𝐿) and upper 

adjacent (𝑈𝑈𝐿𝐿) of 𝑋𝑋𝑖𝑖. These values present the most extreme observations in the 𝑛𝑛-point data-set that 

are within the lower (𝑀𝑀𝑀𝑀) and the upper (𝑈𝑈𝑀𝑀) limits. These limits are defined from the sample quartiles 

(𝑞𝑞�0.25, 𝑞𝑞�0.75) and the interquartile range (𝑆𝑆𝐼𝐼𝐼𝐼� ): 

𝑆𝑆𝐼𝐼𝐼𝐼� = 𝑞𝑞�0.75 − 𝑞𝑞�0.25 (4) 
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𝑀𝑀𝑀𝑀 = 𝑞𝑞�0.25 − 1.5 𝑆𝑆𝐼𝐼𝐼𝐼�  (5) 

𝑈𝑈𝑀𝑀 = 𝑞𝑞�0.75 + 1.5 𝑆𝑆𝐼𝐼𝐼𝐼�  (6) 

 

 Clustering 

The output classes are determined using the Jenks natural breaks classification method (Jenks, 1967, 

Amirruddin et al., 2020). The rationale for using this method is that we do clustering of one-

dimensional data. k-means clustering, as an example of other clustering methods, is the generalization 

for multivariate data. The Jenks natural breaks classification method iteratively repeats three steps. In 

the first step, the sum of squared deviations from the class means is calculated. In the second step, the 

sum of squared deviations from the average mean of classes is calculated. In the third step, a piece of 

data is moved from a class with a larger variance to a class with a lower variance. Clustering was 

performed using Matlab code (MS, 2020). 

 

 Classification 

The classification was performed with the Matlab (Version R2020a) Classification Learner application, 

which is part of the Statistics and Machine Learning toolbox. It allows choosing between different 

algorithms for the training and validation of classification models and their comparison. The groups of 

methods are Decision Trees (Fine, Medium and Coarse), Discriminant Analysis (Linear and Quadratic), 

Logistic Regression, Support Vector Machines (SVM) (Linear, Quadratic, Cubic, Fine Gaussian, Medium 

Gaussian and Coarse Gaussian), k-nearest neighbour classifiers (Fine, Medium, Coarse, Cosine, Cubic 

and Weighted KNN), Ensemble classifiers (Boosted Trees, Bagged Trees, Subspace Discriminant, 

Subspace KNN and RUSBoosted Trees). A total of 23 classification algorithms were tested for the model 

design. Among them, Linear Discriminant and Linear SVM belong to linear methods, all other methods 

are nonlinear. 
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 Training and validation 

The process data for classification was divided into two sets. The first set was used to train the model, 

while the second set was used to test the obtained statistical classifier. In this way, the consistency of 

the results could be assessed. Before classification, the data was normalized using the Matlab function 

normc, which normalizes each input variable independently to length 1. 

In the classification model training, the first data set was used (training data). The models based on 

different classification algorithms were evaluated and compared using k-fold cross-validation. The 

model with the best performance in k-fold cross-validation was tested for its accuracy 𝐿𝐿𝐴𝐴𝐴𝐴 in predicting 

the measured output: 

𝐿𝐿𝐴𝐴𝐴𝐴 =
Total correct predictions

Total predictions
 

(7) 

The overall performance of the classifier was evaluated by different criteria, i.e. accuracy in k-fold 

cross-validation in model training, accuracy in training data, accuracy in test data, true positive rate 

(TPR) per class. For good model performance, TPR should be close to 100% and similar for all classes 

(Chmielowski et al., 2019). 
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3. Results and Discussion 

For the design of the sludge bulking model, on-line and laboratory measurements from the considered 

full-scale WWTP were collected in the period from January 2019 to July 2020. Continuously measured 

on-line signals were sampled at a one-day interval as daily average values. 

 

 Clustering the model output 

The most common process variable to observe sludge settleability is the sludge volume index SVI (1). 

