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a b s t r a c t

Gaussian processes (GP) regression is a powerful probabilistic tool for modeling nonlinear dynamical
systems. The downside of the method is its cubic computational complexity with respect to the training
data that can be partially reduced using pseudo-inputs. The dynamics can be represented with an
autoregressive model, which simplifies the training to that of the static case. When simulating an
autoregressive model, the uncertainty is propagated through a nonlinear function and the simulation
cannot be evaluated in closed-form. This paper combines the variational methods of GP approximations
with a nonlinear autoregressive model with exogenous inputs (NARX) to form variational GP (VGP-
NARX) models. We show how VGP-NARX models, on average, better approximate a full GP-NARX
model than more commonly used GP-NARX (FITC) model on 10 chaotic time-series. The modeling
capabilities of VGP-NARX models are compared with the existing approaches on two benchmarks
for modeling nonlinear dynamical systems. The advantage of general-purpose computing on graphics
processing units (GPGPU) for Monte Carlo simulation on large validation data sets is addressed.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The idea of Gaussian processes (GPs) for modeling from data
as first proposed in the geostatistics field by D. G. Krige [1].

t caught the attention of the machine learning community with
he doctoral thesis of C. E. Rasmussen [2]. GPs provide an alter-
ative to a more conventional approach to nonlinear regression
y neural networks and can be seen as a generalization of them.
iven suitable priors on the weights and one hidden layer with an
nfinite number of nodes, neural networks converge to a GP [3].
ome of the early work on GPs in machine learning can be found
n [4,5], and a more recent monograph in [6]. The advantage of
he method is its posterior distribution over functions given the
bserved data. When simulating with uncertain inputs, the poste-
ior over functions cannot be evaluated in closed-form. Since the
odel training suffers from cubic computational complexity with

espect to the input data, the scalability of the method presents
significant challenge to overcome. Consequently, since the idea
f GPs was brought to machine learning, this problem has been
argely addressed in the literature.

Sparse approximations methods using pseudo-inputs were
roposed to reduce the cubic computational complexity. A unify-
ng view of sparse approximations was presented by
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licenses/by/4.0/).
J. Quiñonero-Candela and C. E. Rasmussen [7]. A sparse approxi-
mation, i.e. fully independent training conditional (FITC), was pro-
posed by E. Snelson and Z. Ghahramani [8], where pseudo-inputs
and hyperparameters are jointly inferred through gradient-based
optimization. Another approach is to learn the parameters with
variational inference, where pseudo-inputs and hyperparame-
ters are determined rigorously by maximizing the lower bound
of the true marginal log-likelihood, equivalent to minimizing
the Kullback–Leibler (KL) divergence between the true and ap-
proximated posterior. The parameters of the optimal variational
distribution can be analytically derived resulting in variational
free energy (VFE) approximation [9]. The parameters of the vari-
ational distribution can also be retained as a model parameter,
forming a scalable variational GP (SVGP) [10]. SVGP enables
stochastic optimization and gives an unbiased estimation of the
lower bound of the true marginal log-likelihood from random
subsets of training data to improve the scalability of GPs. Another
approach to reducing the computational complexity is with a
structured kernel interpolation (SKI) framework, which produces
kernel approximation for fast computations. The recent kernel
interpolation for scalable structured GP (KISS-GP) [11] uses local
cubic interpolation and enables the use of Kronecker and Toeplitz
algebra to improve the computational complexity of modeling
with GPs.

Probabilistic modeling can be seen as a generalization of the
maximum likelihood approach in data-driven models of nonlin-
ear dynamical systems. This approach results in a distribution
s an open access article under the CC BY license (http://creativecommons.org/
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ver the model parameters rather than in a point estimation.
onsequently, the probabilistic models are more robust, espe-
ially in real-world problems where the data might contain large
mounts of noise, outliers and missing values [12–15]. GP regres-
ion is a black-box probabilistic approach to modeling nonlinear
ynamical systems, where the uncertainty is inferred over the es-
imated function rather than the model parameters. An overview
f the use of GPs for dynamical system identification can be
ound in [16]. Dynamical systems can be represented with an
utoregressive model (such as a Nonlinear AutoRegressive eX-
genous (NARX) model), where a GP is used for modeling of
he mapping from input to output space [17,18]. For reducing
he computational complexity in dynamical modeling, an FITC
pproximation was generally used in the literature (e.g. [19,20]).
he limitation of the FITC approach is that it is prone to overfitting
nd underestimates the predicted variance [21]. Autoregressive
odels suffer from error-in-variables but are relatively simple to

rain and work well in practice. In a simulation, the predicted un-
ertainty is propagated through a nonlinear function and cannot
e evaluated in closed-form [22–24]. A generalization of the au-
oregressive model is the state-space model, which can separate
etween the process and observation noise. In a GP state-space
odel (GP-SSM), the mapping functions are modeled with a
P [25–27]. Using the variational formulation of the GP-SSM,
ne can obtain a tractable approximated posterior [28]. Another
pproach to modeling nonlinear dynamical systems is with a
amily of Bayesian nonparametric models, Recurrent GPs (RGPs),
ith recurrent GP priors that are able to learn the dynamical
atterns from sequential data [29–31]. When dealing with high
imensional input space, a GP latent variable model (GPLVM) was
xtended for modeling dynamical systems. The family of GPLVM
odels for modeling dynamical systems are called GP dynamical
ystem (GPDS) models and are presented in [32–35].
Meta-parameters of the autoregressive models are found with

