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Abstract6

Accurate online health assessment of fuel cell systems is a key for the timely mitigation and maintenance

actions to be taken in order to maximise reliability of operation and useful life span of the cells. The majority

of approaches rely on occasional probing of the system with small-amplitude signals around an operating

point. The responses are then used to create either a parametric or a non-parametric model of the linearised

system dynamics. However, during the probing session, the measurements might be corrupted with random

noise and disturbances. Consequently, the evaluated parameters, being points on the impedance curve,

parameters of the equivalent circuit models or the distribution of relaxation times, contain some uncertainty.

That fact is largely ignored in the state of the art techniques, meaning that only mean value estimates are

taken into account in the further analysis. In this paper we use a non-parametric two-sample Kolmogorov-

Smirnov test to detect a change in the internal condition by evaluating changes at each frequency point

on the Nyquist curve. Moreover, we show that in some cases it is even possible to isolate the fault origin

from the pattern of detected changes. The applicability of the approach is demonstrated on the detection

of water management faults of an industrial proton exchange membrane fuel cell system.

Keywords: Kolmogorov-Smirnov test, electrochemical impedance spectroscopy, distribution of relaxation7

times, wavelet transform, hypothesis testing, fault detection.8

1. Introduction9

During their operation, fuel cell systems might encounter a variety of fault and degradation modes.10

Timely detection and isolation of the root cause is therefore essential in order to take timely mitigation11

and maintenance actions. Hence, one can help increase system reliability and extend its useful life. The12

majority of health assessment approaches rely on occasional system probing with small-amplitude signals13

around an operating point. The responses are then used to describe the local linearised dynamics in terms14

of either a parametric or a non-parametric model. Due to random noises and disturbances that affect15
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the measurements, the evaluated parameters that are values of the impedance curve, parameters of the16

equivalent circuit models or distribution of relaxation times, tend to contain some uncertainty.17

A change in the internal health condition, due to either a degradation mechanism or a fault, can affect18

a range of features like the shape of the impedance curve, or one or more parameters of the associated19

equivalent circuit model (ECM). Finding the relationships between changes in the pattern of the available20

features and changes in health condition is of great importance for the effective on-line condition monitoring.21

In the majority of the works published so far, the researchers have mainly paid attention to the relative22

change in the features at the end and at the start of the experiment, i.e. before and after the appearance of23

a fault, while little attention has been dedicated to early detect of incipient change in the features during the24

online operation. Finding out the root cause for the fault turns to be even more challenging. In this paper25

we propose a simple and effective approach to the incipient fault detection and (possibly) fault isolation,26

which relies on revealing changes at each point of the impedance curve. It builds on the statistical hypothesis27

testing and takes into account the stochastic nature of the impedance data.28

Fault detection is performed in two main steps. The first one is feature extraction, i.e. evaluation of29

some characteristic quantities out of the available measurement data. Ideally, a feature should be sensitive30

to at least one or more fault modes while, at the same time, remaining insensitive to random noises and31

disturbances. The most often exploited features are parameters of the equivalent circuit model [1, 2],32

distribution of relaxation times [3–5], geometrical properties of the impedance curve [6–8], and parameters33

of the physical model [9–13].34

In the second step, it should be determined whether a feature has changed or not. A conventional and35

rather straightforward way to do this is to check whether a feature exceeds a prescribed threshold [14]. The36

idea, however, has two weaknesses. First, due to noise and disturbances in the measurements, the features37

may frequently cross the threshold values, hence causing intermittent alarms. That effect is referred to as38

diagnostic instability [15] and can quickly cause a loss of confidence in the diagnostic system by the end user.39

One remedy is to apply longer measurement sessions, which might help to filter out the effects of noise. A40

better way is to consider the stochastic nature of the measurements and make use of methods for statistical41

decision making. Second, selecting optimal threshold values requires substantial background knowledge.42