It can be easily clustered into classes of good and poor settleability based on the established threshold 

value of 150 mg/L as described in Section 2.1. However, in the presented WWTP the SVI exceeds 150 

mg/L most of the time. Besides, the sedimentation rate is often very poor, meaning that the sludge 

does not settle at all and the volume of the settled sludge SV is equal or close to the limit value of 1000 

mL/L. In such conditions, the use of SVI is not appropriate because of its highly nonlinear relation to 

SV and MLSS (1). For these reasons, the SV is used as an observed output variable. SV is measured in 

each of the three nitrification reactors (N1.3, N2.3 and N3.3 in Fig. 1). The average value of these three 

measurements is used for clustering. 

The data of measured SV in the observed period include 324 data points. The clustering algorithm has 

identified the following two classes, i.e. 'NB' class representing non-bulking conditions and good 

sludge settleability with SV within 346 - 810 mL/L, and 'B' class representing bulking conditions and 

poor sludge settleability with SV within 810 - 1000 mL/L. Hence, the measured data were classified as 

follows 

𝑦𝑦𝑘𝑘 = � 'B' , if (𝑆𝑆𝑆𝑆𝑘𝑘 > 810 mL/L)
'NB', otherwise ,𝑘𝑘 = 1, … ,𝑛𝑛. (8) 

The results of clustering are shown in Fig. 4 and Fig. 5. From Fig. 4 it can be seen that the variation of 

the settled sludge volume can be associated with seasonal variations and temperature changes. The 
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sludge bulking is most severe from January to June when the sludge does not settle at all or rises to 

the top during the 30-minute settling test. The conditions improve in summer at higher wastewater 

temperatures and continue in autumn due to better-conditioned sludge during the summer. 

Occasional short-term changes from bulking to non-bulking conditions or vice versa indicate that other 

input variables also affect sludge bulking and are expected to be discovered by the application of the 

classification approach. Fig. 5 shows that after the division of data in two classes based on the variance 

of deviations to the classes mean, around one-third of data is in class 'NB' (good settleability) and two-

third of data is in class 'B' (poor settleability). 

 

Fig. 4. Classification of settled sludge volume (𝑆𝑆𝑆𝑆) into 'B' and 'NB' classes using Jenks natural breaks 

classification method. 
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Fig. 5. The final result of using Jenks natural breaks classification method. Sorted data by its value is in the upper 

left figure, squared deviations from the class mean is given in the upper right figure, goodness of variance fit is 

shown bottom left and bottom right is the boundary between both classes. 

 

 Classification model design 

The process input and output data to be used for classification include around 250 data points from 

full-scale plant operation. The number varies slightly depending on the selected input variables. Three-

quarters of the data were used for training and one quarter for testing. When training the classification 

model, the models were evaluated using 4-fold cross-validation. The number of folds, i.e. four, was 

determined to ensure that both training and test subsets contained a sufficient number of cases in 'B' 

and 'NB' classes. The following sub-sections present individual steps from Fig. 3 for input variable 

selection for the classification model. 
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3.2.1 Step 1: Selection of candidate variables 

In Section 2.2, four potential causes of sludge bulking were identified. Each of them could be associated 

with some measured process variables (see Fig. 1), i.e. temperature (T); dissolved oxygen 

concentrations (DO) in six aerated reactors (DN/N and N tanks); aeration intensities (AE) in six aerated 

reactors, where aeration intensity is determined as the percentage of the time in a day that the reactor 

is aerated; nitrogen concentrations including input ammonia mass flow (Φm), determined from 

influent flow (Q) and influent ammonia concentration (NH4i), nitrate concentrations (NO3) in DN 

reactors and ammonia concentration at the outlet of the biological reactors (NH4o). These variables 

were identified as candidate input variables and can be classified into four main groups: 

1) Disturbance variables (Q, Φm, T). 

2) Dissolved oxygen concentrations in aerated reactors (DO1, DO2, DO3, DO4, DO5, DO6). 

3) Aeration intensities in aerated reactors (AE1, AE2, AE3, AE4, AE5, AE6). 

4) Nitrogen (N) concentrations (NO31, NO32, NO33, NH4o). 

The first group represents input disturbances, i.e. those variables that are related to input wastewater 

characteristics and environmental conditions and could not be intentionally varied. The other three 

groups include process operating variables that are potentially related to bulking conditions and could 

be manipulated in bulking control. A total of 19 variables are used as model candidate variables. 

 

3.2.2 Steps 2 & 3: Training and model selection 

First, classification models were designed with all candidate input variables. The obtained 4-fold cross-

validation accuracy on training data ranged from 65 to 89 % for the different classification algorithms. 