esampling methods (e.g. cross-validation), which emphasizes
he need for computationally efficient training and simulation.
emanding computational requirements can be reduced with
he use of advanced parallel computer architectures. Popular
P libraries [36,37] utilize the parallel computational capabili-
ies of general-purpose computing on graphics processing units
GPGPU), and support simple and flexible scientific computation
ith automatic differentiation. Other popular GP libraries can be

ound in [38–40].
This paper aims at modeling nonlinear dynamical systems

ith a probabilistic approach using GPs. The goal is to provide a
odel that is simple to train, does not require expert knowledge,
stimates the uncertainty of prediction or simulation and can be
sed on large datasets. In brief, the main contributions of this
aper are listed as follows.

(a) We join the variational approximations of GPs with a NARX
model in a variational GP-NARX (VGP-NARX) model.

(b) An investigation is conducted on how the VGP-NARX mod-
els, on average, better approximate a full GP-NARX model
when compared to an FITC approximation of GP-NARX
models, which was usually used in the literature to im-
prove the scalability of GP-NARX models.

(c) We extend the existing solutions for training GPs using
GPGPU for simulation and show how careful implementa-
tion results in significant computational gains even when
the nature of the problem is sequential.

he remainder of this paper is organized as follows: In Sec-
ion 2, we revisit modeling nonlinear dynamical systems using
P-NARX models. The mathematical formulation of the FITC and

ariational approximations of GP-NARX models are presented. In k
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Section 3, we provide three case studies. Multiple synthetic prob-
lems are used to show the modeling capabilities of variational
approximations for modeling chaotic time-series. We also evalu-
ate VGP-NARX models on large dynamical datasets and compare
the results to other machine learning methods on two bench-
marks for dynamical system identification. We investigate the
advantages of GPGPU for simulation in large validation datasets.
Lastly, we conclude with the final remarks.

2. Modeling nonlinear dynamical systems with Gaussian pro-
cess regression

GP regression represents a probabilistic model of nonlinear
dynamical systems. This section shows how it can be used in a
combination with an autoregressive model, and how to simulate
such models. Sparse variational approximations are introduced to
scale the solution for large datasets. Hardware acceleration with
GPGPU is also considered to reduce the computational time of
Monte Carlo simulation for autoregressive GP models.

2.1. Autoregressive Gaussian process regression

Modeling dynamical systems is a multiple-stage process in-
cluding experiment design, the collection of empirical data, data
processing, model definition, optimization, parameter estimation,
and validation of the model. Consider that the empirical data are
given and pre-processed. We model the system by

y = f (Z(k), θ) + ϵ, (1)

where k is a sampling instant, f a nonlinear mapping, θ is a finite-
dimensional parameter vector, and ϵ ∼ N (0, σ 2

n ) represents a
Gaussian noise. Input regressor Z is represented with a NARX
model [16] where the rows of the matrix are defined by

Z(k) = [y(k − np), . . . , y(k − np − na), u(k − nk), . . . , u(k − nk − nb)].

(2)

The observed output at k is denoted with y(k) and the excitation
sample with u(k). Meta-parameters np, nk, na, nb denote the
number of lagged and delayed samples. In general, arbitrary user-
defined functions of past data are also permitted. The goal is to
find the nonlinear mapping f , model parameters θ, and meta-
parameters of the NARX model. Eqs. (1) and (2), without the noise
ϵ, can then be used to make future predictions and the simulation
can be obtained in the form of a nonlinear output-error (NOE)
model [16].

The nonlinear mapping f can be modeled with a GP. Let f =

[f1, f2, . . . , fn]T denote the vector of latent function values, where
y are noisy observations of f . The observed data are defined with
D = (Z, y). Compared to the formulation in the static case [6], the
difference between the dynamical and the static model is only in
the definition of the input regressor Z . GP regression combined
with a NARX input regressor forms a GP-NARX model. A GP prior
is defined by a multivariate Gaussian p(f |Z, θ) ∼ N (µ,K ), where
the entries to the mean vector µ and covariance matrix K are
ompletely specified by its mean function m(z i) and covariance
unction k(z i, z j)

m(z i) = E[f (z i)], (3a)

(z i, z j) = E[(f (z i) − m(z i))(f (z j) − m(z j))]. (3b)

ean function is commonly selected as m(z i) = 0. The choice of
covariance function is more important since it defines our prior
elief of the modeled function. It can be represented as a function
hat generates a symmetric, semi-positive, and square matrix. A
opular choice is the squared exponential function