More precisely, one requires information on the sensitivity of a feature with respect to the fault. If the43

sensitivity is high, higher thresholds could be used, which is good for reducing problems with false alarms44

due to noise. In the opposite case, a feature may change slightly even if a considerable fault is present. In45

that case, the thresholds should be put lower. In practice, however, the sensitivities of the symptoms to the46

faults are only rarely available.47

This paper is based on a different rationale. Short, more frequent, and statistically independent measure-48

ment sessions allow for the use of the entirely data driven framework for detecting statistically significant49

changes in the evaluated features. There are few published results that treat this aspect in the field of50
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electrochemical systems [16–19]. For the approach to work, it is important to define the reference behaviour51

of the system. Then we can choose either the null hypothesis, which says that the current data do not differ52

from the reference data, or the alternative, i.e. that a change occurred.53

Great care should be devoted to the assumptions under which stochastic analysis is performed. The54

test statistic from [16] is based on impedance evaluated for each wavelet scale s separately. Under strict55

assumptions of linearity, the wavelet coefficients are results of a random process and in ideal conditions56

obey the Rayleigh distribution [17, 20]. Even a minute departure from the assumed distribution will make57

the hypothesis test inconsistent. A possible remedy is not to wrestle with the assumptions and make use58

of non-parametric statistical tests, which rely on the empirical distributions. The nonparametric approach59

requires two samples of the test statistic, e.g. one from the fault-free operating condition and the other from60

the current measurements. The continuous wavelet transform (CWT) presented in [16] is used. Since CWT61

is an ergodicity-preserving transformation, the set of wavelet coefficients evaluated at different translations62

in time could be treated as if they were obtained from multiple successive experiments. Hence, it becomes63

possible to employ the nonparametric hypothesis testing to detect changes in the electrochemical impedance64

spectroscopy (EIS) curves.65

In this paper, we use the nonparametric Kolmogorov-Smirnov (KS) test. A remarkable property of the66

KS test statistic is that it has a known distribution irrespective of the distribution of wavelet coefficients.67

In the context of EIS, the wavelet coefficients are treated as elements of a statistical sample. The statistical68

test evaluates whether there is a significant change between the current and the reference sample. The KS69

test is performed at each wavelet scale (which corresponds to particular frequency). Consequently, the KS70

test, in essence, evaluates whether there is a significant change in the impedance at each frequency.71
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Figure 1: Schematic representation of the proposed approach
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The proposed approach is graphically shown in Figure 1. Repeated evaluation of impedance at a given72

frequency will result in an ensemble of impedance values scattered like a cluster around the true value (shown73

in the leftmost plot). To cope with the randomness in impedance realisations one can simply extend the74

measurement session and perform averaging over the results. However, in order to keep the measurement75

sessions reasonably short, we simply evaluate the empirical distributions of the CWT coefficients for each76

frequency. With those empirical distributions, it is possible to perform a two-sample KS test in order to77

make a judgement about the changes in the impedance points. The threshold governing the decision is78

defined by the tolerated false alarm rate α as well as the sample size through the so-called power of the test.79

In what follows, we will first explain the rationale for the approach in Section 2. The aim is to clarify80

the relationship between the internal fuel cell condition and external behaviour captured within the EIS81

curve. Cell condition is reflected in the parameters of the ECM and its eigenmodes, which are explicit in82

the distribution of relaxation times (DRT). We will stress that a change in a particular component of the83

ECMs affects a particular part of the impedance curve. In Section 3, a brief description of the CWT and its84

application for performing impedance spectroscopy is provided. Section 4 presents the KS based hypothesis85

testing with guidelines for selecting the sample size and the significance level. Finally, the experimental86

results obtained on a proton exchange membrane (PEM) fuel cell system are presented in Section 5.87

2. The rationale for the approach: a simulation study88

Changes on the Nyquist curve are related to the changes in the internal parameters of the system. A89

fault or a degradation mode will affect a particular frequency range of the impedance curve. The ECM90

captures the most relevant internal processes in the cell. Its parameters bear clear physical interpretation91

and can be associated with certain fault modes. The models include a particular component called constant92

phase element Q whose impedance is1 [23]:93

ZQ(jω) =
1

(jω)αQ
, (1)

where αi ∈ R+ is the order of the pole. For the special case α = 1, the constant phase element reduces to a94

capacitor.95

A sufficiently accurate model of fuel cell linearised dynamics [4, 5, 24] can be represented by a series of96

parallel connected resistors R and constant-phase elements Q (cf. Figure 2) as:97

Z(jω) = R0 +

k∑
i=1

Ri
1 + (jω)αiRiQi

, (2)

where R0 is the series resistance, Ri and Qi are the parameters of each pole and αi ∈ R+ is the order of the98

ith pole.99

1The impedance of Q element is not uniquely defined, for instance there are examples where ZQ(jω) = 1
(jωQ)α

[21].