The results of the best performing classification models are shown in Table 1. We can see that the 

models have high accuracy on both training and test data and were used for sensitivity analysis and 

variable selection in the next step. 
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Table 1. Classification models with all input variables and 4-fold cross-validation accuracy higher than 85%. 

       Model 
Accuracy in 4-fold 

cross-validation (%) 

Accuracy in training 

data (%) 

Accuracy in test 

data (%) 

Linear Discriminant 89.0 89.91 90.28 

Linear SVM 87.6 89.91 90.28 

Ensemble Subspace Discriminant 86.7 88.07 88.89 

Medium Gaussian SVM 86.2 91.28 88.89 

Logistic Regression 85.8 90.83 90.28 

 

 

3.2.3 Step 4: Variable importance ranking 

To find the most important variables related to sludge bulking, the global sensitivity analysis presented 

in Section 2.4 was used. As a first step, GSA was performed for the groups of variables to evaluate the 

contribution of the different groups (disturbances, DO, AE, N concentrations) to sludge bulking 

conditions. Group sensitivity was performed for the models in Table 1. The results are shown in Fig. 6 

with a boxplot diagram. The red lines show the median and the red crosses show the mean values. We 

can see that disturbance variables have the highest impact on classification model performance. This 

could be expected since the temperature is one of the most influential parameters affecting the growth 

of M. parvicella, which can be directly seen in the data. The results also indicate high sensitivity to 

other groups of variables, especially to N concentrations and to a lesser extent to DO concentrations 

and aeration intensities. This is an important result for the control of sludge bulking since it indicates 

that operating variables contribute to sludge bulking. Therefore, appropriate adjustment of operating 

conditions can potentially prevent or mitigate sludge bulking. 
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Fig. 6. The total-order sensitivity index for the groups of variables obtained with the best performing models with 

all input variables. 

 

In the next step, a sensitivity analysis was also performed for individual variables. Fig. 7 shows the first-

order and total-order sensitivity indices for the best performing classification models. The highest first-

order values are obtained for temperature (T) and nitrate concentrations NO31 and NO33. The total-

order indices additionally indicate the importance of some other variables. Higher mean and 75th 

percentile values of the total-order index are also obtained for dissolved oxygen concentrations DO4 

and DO3, aeration intensity AE2, mass flow Φm, influent flow Q and nitrate concentration NO32. All 

these variables have a mean total interaction effect greater than 0.1. This set of 9 variables was further 

considered for the reduced model training. Repeated GSA for the 9 selected variables revealed high 

total-sensitivity indices for T, NO33, NO31, medium for DO4, Q, Φm, and low for AE2, NO32, DO3. 
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Fig. 7. The first-order and the total-order sensitivity indices of individual variables for the best performing models 

with all input variables. 
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- three disturbance variables (Q, Φm, T) and 

- four control variables (DO3, DO4, NO31, NO33). 

For the selected set of variables, the performance of different classification algorithms was tested. The 

results of the best models for the six groups of classification methods are shown in Table 2. The table 

shows the accuracy of models, the performance per class, and the percentage of data in the available 

full-scale data-set that change from 'B' to 'NB' state by manipulating each model input variable within 

the [𝑀𝑀𝐿𝐿,𝑈𝑈𝐿𝐿] interval.  

The model with the best performance is Linear SVM. Its performance accuracy is 89.6 %, 90.5 % and 

89.0 % in 4-fold cross-validation, training data and test data, respectively. As we can see, the 

performance is similar to models with a complete set of variables in Table 1. 

We can also see that the methods give a different performance, but they can be roughly grouped into 

two groups. The first three groups of methods (1 to 3 in Table 2) give similar performance, which can 

be characterized by higher accuracy, better performance per class but also higher sensitivity to control 

variables. The other three groups of methods (4 to 6 in Table 2) give lower accuracy, worse 

performance per class, in particular 'NB', but also lower sensitivity to control variables. The interesting 

result is that, for disturbance variables, the sensitivity of almost all models is more similar. Thus, 

although models 1 to 3 perform better and should be more trusted, their performance with respect to 

control variables should be treated with caution, as they may be affected by a small number of data in 

the data set or by model overfitting. 