(z , z ) = σ 2e−
1
2l2

∥z i−z j∥2 , (4)
i j f
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here l represents a lengthscale parameter and σf is a scaling
factor. Other covariance functions can be found in [16]. Automatic
relevance determination property can be used for weighting the
input regressor columns. Covariance function with an automatic
relevance determination property is defined by

k(z i, z j) = σ 2
f e

−
1
2 (z i−z j)TΛ−1(z i−z j), (5)

where Λ−1
= diag([l−2

1 , . . . , l−2
D ]), and D is the number of dimen-

sions in Z .
Probabilistic modeling allows us to infer the posterior proba-

bility over the vector of latent function values, where a GP prior
is transformed through the Bayes theorem to the posterior

p(f |y, Z, θ) =
p(y|f , Z, θ)p(f |Z, θ)

p(y|Z, θ)
. (6)

For convenience, we will omit the conditional dependence on Z
nd θ in future notation. In the case of a squared exponential
unction with an automatic relevance determination property, the
ector of model parameters is defined with θ =

σn, σf , l1, . . . , łD], and can be found with the maximization of
marginal log-likelihood with respect to the parameters. Marginal
log-likelihood is given by

log p(y) = −
1
2
log(|K |) −

1
2
yTK−1y −

N
2
log(2π ). (7)

rediction f ∗ at an unseen input z∗ is given by

(f ∗|y) =

∫
p(f , f ∗|y)df , (8)

where the vector of latent values f is marginalized out. The
posterior distribution has a closed-form solution resulting in a
multivariate Gaussian distribution

p(f ∗|y) ∼ N (K ∗f [K ff +σ 2
n I]

−1y,K ∗∗ −K ∗f [K ff +σ 2
n I]

−1K f ∗), (9)

here K ff ,K f ∗,K ∗∗ are the covariance matrices between training
ata, training and test data, and test data respectively. The prob-
em of simulation reduces to predicting with uncertain inputs
here an unseen input vector z∗ is stochastic. This results in
ropagation of the Gaussian distribution through a nonlinear
apping and evaluating the expression

(f ∗|y) =

∫∫
p(f , f ∗|y, z∗)p(z∗)dfdz∗, (10)

hich does not have a closed-form solution. We evaluate the
ntegral with a numerical approximation by a simple Monte Carlo
pproach. We obtain the output in the form of a Gaussian mixture
odel

(f ∗|y) ≈
1
S

S∑
i=1

∫
p(f , f ∗|y)df , (11)

here S is the number of samples taken from the uncertain vector
f inputs z∗.

2.2. Sparse autoregressive Gaussian process regression

The downside of GP regression is its cubic computational
omplexity, which originates from calculating the inverse of K ff .
P regression in a full GP-NARX model can be approximated to
educe computational complexity. Consider m pseudo-inputs zm
nd the corresponding vector of latent values u = [u1, . . . , um]

rawn from the same joint distribution as f and f ∗ [7]. Latent
ectors f and f ∗ are assumed to be conditionally independent

given u. Their joint prior is approximated by

p(f , f ∗, u) ∼=

∫
p(f |u)p(f ∗|u)p(u)du. (12)
 t
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The joint distribution is fully specified with the given conditionals

p(f |u) = N (K nmK−1
mmu,K nn − Q nn), (13a)

(f ∗|u) = N (K ∗mK−1
mmu,K ∗∗ − Q ∗∗), (13b)

where Q ab = K amK−1
mmKmb. To obtain the predictive distribution,

f and u are marginalized out of the joint distribution to obtain

p(f ∗|y) =

∫∫
p(f |u, y)p(f ∗|u)p(u)df du. (14)

The fully independent training conditional (FITC) approximation
method considers an exact p(f ∗|u), but an approximated p(f |u).
This results in a covariance matrix K with exact values on the
diagonal while the others are approximated. Model parameters
and pseudo-inputs are jointly inferred with gradient-based op-
timization [8]. This approximation reduces the computational
complexity to O(nm2), where n and m represent the number
of rows in Z and the number of pseudo-inputs respectively. In
combination with a NARX model, this approximation forms the
GP-NARX (FITC) model.

The downside of the approximation is that the distance be-
tween the true posterior and the approximated posterior is never
directly minimized. Sparse approximations that use variational
learning rigorously define the distance between the true posterior
and approximated posterior. Variational learning lower bounds
the marginal log-likelihood where the posterior distribution of a
variational model is defined by

q(f , f ∗, u) ∼=

∫
p(f |u)p(f ∗|u)q(u)du, (15)

where q(u) ∼ N (u|m,Λ) is chosen to be a free variational
distribution. The parameters of the variational model are obtained
by lower bounding the marginal likelihood which is equivalent
to minimizing the KL divergence between variational distribu-
tion q(f , f ∗, u) and exact distribution p(f , f ∗, u|y). This conse-
quently pushes u to become a sufficient statistic for f such that
p(f |u, y) ≈ p(f |u). The lower bound [10] is given by

l(zm, θ) = Eq(f )
[
log p(y|f )

]
− KL

[
q(u) ∥ p(u)

]
. (16)