Depending on the definition, the units of Q also vary. This paper follows the notation as stated in [22].
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Figure 2: Schematic representation of the ECM (2)

Variation in a parameter of the transfer function (2) implicates a specific effect on the shape of the100

Nyquist curve. For example, a change in the resistance Ri affects the Nyquist curve in the interval ω < ωi.101

The influence of the αi parameter cannot be seen in the low-frequency region ω � ωi because at low102

frequencies 1 + (jω)αiRiQi ≈ 1. On the other hand, for higher frequencies, the second term vanishes, which103

means that some influence of αi is visible only around ωi. A similar situation is when Qi undergoes a change,104

the implications of which can be seen in the vicinity of ωi.105

The influence of ECM parameters on the shape of the Nyquist curve can be most easily demonstrated106

with a simple numerical example. Let Z(jω) be the second-order system with the following transfer function:107

Z(jω) = R0 +
R1

1 + (jω)α1R1Q1
+

R2

1 + (jω)α2R2Q2
, (3)

with R0 = 0.1Ω, R1 = 25mΩ, Q1 = 2.5Fsα1−1, R2 = 50mΩ, Q2 = 0.2Fsα2−1, α1 = 0.6 and α2 = 0.8.108

Figure 3 shows the absolute change of the impedance modulus after a 5% increase of the parameters R2,109

Q2 and α2. Taking into consideration that the resonance frequency of the 2nd pole is ω2 = 100 rad/sec, the110

observed changes are in line with the above analysis.111

|Z
1
−
Z
2
|

ω [rad/sec]

10
−5

10
0

10
5

2

4

6

8

10

12
×10

−5

(a) Variation by changing R2

|Z
1
−
Z
2
|

ω [rad/sec]

10
−5

10
0

10
5

0

0.5

1

1.5

2

×10
−5

(b) Variation by changing Q2

ω [rad/sec]

|Z
1
−
Z
2
|

10
−5

10
0

10
5

0

2

4

6 ×10
−5

(c) Variation by changing α2

Figure 3: Module of differential impedance |∆Z| = |Z(θ + ∆θ)| − |Z(θ)| where θ ∈ (R2, Q2, α2)

Remark 1112

In practice, changes in the Nyquist curve are usually inferred by visual inspection and characterised in113

a qualitative way. Therefore, there is a clear need for a systematic way of detecting and quantifying such114

changes preferably in a timely and computationally efficient way.115
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Remark 2116

Generally, published results treat only large changes in the Nyquist curves and try to associate them117

with the internal fault mechanism. Incipient changes, which are natural in the early stage of the fault, are118

typically neglected. An additional question arises whether it is possible to infer about the origin of the fault119

mechanism just from the change pattern.120

We will show that the proposed approach provides a solution to the issue of detection of faults. Further-121

more, it has also isolation capabilities, which is a valuable feature on top of the detection.122

3. Impedance evaluation by means of wavelet signal processing123

A sufficiently rich data set is essential for performing non-parametric statistical hypothesis testing. In124

the context of impedance analysis, that means acquiring sets of successive independent measurements over125

a short period of time that will be used for estimation of the impedance spectrum. An efficient way of126

acquiring such a data set is by performing time-frequency analysis in terms of CWT.127

3.1. Continuous wavelet transform128

The wavelet transform enables flexible selection of the desired time-frequency resolution thanks to the129

concepts of scaling. The main building blocks are particular waveforms with compact support called wavelets.130

To perform CWT, the wavelet function ψ(t) is translated and scaled by using two additional parameters, u131

and s, respectively:132

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
. (4)

The scale parameter s determines the frequency localisation of the mother wavelet. The translation param-133

eter u defines the time location where the CWT is performed. Finally, using the wavelet function (4), CWT134

of a square integrable function f(t) ∈ L2(R) is [25]135

Wf(s, u) =

∫ ∞
−∞

f(t)ψ∗u,s(t) dt, (5)

where ψ∗u,s(t) denotes the complex conjugate of (4).136

Since the EIS analysis requires information about the amplitude and phase of the excitation and response137

signals, only complex wavelet functions can be considered. Out of the many, the Morlet and the Log-Normal138

wavelet functions offer superior time-frequency resolutions [26]. Furthermore, for both wavelets, the Fourier139

transforms exist in closed form. That enables computationally efficient evaluation of (5) in the frequency140

domain [20, 26]. Therefore, for EIS purposes, the CWT should be performed using either of those two141

mother wavelet functions. The subsequent analysis is performed using the Morlet wavelet with an additional142

parameter being the central frequency ω0.143
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The Morlet wavelet is expressed as follows [26]:144