This problem was investigated by constructing a simplified classification model with only the two most 

influential variables (T and NO33) as model inputs. The aim was to observe the space of input variables 

visually in a two-dimensional graph. Plots of the classification results for different methods are shown 

in the supplementary material (Fig. S1). The results are presented for the best performing method in 

each of the six groups of classification algorithms in the case of the 2-input variable model. The results 

show that all models identify the regions of good and poor settleability at high and low temperatures, 
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respectively. At intermediate temperatures, data points of both 'B' and 'NB' classes are present but 

their number is relatively small. Therefore, the sensitivity to NO33 is identified differently by different 

models. For example, in the cases of Ensemble Subspace Discriminant and Coarse Tree methods, the 

model is almost insensitive to NO33, while in the cases of other methods close to a linear relationship 

in the models was identified. This difference in sensitivity to NO33 was obtained despite the similar 

performance of all models. Model accuracy in the cases presented was 78.4 to 80.2 % in the 4-fold 

cross-validation, 79.3 to 82.3 % for the training data and 81.8 to 83.1 % for the test data.  
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Table 2. Results of different classification methods for the reduced model with three disturbance variables (Q, Φm, T) and four control variables (DO3, DO4, NO31, NO33). 

Group of 
classification 
methods 

The method 
with the best 
performance 
in a group 

Accuracy in 
4-fold 
cross-
validation 
(%) 

Accuracy in 
training 
data (%) 

Accuracy in 
test data 
(%) 

Performance per class 
(% of data) 

The percentage of data points changed from 'B' to 'NB' state 
within the tested range of each variable1 

True 
positive rate 
'B' 

True 
positive rate 
'NB' 

Disturbance variables Control Variables 

T Φm Q NO33 DO4 NO31 DO3 

1 Support Vector 
Machines (SVM) 

Linear SVM 89.6 90.54 89.04 92 86 +++ + + ++ ++ + + 

2 Logistic 
Regression 
Classifier 

Logistic 
regression 

89.2 90.99 91.78 92 85 +++ + + +++ ++ ++ ++ 

3 Discriminant 
Analysis 

Linear 
Discriminant 

88.7 91.44 90.41 90 86 +++ + + +++ ++ ++ + 

4 Ensemble 
Classifiers 

Ensemble 
Subspace 
Discriminant 

87.4 87.84 93.15 92 78 +++   + +   

5 Nearest 
Neighbour 
Classifier 

Cubic KNN 86.0 86.49 86.30 92 76 +++ + +  +   

6 Decision Trees Coarse Tree 80.6 87.39 82.19 84 75 +++ +++ +++     

1 Legend:  +++  high (> 75%), ++  medium (> 35% & ≤ 75%), +  low (> 0% & ≤ 35%), empty (0%) 
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 Implication of modelling results on plant operation 

The models obtained were used to evaluate the changes that need to be imposed on each variable to 

achieve non-bulking conditions. This knowledge is useful for a daily operation to pursue non-bulking 

plant operating conditions. The evaluation was performed by considering bulking data 'B' in the 

available full-scale data-set and observing the required change (increase, decrease) of each model 

input variable to change from 'B' to 'NB' state. An example of the analysis for six random data points 

and the best performing Linear SVM model is presented in the supplementary material (Fig. S2). The 

results show that the settleability is improved at higher Q, lower Φm, higher T, higher DO3, lower DO4, 

lower NO31, and higher NO33. It should be noted that these results are consistent for all data points 

for which the 'NB' state is reached within the [𝑀𝑀𝐿𝐿,𝑈𝑈𝐿𝐿] interval and for different classification models.  

For some variables, the suggested changes could be well associated with process knowledge and plant 

observations. The effect of higher temperature on better sludge settleability has already been 

discussed. The effects of Q and Φm are also consistent with plant observations. Sludge settleability 

deteriorates during long periods of dry weather conditions when Q is low and sludge accumulates at 

the bottom of the tanks due to low hydraulic load and poor mixing. Such conditions with longer SRTs 

are favourable for M. parvicella growth. An additional feature of plant operation is also occasional high 

influent ammonia concentration, and thus high Φm, caused by an additional load from the sludge 

treatment line during periods of sludge dewatering. These conditions represent N sources for 

increased filamentous growth. 