To find the optimal parameters of the free variational distribu-
tion q(u), the bound can be maximized with respect to the free
variational distribution [9] to obtain q(u) ∼ N (m,Λ), where

m = Λ−1K−1
uu K uf yσ−2

n , (17a)

Λ = K−1
uu + K−1

uu K ufK fuK−1
uu σ−2

n . (17b)

The lower bound is given by

l(zm, θ) = log [N (y|0,Q ff +σ 2
n I)]−

1
2σ 2

n
tr(K ff −K fuK−1

uu K uf ), (18)

where Q ff = K fuK−1
uu K uf . The details of the derivation are given

in a technical report by Titsias [41]. This bound is computed in
O(nm2) and allows the model parameters and pseudo-inputs to
be jointly learned. This variational approximation in combination
with a NARX model forms the VGP-NARX variational free energy
(VFE) model. A scalable variational Gaussian process (SVGP) [10],
which retains the variational distribution q(u), was derived by
Hensman et al. The likelihood in Eq. (16) factors to p(y|f ) =

N
i=1 p(yi|fi), and the bound can be rewritten

(zm, θ,m,Λ) =

N∑
n=1

Eq(fn)
[
log p(yn|fn)

]
− KL

[
q(u) ∥ p(u)

]
. (19)

his bound can be computed inO(m3). Unbiased estimation of the
ower bound can be obtained in batches of training data where

he model parameters and pseudo-inputs are jointly learned in an
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nline fashion. This variational approximation in a combination
ith a NARX model forms a VGP-NARX (SVGP) model. Prediction

n both VGP-NARX models is obtained with marginalization over
and u

(f ∗|y) =

∫∫
p(f |u)p(f ∗|u)q(u)df du =

∫
p(f ∗|u)q(u)du, (20)

where
∫
p(f |u)df = 1. To marginalize over u, the integral fol-

lowing the last equality in Eq. (20) has to be computed. Distri-
butions p(f ∗|u) and q(u) are both Gaussian and fully specified.
Consequently, the integral has a closed-form solution and the
simulation can be obtained in the form of an NOE model.

2.3. Autoregressive GP simulation with general-purpose computing
on graphics processing units

GPUs are capable of processing a stream of data and effectively
apply a single task to different data. They are optimized for par-
allel, whereas central processing units (CPUs) are optimized for
sequential processing. Simulation with Monte Carlo sampling can
be accelerated with GPGPU, since the samples of the simulated
response are independent and can be evaluated in parallel. The
simple Monte Carlo algorithm from [22] was, in our investigation,
extended where we replace the outer loop with a large test
matrix. Samples of simulated responses are represented in matrix
form and can be evaluated on existing frameworks for GPGPU.
The computational implementation of the predictive distribution
for full GP can be found in [16], and for sparse and variational GPs
in [36,42].

We trained the models with GPflow [36], a GP library that
wraps around Tensorflow [43]. Tensorflow allows the end-users
to perform scientific computations flexibly with the support of
GPU acceleration. We implemented a custom simulation algo-
rithm in Tensorflow based on prediction algorithms from GPflow.
We used the following system specifications:

• CPU: Intel(R) Core(TM) i7-8700K CPU 3.70 GHz,
• GPU: Quadro P4000 8 GB GDDR5 [GP104GL],
• RAM: 2 × 16 GB DIMM DDR4 3200 MHz,
• OS: Ubuntu 18.04.2 LTS,
• Software: GPflow 1.3.0, Tensorflow 1.12.0.

3. Experimental evaluation

In the case of large datasets, modeling with the full GP-NARX is
not feasible in practice (computation in reasonable time) due to
the cubic computational complexity with respect to the dataset
size. For that reason, we firstly show the differences between
the simulation of GP-NARX (FITC) and the proposed VGP-NARX
models compared to the full GP-NARX on 10 chaotic time-series
problems in Section 3.2. The synthetic nature of the data allows
us to choose a flexible dataset size. Consequently, we can train
a full GP-NARX model, which is used as the ground truth for
comparison. Secondly, we compare the VGP-NARX models with
existing machine learning approaches on Silverbox and Bouc–
Wen benchmarks in Sections 3.3 and 3.4 . They provide large
training and validation datasets which allow us to evaluate the
modeling capabilities of VGP-NARX models for large data and
show the advantages of GPGPU for simulation.

3.1. Model validation

In Section 3.2 we compare the simulated response of the VGP-
NARX models to a GP-NARX (FITC) model, taking the simulation
of a full GP-NARX model as the ground truth. We compare the
vector of Monte Carlo samples at sampling instant k based on
144
the first Wasserstein distance, also known as the earth mover’s
distance [44], which does not impose a parametric structure on
the simulated distributions. Intuitively, it represents the minimal
cost of transforming one distribution into another. If U and V
are the respective cumulative distribution functions of random
variables u and v, the distance can be defined by

W1(u, v) =

∫
∞

−∞

|U − V |. (21)

n our case, u represents the simulated distribution of the full
GP-NARX model and v represents the approximated distribution
at the time step k. We also evaluate the model capabilities of
the approximated GP-NARX models and compare them to the
past work on the benchmarks in Sections 3.3 and 3.4 . We use
the root-mean-square error (RMSE) [6] as the measure, usually
used with the Silverbox and Bouc–Wen benchmarks. We also
consider the mean standardized log loss (MSLL) [6], which takes
into account not only the mean of the model simulation but an
entire distribution.