ψ(t) = π−
1
4

(
e−jω0t − e−

ω0
2

)
e−

t2

2 . (6)

The wavelet can be visualised as a complex exponential carrier with frequency ω0 multiplied by a Gaussian145

window. The Morlet wavelet’s scale parameter s and the actual frequency is linked through the following146

relation:147

1

f
=

4πs

ω0 +
√

2 + ω2
0

. (7)

Further details regarding the properties of the Morlet wavelet and the application of CWT for EIS analysis148

can be found in [20, 27].149

The CWT (5) is defined for continuous signals. However, in reality, we are usually dealing with digitally

sampled signals of finite length f [k] with 0 ≤ k ≤ Nt. The CWT results into N ≤ Nt complex wavelet

coefficients at each scale si, i.e.

Wf(u, si) = [Wf(u1, si),Wf(u2, si), . . . ,Wf(uN , si)].

The number of wavelet coefficients N is always smaller than the number of available samples Nt due to the150

so-called cone of influence. This is the region of the analysed signal around the translation point u that is151

within the support of the wavelet at a particular scale. When dealing with finite length signals, the border152

effects at k = 0 and k = Nt − 1 must be removed from the analysis, hence decreasing the number of valid153

wavelet coefficients [28].154

In the remaining text the translation parameter u and scale parameter s are replaced with time t and155

frequency f , respectively. Since we are dealing with finite length signals and CWT is performed only within156

the window where the signal was observed, the translation parameter can be directly related to the time t157

of the observed signal. On the other hand, the relation between the scale parameter s and frequency f is158

given by (7).159

3.2. Evaluation of impedance from the wavelet coefficients160

The straightforward way of extracting impedance data from the signals is by calculating the ratio of the161

Fourier transform of the excitation electric current icell(t) and the resulting voltage ucell(t) as162

Z(jω) =
Ucell(jω)

Icell(jω)
=

F{ucell(t)}
F{icell(t)}

. (8)

The resulting impedance at each frequency is just an estimate of its mean value over the observation time.163

On the other hand, through CWT analysis both time and frequency information are preserved. The164

CWT analysis of ucell(t) and icell(t), with the Morlet wavelet, is a set of complex wavelet coefficients:165

Wicell(t, f) = <{Wicell(t, f)}+ j={Wicell(t, f)},

Wucell(t, f) = <{Wucell(t, f)}+ j={Wucell(t, f)}.
(9)
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The impedance is then the ratio of the wavelet coefficients (9) as:166

Z(t, f) =
Wucell(t, f)

Wicell(t, f)
. (10)

Selection of the excitation signal plays the key role in proper estimation of the impedance over the167

required frequency region. Following the results of Boškoski et al. [20], the work below employs pseudo-168

random binary sequence (PRBS) for icell(t). The essential property of PRBS is that its power spectral169

density in a certain frequency band closely resembles that of the white noise. Therefore, by using just170

a single excitation, it is possible to calculate the impedance values over the complete frequency interval171

spanned by the PRBS excitation.172

4. Statistical approach to the change detection173

The impedance curve evaluated with the CWT is not deterministic but is considered as a realisation174

of a random process. Randomness arises from varying experimental conditions, outer disturbances, and175

random phenomena in the system as well as in sensory instrumentation. Moreover, the wavelet transform176

at a specific time-instant can be viewed as the estimator of the frequency characteristic on a limited time177

window. In turn, the modulus and phase of the impedance at the given frequency are random variables. If178

the same excitation were repeated many times and each time CWT were evaluated for a particular frequency179

we would get not one, but an ensemble of values.180

Since no a priori distribution of the impedance values is assumed, we rely on the available data. In other181

words, the goal is to evaluate the empirical distributions of the impedance values for each frequency.182

Assuming a set of impedance values is selected to represent the nominal state, the question is how can one183

infer about the change in their distribution. Although tests such as the median test, the Mann-Whitney test,184

or the parametric t test may be used, they turn out to be sensitive to the differences in means or medians of185

two distributions. Moreover, they may not be able to detect differences in other instances, such as differences186

in variances [29]. One of the advantages of the two-sided KS test is that both tests are consistent against187

all types of differences that may exist between the two distribution functions [29]. Therefore, we use KS188

thanks to its appealing properties when reasoning with empirical distributions.189