Concerning the control variables, maintaining appropriate nitrate concentrations is suggested as the 

most powerful control action according to sensitivity analysis. The proposed changes to improve 

settleability are to decrease the nitrate concentration in the anoxic tank of the first cascade (NO31) 

and increase the concentration in the third cascade (NO33). This could indicate that a nitrate gradient 

should be established along the biological stage with lower nitrate concentrations in the initial tanks 

and higher in the final tanks. This would prevent the availability of N sources in the initial stage, where 
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the presence of M. parvicella is greatest. The proposed control adjustments concern also DO levels in 

the reactors of the second cascade. This could also be related to poor mixing conditions since biomass 

retention is greatest in this part of the plant and more aeration is required to improve mixing. 

From the data-driven analysis, it could be concluded that besides temperature, the availability of 

nitrogen in the initial tanks of the biological stage, both in the form of input ammonia or nitrate, is 

identified to be related to sludge settleability. Low hydraulic load and poor mixing are also potential 

causes of poor sludge settleability, while the effects of low DO concentrations could not be confirmed. 

 

 Discussion 

We derived the models of sludge settleability following an established SVI criterion and adapted it to 

the measurement of the settled sludge volume SV. However, clustering in two classes and performing 

binary classification have hindered the classification process. In particular, the changes in operating 

conditions that result in the change of SV within the class are not reflected in the classification data. 

Therefore, they could not be identified by the model. On the other hand, modelling SV as a continuous 

variable would cause other problems related to insufficient and unreliable data. Therefore, an 

appropriate number of classes should be determined in the future. 

The presented work also shows that observing only the model quality on training and test data may 

not be a sufficient criterion for assessing the quality of the model for the intended model use. In 

particular, it was only after model simplification and visual inspection of the process data that it 

became apparent that the available process data may not be sufficient to identify the desired 

relationships in the data. The application of several classification methods was favourable in this case 

to encounter different predictions for different models. However, in the future, also other methods 

should be considered, for example, Bayesian learning approaches or methods that deal with the model 

uncertainty in prediction systematically if insufficient data for model identification (Schweidtmann et 

al., 2020). An example of such methods would be Gaussian Process models (Kocijan, 2016).  
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4. Conclusions 

We have proposed a procedure that is important for the prevention of sludge bulking in WWTPs. The 

procedure identifies process operating variables that can be used in the control of sludge bulking. It 

relies on data-driven clustering and classification using global sensitivity analysis for input variables 

ranking. The proposed input variable selection method can be classified as a wrapper method with 

backward elimination of input variables. It allows keeping a large number of input variables but limits 

the number of tested candidate models. The procedure helps in ranking model input variables in cases 

where different combinations of variables give similar performance and reduction based solely on 

model performance is not possible. 

The application on a full-scale WWTP indicates that bulking could be controlled by limiting N-sources 

at the beginning of the biological stage. However, the validity of the model is limited if insufficient data 

for model identification is available. Therefore, we propose to couple data-driven classification with 

experimental design and modelling techniques, e.g. Gaussian process models, to provide data with 

sufficient excitation and to systematically address model uncertainty. 
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Fig. S1. Classification results for different classification methods in the case of a 2-input-variable model (T, 

NO33). Red dots indicate the regions of bulking conditions ('B') and blue dots indicate regions with non-bulking 

conditions ('NB') as determined by the classification model. The border between the regions is indicated by the 

black line. Circles present measured data points in 'B' (red circles) and 'NB' (blue circles) classes. Good model 

quality is indicated by the red circles on the red dotted area and the blue circles on the blue dotted area. 
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3 - Quadratic Discriminant
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4 - Ensemble Subspace Discriminant
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5 - Medium KNN
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6 - Coarse Tree



 

Fig. S2. An example of sensitivity test to model input variables shown for six random data points in the data set. 

Plots in a row show one data point and the variation of the settleability class as predicted by the model if a 

selected input variable is manipulated within the [𝐿𝐿𝐿𝐿,𝑈𝑈𝐿𝐿] interval. The red triangles indicate the bulking class 

'B', the blue triangles indicate the non-bulking class 'NB', the black circles present the measured value of the 

input variable and the measured output class, the green intervals show the region of measured values of each 

input variable. 
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