3.2. Chaotic time-series

Chaotic time-series belong to a class of nonlinear dynamical
systems, that is, the systems that evolve over time. Chaotic (in
this sense) means that the smallest change in the initial condi-
tions produces a very different outcome, even when the govern-
ing equations are known exactly. When the governing equations
are nonlinear, this is known as a deterministic chaos [45].

In this section, we validated the approximated VGP-NARX
models for modeling chaotic time-series. We selected 10 chaotic
problems with different properties, e.g. multi-output, continuous,
and discrete. The description of the modeled chaotic time-series
can be found in [45]. Since the difficulty of the aforementioned
problems is specific to each dataset, we validate the models for
prediction, which considerably simplifies the analysis for multiple
datasets. Firstly, we standardized the datasets and injected a
relatively high Gaussian noise to the time-series with a zero
mean and a standard deviation of 0.5. For GP-NARX (FITC) and
VGP-NARX models, we selected 300 pseudo-inputs, which were
initialized at random. We used a whole training dataset as the
batch in VGP-NARX (SVGP). We estimated the simulated response
with a Monte Carlo simulation of a 100 samples. By 100 samples,
we mean that the response is computed in parallel with only
one execution, but can be seen equivalently as 100 independent
executions. The order na of the NARX model was selected as 5
for all datasets, except for the Mackey–Glass time-series, which
was 20. Here it is important to choose an order that is higher
than optimal, since the ARD property can weight the columns of
the input regressor and can effectively remove the unnecessary
predictors. Secondly, we ran the experiments with 10 random
restarts. In each random restart, we validated the model with a
5-fold cross-validation. The hyper-parameters of the model were
optimized using Adam [46]. Lastly, we computed the mean and
the variance of the RMSE over all random restarts and different
folds in cross-validation.

3.2.1. Discussion
The results of the prediction experiments on the chaotic time-

series are presented in Table 1. The table shows the means
and the respective 95% confidence interval of the RMSE over
random restarts. We can see that, in the case of relatively noisy
measurements, the variational methods perform better in regards
to RMSE. The results from a full GP-NARX model are shown
for comparison, where we can observe that VGP-NARX models

perform similarly to a full GP-NARX.
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Table 1
Predictive RMSE and the corresponding 95% confidence interval for modeling chaotic time-series.

GP-NARX (FITC) VGP-NARX (VFE) VGP-NARX (SVGP) full GP-NARX

Hénon map 0.272 ± 0.037 0.205 ± 0.025 0.195± 0.026 0.198 ± 0.026
Ikeda map 0.383 ± 0.043 0.357 ± 0.036 0.355 ± 0.036 0.354 ± 0.037
Logistic map 0.824 ± 0.097 0.748 ± 0.077 0.744± 0.077 0.746 ± 0.077
Lorenz attractor 0.264 ± 0.040 0.203 ± 0.039 0.206 ± 0.039 0.205 ± 0.041
Mackey–Glass 0.392 ± 0.060 0.363 ± 0.054 0.365 ± 0.057 0.365 ± 0.056
Quadratic map 0.730 ± 0.075 0.674 ± 0.066 0.676 ± 0.065 0.675 ± 0.066
Rössler attractor 0.254 ± 0.056 0.168 ± 0.086 0.175 ± 0.128 0.171 ± 0.102
Gauss map 0.267 ± 0.048 0.225 ± 0.039 0.225± 0.039 0.226 ± 0.039
Tent map 0.719 ± 0.099 0.661 ± 0.078 0.661± 0.073 0.661 ± 0.074
Driven pendulum 0.438 ± 0.056 0.405 ± 0.048 0.405± 0.048 0.407 ± 0.047
Fig. 1. The top figure represents the 20 step-ahead simulation for the Mackey–Glass time-series initialized from consecutive starting points. Dashed lines show the
standard deviation intervals. The bottom figure shows the first Wasserstein distance between the approximated GP-NARX models and the full GP-NARX model at

ampling instant k.
Fig. 2. The means and a 95% confidence interval for MSLL and the first Wasserstein distance for 20 step-ahead prediction on the Mackey–Glass time-series with
different signal-to-noise ratio.
A more detailed experiment for multi-step ahead prediction
as realized on the Mackey–Glass time-series. Fig. 1 shows the 20
tep-ahead simulated response with the corresponding interval
f two standard deviations and the first Wasserstein distance be-
ween the approximated GP-NARX models and the full GP-NARX.
e observe that VGP-NARX (VFE) and VGP-NARX (SVGP) models

etrieve a better simulation response than a GP-NARX (FITC)
odel when compared to a full GP-NARX. This can be best seen
ith a Wasserstein distance per prediction step on the bottom
145
figure on Fig. 1. Fig. 2 shows the MSLL and the first Wasserstein
distance for a 20 step-ahead prediction for various signal-to-noise
ratios which were averaged over 10 random restarts and 5-fold
cross validation. VGP-NARX models, on average, better model the
posterior distribution when compared to a full GP-NARX.