The statistical hypothesis test requires a test statistic whose distribution is known under the null hy-190

pothesis. The null hypothesis is rejected if the test statistic of the current measurement lies in a highly191

improbable region of its distribution under the null hypothesis. The KS test compares a statistical sample192

with either known distribution (one-sample KS test) or another statistical sample with unknown distribution193

(two-sample KS test). In our case, we focus on the two-sample KS test, also known as the Smirnov test [29].194

Let Fobserv and Fnominal be the empirical cumulative distributions of two samples of the impedance195

modulus at a given frequency calculated by (10). Let the sample size of Fobserv and Fnominal be equal to196
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n ≤ N , where N is the number of valid wavelet coefficients. The former is generated from the sample of197

current data whereas the latter is generated from a reference sample. The one-sided two-sample KS test is198

based on the following null hypothesis H+
0 and its converse hypothesis H−0 :199

H+
0 : ∀x ∈ R, Fobserv(x) ≥ Fnominal(x), H−0 : ∀x ∈ R, Fobserv(x) ≤ Fnominal(x). (11)

Let the corresponding test statistics be D+
n and D−n , respectively, where the corresponding index n denotes

the sample size:

D+
n = sup

−∞<x<∞
(Fobserv(x)− Fnominal(x)) , D−n = sup

−∞<x<∞
(Fnominal(x)− Fobserv(x)) . (12)

An example of the test statistic is illustrated in Figure 4. The exact distribution of the test statistic D+
n (or200

D−n ) is described as [29, 30]201

Pr(D+
n ≤ d) = 1−

(
2n

n+ bdnc

)(
2n

n

)−1
, (13)

where bdnc is the greatest integer less than or equal to dn. The logical conjunction of both hypotheses

in (11) is equivalent to the null hypothesis of the two-sided two-sample KS test with the hypothesis H0 :

∀x ∈ R, Fobserv(x) = Fnominal(x), which is used for testing the equality of two empirical distributions. The

statistical hypothesis test of H0 is the two-sample two-sided KS test with the test statistic

Dn = sup
−∞<x<∞

|Fnominal(x)− Fobserv(x)| (14)

and probability distribution [30]

Pr(Dn ≤ d) = 1− 2

bdnc∑
i=1

(−1)
i+1

(
2n

n+ ibdnc

)(
2n

n

)−1
. (15)

The numerical computation of the distributions (13) and (15) is challenging and may induce a source of202

numerical error. There are various asymptotic and numerical methods addressing this issue that improve203

the numerical evaluation of these distributions. Proposed implementations can be found in [30–32].204

4.1. Power of the KS test205

The performance of the statistical test is determined by two design parameters:206

1. the significance level α (or the Type I error) defined as Pr(reject H0|H0 is true) and207

2. the power of the test Pr(reject H0|H1 is true), i.e. the probability of rejecting the null hypothesis H0208

when the alternative hypothesis H1 is true.209

There are guidelines for specifying the value of the significance level α. The assessment of the power of the210

test is generally difficult, since the alternative hypothesis H1 is usually unknown.211
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Figure 4: The comparison of two empirical distributions obtained from two samples of different population illustrates the value

of the one-sided two-sample KS test statistic D+
n or D−

n . Each empirical distribution is obtained from n = 70 realisations of

two independent, normally distributed random variables with zero mean and unequal σ: the standard deviation in the blue

and red colour corresponds to 0.2 and 2, respectively.

The power of the statistical test depends not only on α but also on the sample size n. The sample size212

must be chosen carefully; it should be just enough large to provide a sufficient amount of statistical power.213

If the chosen sample size is too large, the null hypothesis of the detection algorithm might be rejected due214

to some insignificant small effects (statistical artefacts). On the contrary, small sample size could make the215

detection too conservative, i.e. only larger deviations will be detected. Therefore, for the a priori power216

analysis, the goal is to determine the optimal sample size n in order to achieve sufficient power of the test217

for a particular significance level α.218

The power of the test depends on the distribution of the alternative hypothesis H1, which is generally219

unknown. It answers the question: “What is the significant change of the observed value for which an alarm220

should be triggered?”. Typically, it is impossible to provide the analysis without knowing the actual change221

of the observed value. However, in the context of impedance analysis, we provide a specific statistical power222

analysis based on the assumption that the change in the wavelet coefficients is a constant µ ∈ R. For a223

predetermined value µ, where the alternative hypothesis H1 is known, the analysis of the statistical power224