GP-NARX (FITC) can underestimate the simulated variance,
as previously shown in [21], and can result in a better MSLL
as depicted on Fig. 2, although it performs worse in regards to
RMSE. One of the conclusions of the aforementioned article is
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Fig. 3. Marginal log-likelihood for optimization on the Mackey–Glass time-
eries with different GP-NARX models. The marginal log-likelihood values after
ptimization are 543.69, 681.17, 538.30, 535.36 for full GP-NARX, GP-NARX
FITC), VGP-NARX (VFE) and VGP-NARX (SVGP), respectively.

hat VFE approximation always improves with the addition of
ew pseudo-inputs, maximizing the given resources, whereas
ITC approximation may ignore them. An interesting observation
an be seen on Fig. 3, which shows that the optimization of a
P-NARX (FITC) model results in a higher marginal log-likelihood
ompared to the full GP-NARX. Marginal log-likelihood, in gen-
ral, penalizes overly complex models, since they spread their
robability mass widely and can, therefore, be used for model
election. In this case, one would be inclined to choose GP-NARX
FITC) over a full GP-NARX, whereas, on the validation dataset,
he full GP-NARX model generalized better. The GP-NARX (FITC)
odel is susceptible to overfitting in this regard, whereas the
GP-NARX (VFE) model contains a regularization term in the
efinition of the lower bound and can penalize model complexity.
ere we emphasize our point; VGP-NARX models better model
he expected value of the simulation (RMSE) when subjected to a
elatively high noise, better retrieve the simulated distribution of
full GP-NARX (Wasserstein distance), but may result in a worse
SLL. We observed that the VGP-NARX (SVGP) model performs
imilarly to VGP-NARX (VFE) and can reduce the computational
ime for one step of optimization, but can suffer from sensitivity
o the parameters of the optimization. Consequently, this can
esult in no gain in computational time required (more itera-
ions to converge) and sub-optimal hyperparameters, even if the
ptimization is computed in batches of data. With careful ini-
ialization and selection of optimization parameters, we observe
hat VGP-NARX (SVGP), similarly as VGP-NARX (VFE), converges
o the marginal log-likelihood of the full GP-NARX as presented
n Fig. 3.

.3. Silverbox benchmark

Silverbox benchmark represents the 2nd order linear time-
nvariant system with the 3rd degree polynomial static nonlin-
arity around it in feedback. It is a real-world problem, where
he data were collected from an electric circuit. The system the-
retically obeys the equation

d2y(t)
dt2

− d
dy(t)
dt

+ ay(t) + by(t)3 = u(t). (22)

e selected the training data from samples 40,586 to 127,410,
nd the validation data as the first 40,495 samples [47]. The
ystem was excited with a white Gaussian noise sequence filtered
y a 9th order discrete-time Butterworth filter with a cut-off
requency of 200 Hz for validation data. The amplitude was varied
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Table 2
RMSE [mV] and MSLL of free-run simulation on the validation dataset for
different modeling approaches on Silverbox benchmark.
Approach Reference RMSE MSLL

NARX MLP Ljung et al. [47] 0.30 –
NARX LSSVM Espinoza et al. [49] 0.32 –
Local Linear State-Space Verdult [50] 1.3 –
Best Linear Approximation Paduart et al. [51] 13.7 –
PNLSS Paduart et al. [51] 0.26 –
Nonlinear State-Space Marconato et al. [52] 0.34 –
Wiener–Schetzen Tiels and Schoukens [53] 9.2 –
Extended fuzzy logic Sabahi and Akbarzadeh-T [54] 9.1 –
TCN Andersson et al. [55] 4.88 –

GP-NARX (FITC) This paper 0.9 −2.35
VGP-NARX (VFE) This paper 1.1 −2.44
VGP-NARX (SVGP) This paper 1.7 −2.81

linearly over the interval from zero to its maximal value. Training
data were obtained with excitation of 10 successive realizations
of a random odd multi-sine signal. More detailed information
about the benchmark can be found in [48]. The meta-parameters
of the NARX model were selected as nk = 0, nb = 10, np =

, na = 10 with an additional cubic expansion of the output. The
um of a linear and squared exponential function with automatic
elevance detection was selected for the covariance function. We
sed 1000 pseudo-inputs initialized with the k-means clustering
lgorithm as suggested in [21]. We used 1000 points for batch
ize in VGP-NARX (SVGP) model training. Adam optimizer was
sed for marginal log-likelihood optimization.

.3.1. Discussion
Table 2 presents our results in reference to the existing ma-

hine learning algorithms for system identification on the Sil-
erbox benchmark for RMSE and MSLL metrics. MLP stands for
ultilayer perceptron, LSSVM for least squares support vector
achines, PNLSS for polynomial nonlinear state-space, and TCN

or the temporal convolutional network. The results are compared
o the original studies and conducted with the experiment con-
itions proposed in [48]. As we were not able to compute the
asserstein distance for the Silverbox benchmark (dataset size is

oo big to train a full GP-NARX model), RMSE and MSLL metrics
llowed us to evaluate the model capabilities and compare them
o the existing work on the benchmarks.

We obtained comparable results to other approaches, where
he state-space model showed the best results. This is expected
ince it is able to separate between the process and the ob-
ervation noise. This approach requires a more careful analysis
hich can be time-consuming and (usually) does not translate
ell between different problems. A simple approach that can
e used by non-experts, NARX multilayer perceptron (MLP) also
chieves a better RMSE compared to our GP-NARX models, is
omputationally less demanding, but fails to provide a confidence
stimation of the simulation. VGP-NARX (FITC) performs best
mong the GP-NARX models for RMSE and VGP-NARX (SVGP) for
SLL. VGP-NARX (SVGP) is more sensitive to the parameters of

he optimization and converges slowly as depicted on Fig. 4. The
esults do not provide statistically significant differences between
he GP-NARX models. The reason for this also lies in a carefully
efined experiment, where the training data were collected in
ultiple periods, leading to multiple noisy measurements of the
ame data point. This reduces the influence of noise on the
odeling and can favor the flexible models on this benchmark
ince the risk of overfitting is reduced.
The simulation was realized in Tensorflow, where we con-

tructed a computational graph for prediction. We precomputed
ll the operations that do not depend on the iteration step of the
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Fig. 4. Marginal log-likelihood for optimization on the Silverbox benchmark with approximated GP-NARX models. The figure on the left shows the comparison
between the VGP-NARX and GP-NARX models, where there is no visible difference between VGP-NARX (VFE) and GP-NARX (FITC). The figure on the right shows a
more detailed comparison between GP-NARX (FITC) and VGP-NARX (VFE), which shows their marginal log-likelihood is nearly identical in this case.
Table 3
RMSE [×10−5 m] and MSLL of the free-run simulation on the validation datasets for different approaches when
modeling the Bouc–Wen benchmark.
Approach Reference RMSE † RMSE⋆ MSLL † MSLL⋆

Best Linear Approximation Schoukens and Scheiwe [56] 15.1 16.6 – –
Volterra Feedback Schoukens and Scheiwe [56] 8.76 6.39 – –
PNLSS Esfahani et al. [57] 1.87 1.20 – –
Decoupled PNLSS Esfahani et al. [57] 1.90 1.40 – –
LMN Belz et al. [58] 16.36 13.8 – –
D.P. NARX Westwick et al. [59] 5.36 1.67 – –
LMSSN Max Schüssler [60] 2.66 1.76 – –

GP-NARX (FITC) This paper 1.60 0.97 −3.40 −3.45
VGP-NARX (VFE) This paper 1.72 0.88 −3.40 −3.39
VGP-NARX (SVGP) This paper 2.17 1.04 −3.32 −3.33
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simulation. We then reused the constructed computational graph
for the prediction in each iteration. In the case of GPGPU, Ten-
sorflow allowed us to compile and execute the prediction graph
on a GPU in a simple fashion. Fig. 5 shows the computational
(wall) time required to obtain the Monte Carlo simulation on
a CPU and GPU for different sizes of Monte Carlo samples and
different numbers of pseudo-inputs. As the number of pseudo-
inputs and Monte Carlo samples increases, we observe that the
GPGPU requires less computational time in comparison to the
CPU. In the case of simulation with a small number of pseudo-
inputs and Monte Carlo samples, the GPU is not utilized well
since the computational requirements are not significant. In that
case, we observe that the simulation can be computed faster
with a CPU, since the CPU itself can partially parallelize the
computations without the overhead of data transfer.

3.4. Bouc-Wen benchmark

Bouc–Wen benchmark represents the vibrations of a single
egree of freedom Bouc–Wen system, representing a hysteretic
rocess. Hysteresis is a dynamical nonlinearity, where the input–
utput loop persists when the input frequency approaches zero
61]. The problem is mathematically defined by

L
d2y(t)
dt2

+ r(y(t),
dy(t)
dt

) + z(y(t),
dy(t)
dt

) = u(t), (23a)

(y(t),
dy(t)
dt

) = kLy(t) + cL
dy(t)
dt

, (23b)

z(y(t),
dy(t)
dt

) = α
dy(t)
dt

− β(γ |
dy(t)
dt

∥ z|
υ−1

z + δ
dy(t)
dt

|z|υ ).

(23c)
147
raining data consist of a multi-sine excitation signal, where 5
eriods of the input and output signal were recorded with 40,960
amples. Validation data consist of two samples, one excited with
multi-sine signal, the other with a sine-sweep signal, with

he lengths of 8,192 and 153,000 samples, respectively. For a
etailed explanation on model parameters and how the data
ere generated see [62]. We selected the meta-parameters of
he GP-NARX model as nk = 0, nb = 10, np = 1, na = 10,
ith an expansion of absolute values of the output. A sum of a

inear and squared exponential function with automatic relevance
etection property was selected for the covariance function; and,
he number of pseudo-inputs and batch size were selected exactly
s in the Silverbox case study.