is based on estimation of the probability of a missed alarm Pr(Dn ≤ T |µ = µi), µi 6= 0, where T (α) is225

the threshold for triggering the alarm and depends on the significance level α. The probability of a missed226

alarm is estimated from multiple repetitions of the statistical test with a different samples from the same227

population. This is a frequentist approach, which requires an appropriate amount of data, the lack of which228

might be avoided up to an extent through “bootstrapping”. In our case, we prepare two groups ofM samples229

with each sample containing n wavelet coefficients at a specific wavelet scale. All wavelet coefficients from230

the first group are left unchanged while the wavelet coefficients from the second group are modified with231
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Figure 5: The scheme for empirical evaluation of the power of the KS test. The critical value T (α) of the test determines the

boundaries of the acceptance region [0, T (α)] of the test where Pr(Dn > T (α)|µ = 0) equals to the significance level α.

the addition of the same value µi to the wavelet coefficients. Furthermore, each sample from the first group232

is compared element-wise to the second group through the KS test, such that we obtain M outcomes of the233

test. The power of the test is estimated with the number of outcomes rejecting the null hypothesis divided234

by the number of all outcomes M . The empirical evaluation scheme for the power of the test is shown in235

Figure 5. It enables power estimation for a predetermined choice of µi, α and n. The elements of each236

statistical sample consist of n randomly selected wavelet coefficients from a particular scale si at different237

translations u taking into consideration that the selected wavelets do not overlap. Such assessment of the238

statistical power with various choices of sample size n and significance level α provides more insight into the239

choice of n and α.240

4.2. Application of the KS test to the impedance data241

The application of the KS test on the wavelet coefficients is shown in Figure 6. Let the impedance242

time-frequency wavelet coefficients (10) be calculated over Ns frequencies (scales) with least N valid wavelet243

coefficients at each frequency fi, i ∈ [1, . . . , Ns]. For each frequency, a sample of size n � N is randomly244

selected from coefficients from non-overlapping wavelets, resulting in a n×Ns matrix comprising randomly245

selected wavelet coefficients. This process is repeated for each measurement section. The two-sample KS246

test is then performed between the current and the reference measurements for each row (i.e. frequency fi).247
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The following null hypothesis describes a two-tailed statistical test with sample size n and significance level248

α:249

H0 : Dfi
n = sup

x
|F firef(x)− F fi(x)| > T (α), T (α) '

√
− 1

n
ln(1− α), (16)

where α is the desired significance level with the corresponding approximate value of the threshold T (α). The250

critical value T (α) in the right-hand part of (16) is determined from the approximated inverse cumulative251

distribution of (15), following the procedure described by Press et al. [32]. Such an approximation is valid252

only for α ≤ 0.3. In essence, the null hypothesis (16) says whether the one-dimensional empirical distribution253

F fi(x) of the wavelet coefficients at frequency fi differs from the reference one F firef(x).254

Fuel cell
i(t) u(t)

CWT
Division

elementwise

Wu(t, f)

Wi(t, f)

Wz(t, f)
∀fi

i ∈ [1, . . . , Ns]
select n random

coefficientsCWT

KS test at
fi

Ns

Wz(t(κ), fi)

Wzref(t
(ν), fi)

Figure 6: Evaluation scheme for performing the two-sample KS test using CWT coefficients for each frequency (scale) fi. Time

moments t(κ) and t(ν) are sets of n randomly chosen time instances within the observation window and may generally differ

among different frequencies.

5. Experimental results255

The proposed approach was first evaluated on the simulated two-pole fractional order system (3). The256

second case includes experiments with water management fault performed on industrial grade PEM fuel cell257

system. The analysis of both examples followed the procedure described in Section 4.2.258

5.1. Simulated example259

The simulation of the test system (3) was performed using the Gründwald-Letnikov scheme [33]. The260

excitation signal was noise-free PRBS. The noise was added to the system’s response by specifying the261

desired signal-to-noise ratio. The reference empirical distributions of the system (3) were obtained using262

the initial parameter values. The changes were simulated by modifying the resistance R2, constant phase263

element Q2 and fractional order α2 by 5%.264

The results of the KS tests for each of the three changes are shown in Figure 7. The plots show the265

frequency regions where the null hypothesis (16) can be rejected. The results have to be analysed together266

with the plots shown in Figure 3. The frequency regions where the KS test rejects the null hypothesis267

coincide with the ones in which the change of the impedance is most pronounced.268

For all three cases the results of the KS test exhibit altering values before and after frequency regions269

where the change in the impedance becomes significant. These effects are the result of the added noise levels270

(in this case 1%) and the significance level for rejecting the null hypothesis, which in this numerical example271
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Figure 7: Frequency regions where null hypothesis H0 can be rejected based on the KS test on the numerical example for

system (3)

was set to 10−3. Those values were selected in order to emphasise the importance of systematic selection of272

the sample size n and significance level α when dealing with real-world noisy signals.273

5.2. Experimental validation274

The experiment was performed on a commercially available PEM fuel cell system HyPM HD 8 produced275

by the Hydrogenics Corporation. The stack consists of 80 PEM fuel cells each with surface area of 200 cm2
276

providing 8.5 kW of electric power in total. The fuel cell system operates on pure hydrogen and ambient277

air.278

The impedance was measured on individual cells of the stack, where the PRBS perturbation signal was279

applied in galvanostatic mode. Figure 8 shows an example of the measured current i(t) and voltage u(t)280

signals, which were further used for feature extraction.281
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Figure 8: A sample of the current probing signal and the resulting cell voltage signal acquired during an experiment

During the experiment, the temperature of the airflow was kept constant at 50◦C, stoichiometry at 2.5,282

and the relative humidity was controlled in order to examine the response over various conditions. On the283

anode side, the fuel cell was fed with pure and dry hydrogen at a constant temperature of 20◦C. The DC284
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current operating point Idc was set to 80 A resulting in a stack voltage of 55 V. The PRBS amplitude was285

set to 4% of the Idc value.286

The experiment went through three phases in which the humidity of the inlet air was changed three times.287

In the first interval, the initial humidity of the inlet air at 9.6% spans the first eight measurement sessions.288

The second interval had lowered humidity of the inlet air and is between the 9th and the 13th measurement289

sessions. This is followed with the interval between the 14th and the 17th measurement sessions. The290

final interval, between the 9th and the 26th measurement, is the interval with increased humidity. The291

complete data set includes 28 measurements, each lasting for 40-seconds, and which were acquired within292

120 minutes of operation. Each of the 28 measurements was analysed using the CWT approach as described293

in Section 4.2.294

5.3. Empirical power of the test295

As stated in Section 4.1, to perform the KS test one has to determine the sample size n and the significance296

level α. Following the aforementioned procedure, the empirical evaluation of the test’s power is performed297

on impedance data at the frequency f = 20Hz. Three sample sizes are considered n ∈ {100, 500, 1000} and298

variations of the impedance mean values µi of ±50%. The results are presented in Figure 9.299
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Figure 9: Empirical power of the test for three different sample sizes n and four different significance levels α

Three observations must be made.300

1. First, for smaller sample sizes n = 100, sufficiently high power of the test is achieved only for larger301

discrepancies of the mean values between the reference and the test distribution, i.e. for ∆µ > 10%.302

2. Second, by increasing the sample size n, the KS test becomes more sensitive, i.e. the same power of303

the test is achieved for ∆µ > 5%.304

3. Finally, the value of the parameter α also influences the power of the test, although its influence is305

significantly smaller than the sample size n.306
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Hence, the entire analysis of the experimental results was performed using sample size n = 1000 and307

α = 10−2.308

5.4. Detection of water management faults309

Humidity has a profound effect on the conductivity of PEM fuel cells [34–36]. As stated by Yuan et al.310

[37], the elevated water content directly affects kinetics thus altering the contact between the Pt catalyst311

and the ionomer. Conversely, a lack of water decreases the contact surface of the catalyst with the ionomer312

as well as its proton conductivity [38].313

During the operation, there are two effects that influence the water concentration of the membrane. The314

first one is the so-called electro-osmotic drag under which protons H+ travelling through the membrane drag315

water molecules towards the cathode side. The second one is back diffusion, under which the water that is on316

the cathode side diffuses towards the anode. As described by Ji and Wei [39], at low current densities, back317

diffusion will prevail, while at high current densities, electro-osmotic drag will prevail over back diffusion318

and thus the anode will tend to dry out even if the cathode is well hydrated. For the PEM fuel cell stack319

under test, the experiment was performed at low current density. As a result, the humidification of inlet air320

has significant influence on the stack performance.321

The intervals where the inlet air humidity was changed are visible on the KS rejection map shown in322