.4.1. Discussion
Table 3 presents our results in reference to the existing ma-

hine learning algorithms for system identification on the Bouc–
en benchmark for RMSE and MSLL metrics. PNLSS stands for
olynomial nonlinear state-space, LMN for local model networks,
.P. NARX for decoupled polynomial NARX, and LMSSN for lo-
al model state-space networks. The results are compared to
he original studies and conducted with the experiment condi-
ions proposed in [62]. RMSE† and MSLL† represent the measures
or the multi-sine validation dataset, whereas RMSE⋆ and MSLL⋆

epresent the measures for the sine-sweep validation dataset.
Similarly, as in the Silverbox benchmark, we were not able

o compute the Wasserstein distance. We obtained state-of-the-
rt results (to our knowledge) compared to the past work and
rovided a confidence estimation (although at the cost of de-
anding computation). We only considered the papers which
se the RMSE as a metric for model validation. GP-NARX models
erformed similarly with no statistically significant differences
etween them. VGP-NARX (SVGP) again proved more sensitive
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Fig. 5. Wall time for simulation on GPUs and CPUs for a different number of pseudo-inputs and a different number of Monte Carlo samples on the validation
dataset of the Silverbox benchmark. The x-axis represents the number of pseudo-inputs and the y-axis represents the simulation wall time. Ordinary colored bars
represent the wall time of the corresponding simulation on a CPU with a different number of Monte Carlo samples. Dashed colored bars represent the aforementioned
simulation wall time on a GPU.
to the parameters of the optimization with slow convergence as
depicted on Fig. 6.

Simulation was realized in Tensorflow as in the Silverbox
case study. Fig. 7 shows the computational time required to
obtain the Monte Carlo simulation on a CPU and GPU for a
different size of Monte Carlo samples and a different number
of pseudo-inputs. Similarly, as with the Silverbox benchmark, as
the number of pseudo-inputs and the number of Monte Carlo
samples increases, we observe that GPGPU requires (significantly)
less computational time in comparison to CPU.

4. Conclusion

In this paper, we introduced VGP-NARX models, a probabilistic
approach to modeling nonlinear dynamical systems. They im-
prove the scalability of existing GP-NARX models for training
and simulation on large datasets. On average, VGP-NARX models
retrieve a better-simulated response than the existing GP-NARX
(FITC) approximation for smaller datasets when compared to a
148
full GP-NARX; but, they do not provide statistically significant
modeling improvements over GP-NARX (FITC) as the data grow
larger and are measured in multiple periods. VGP-NARX (SVGP),
with its sensitivity to optimization parameters in model train-
ing, may result in a sub-optimal solution and converge slowly.
Approximated GP-NARX models achieve comparable results to
other approaches on nonlinear dynamical benchmarks and ad-
ditionally provide uncertainty estimation of the simulation on
the cost of increased computational complexity. The advantage
of the VGP-NARX models is that they are as simple to use as
GP-NARX (FITC), but have better statistical properties and can
scale better (in the case of GP-NARX (SVGP)). At this point, we
want to emphasize that the simple structure is also a limitation
of a GP-NARX model. For optimal performance, one has to use
a more complex approach, such as the state-space model, which
can separate between the process and the observation noise.

The problem of uncertainty propagation in the simulation was
addressed with Monte Carlo integration. The computational time
of Monte Carlo simulation was reduced with the use of GPGPU
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Fig. 6. Marginal log-likelihood for optimization on the Bouc–Wen benchmark with approximated GP-NARX models. The figure on the left shows the comparison
between the VGP-NARX and GP-NARX models, where there is no visible difference between VGP-NARX (VFE) and GP-NARX (FITC). The figure on the right shows a
more detailed comparison between GP-NARX (FITC) and VGP-NARX (VFE).

Fig. 7. Wall time for simulation on GPUs and CPUs for a different number of pseudo-inputs and a different number of Monte Carlo samples on the sine-sweep
validation dataset of the Bouc–Wen benchmark. The x-axis represents the number of pseudo-inputs and the y-axis represents the simulation wall time. Ordinary
colored bars represent the wall time of the corresponding simulation on a CPU with a different number of Monte Carlo samples. Dashed colored bars represent the
aforementioned simulation wall time on a GPU.
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hen the number of pseudo-inputs and the number of Monte
arlo samples increased. These computationally efficient algo-
ithms can be used in a simple fashion by non-experts with no
dditional work to improve the scalability of simulation for large
alidation datasets. VGP-NARX models with GPGPU accelerated
raining and simulation can, therefore, be used by non-experts to
ind solutions relatively quickly and at different scales.

An interesting challenge for future work in modeling nonlinear
ynamical systems with GP-NARX models is with a more flex-
ble approach such as deep GPs, which introduce a functional
omposite of GPs similarly as in deep neural networks.
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