Figure 10. The colormap shows the areas where the KS test rejects the null hypothesis (coloured red) and323

the regions where changes were not significant (coloured green).324

The initial water production at the inlet humidity of 9.6% appears to be sufficiently high. As a result,325

the fuel cell condition departs from the initial condition. At the 5th measurement, this effect is visible only326

in the high frequency region above 100Hz. By decreasing the inlet humidity below 6.5%, the fuel cell stack327

slowly dries and its condition becomes similar to the initial one. This is clearly visible around the 15th328

measurement. The sudden significant increase in the inlet air humidity to 80% after the 18th measurement329

causes a fast change in the outcome of the KS test over the whole observed frequency interval.330

Besides the detection of changes in inlet air humidity, the application of the KS test on the impedance331

data offers two additional benefits:332

1. The KS is shown to be sensitive even to minute variations of the impedance characteristics.333

2. The use of one-sided KS tests allows for some restricted fault isolation.334

Sensitivity of the KS test results. The sensitivity of the KS test can be demonstrated by analysing EIS335

curves from three measurements. The first one is the comparison between the 1st measurement, which is the336

reference, and the 3rd measurement. From the KS rejection map shown in Figure 10, one can see that for the337

3rd measurement, the KS test rejects the null hypothesis for the frequency bands ∼1Hz, ∼9Hz, 40-60Hz and338

200-400Hz. The EIS curves for these two measurements are shown in Figure 11(a). The first two intervals339
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Figure 10: Two-sided KS test rejection map

are clearly visible as a change in the EIS curve. However, for the last two intervals, changes in the EIS curve340

are not so clear. Therefore, without the extra information provided by the KS test rejection map, these341

changes might have been left unnoticed.342

Similar observations can be made for the second case, i.e. between the 1st and the 7th measurement. The343

comparison of the EIS curves is shown in Figure 11(b). Here one can observe the opposite effect. The only344

frequency interval where the impedance can be regarded as unchanged is from 10-50Hz. In this interval,345

the changes in the EIS curves are not significant in order to reject the null hypothesis despite the small346

visible deviations between the two EIS curves. Outside this interval, the changes are significant and the null347

hypothesis can be rejected.348

Finally, for the 10th and the 20th measurements, the KS map from Figure 10 shows significant changes349

on all frequency bands. This also can be confirmed by simple comparison of the EIS curves in Fig-350

ure 11(c) and (d).351

This analysis shows that the KS test offers a systematic way of detecting the frequency regions where352

the impedance characteristic is significantly changed. Such an approach completely overpowers the visual353

inspection and requires no prior expert knowledge of impedance analysis.354

One-side (small and large) KS tests. The above analysis was performed by taking into consideration two-355

sided KS test. The one-sided KS test provides additional insight, whether the change in the impedance356

characteristics is either due to an increase or a decrease of particular impedance components. The rejection357

maps of both one-sided tests are shown in Figure 12(a) and (b).358

One can observe two main effects. For the interval with lower humidity, the impedance values tend to359
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Figure 11: Comparison of EIS curves for selected characteristic measurement

be higher throughout the frequency interval. On the other hand, for the interval with increased humidity,360

low frequency impedance components f < 10Hz exhibit higher values, whereas for f > 10Hz, they exhibit361

lower values. The information from the KS rejection maps can be confirmed by analysing the changes in362

the impedance amplitudes for the 10th and the 20th measurement, which are shown in Figure 13.363

6. Conclusion364

In this paper, we introduce a systematic procedure for monitoring the internal health condition of fuel365

cells by revealing changes on the Nyquist curve. The main idea is to apply the KS hypothesis to detect366

changes in the empirical distributions of the Nyquist modulus evaluated from repetitive system probing and367

processing the signals with complex wavelet transform. The frequency bands where the KS test rejects the368

null hypothesis indicate where the impedance curves are changed significantly. The KS statistic is useful for369

quantifying the severity of the change. Furthermore, the one-sided tests are shown to be able to perform370

even fault isolation in some cases.371
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Figure 12: One sided KS test rejection map
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Figure 13: Comparison of the impedance amplitude

A nice property of the proposed KS hypothesis testing for EIS analysis is the easy tuning of the design372

parameters, i.e. the significance level α and the sample size n. One has just to define the desired power373

of the test and probability of false alarm (Type I error). For the evaluated PEM fuel cell, the significance374

level was set at α = 10−2 and sample size n = 1000. With such parameters, the results indicate that the375

KS test is capable of detecting changes in the impedance values bigger than 1% with power of the test more376

than 0.6.377
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