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Parameter estimation of a nonlinear benchmark system

Juš Kocijan*

Jozef Stefan Institute, Ljubljana, Slovenia and University of Nova Gorica, Nova Gorica, Slovenia

ABSTRACT

This paper describes a possible procedure for the parameter estimation of a nonlinear benchmark 
problem called Silver box under the presumption that it has a structure of Duffing oscillator. The 
multiple-minima problem of optimisation is tackled with a combination of stochastic and deterministic 
optimisation methods. Simulation responses of the obtained model show a good match with the 
measurements taken from the electronic device, which is confirmed by validation of input/output 
response and residuals analysis.
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INTRODUCTION

Nonlinear system modelling is a very impor-
tant field in system theory and also increasingly in 
control engineering practice. There is no success-
ful control design, fault diagnosis, or dynamic 
systems analysis without a good model of the 
considered system. The modelling of dynamic 
systems is, in general, divided on first-principles 
modelling, which is modelling based on physi-
cal laws behind the system functioning, on ex-
perimental modelling or system identification, 
which is modelling from measured data, and on 
a combination of both approaches. Commonly, 

the combination of first-principles modelling and 
system identification is used, in which the model 
structure is obtained from physical laws and then 
missing model parameters are estimated from 
measurements.

The development of new modelling methods, 
especially system identification methods, is a 
challenging task. It is necessary to evaluate and 
compare newly developed algorithms on meas-
urement data in a way that is repeatable not only 
to the developer but also to users of the model-
ling algorithm. Such reference data that enable 
comparison are called benchmarks. A  number of 
properties of the benchmark data set are desirable. 
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These properties should enable the comparison of 
models obtained during algorithm development 
to a reasonably well-known true result. One of 
the selections of benchmark data for nonlinear 
system identification is [1]. This web page con-
tains eight data sets representing behaviour of 
nonlinear dynamic systems. 

While [1] contains only data sets and a de-
scription of the systems from which the meas-
urements were obtained, it is useful to get more 
insight into the dynamics behind the systems. In 
this paper, our intention is focused on finding a 
model for one of the benchmarks with presumed 
structure and unknown parameters. The case 
study and benchmark considered in the paper 
concerns an electronic implementation of a non-
linear system, denoted as ‘the Silver box’ [2, 3].

The analogue electrical circuit represents a 
nonlinear mechanical resonat ing system with 
a moving mass m, a viscous damping d, and a 
nonlinear spring k(y) as shown in Fig. 1. The 
purpose of the electrical circuit is to relate the 

displacement y(t) to the force u(t) according to 
the following differential equation:

  (1)

The nonlinear spring is described by using a 
static position-dependent stiffness

		                      (2)

Such a nonlinear system is often used in the 
literature to demonstrate properties of different 
modelling methods [4], [5], [6], [2], [7], etc., even 
though not everybody uses the very same system.

Equation (1) describes what is known as the 
Duffing oscillator. It is a periodically forced oscil-
lator with a nonlinear elasticity. It is also known 
as an example of a simple chaotic model. The 
Duffing oscillator can be interpreted as a forced 
oscillator for b > 0. When the spring constant is a 
> 0, it is called a hardening spring. More details 
can be found in [6] or [8]. The data used in this 

Fig. 1. Scheme of the nonlinear spring represented by the Silver box benchmark.
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study are available online [3]. The sampling time 
of the voltage signals’ measurements is Ts = 214/107 
= 0.0016 s [9]. The input signal to electronic cir-
cuit u(k), where k are time instants, consists of 
two parts.The first part (40 000 samples) is a white 
Gaussian noise sequence filtered by a Butterworth 
filter. Its amplitude is changed linearly over the 
interval from zero to its maximum value. The 
second part of the signal consists of 10 succes-
sive realisations of a random multi-sine signal. 
The amplitude of the input signal is scaled such 
that the signal fits well within the range of the 
generator. Ten realisations of the random multi-
sine were merged, each of them separated by 100 
zeros to indicate the start of a new realisation. 
More details can be found in [9]. The data gener-
ated by the electronic system is shown in Fig. 2.

As the benchmark problem from [3] comes 
without the precise description of the system 
from which measurements were collected, the 
values of the parameters in Equation (1) are 
not known. The purpose of this paper is to 
demonstrate estimation of the parameters of the 
Silver-box benchmark system presuming that 
it corresponds to the structure of Equation (1). 
For the purpose of data estimation, 10 000 data 
points were used for training and 4000 for test-
ing. The parameter estimation was pursued with 
Matlab software.

The paper is structured as follows. The mod-
elling method, or more precisely the parameter-
estimation method, is described in the next sec-
tion. Section 3 deals with the obtained results. The 
conclusions are gathered at the end of the paper.

Fig. 2. Available input and output benchmark signals.
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Modelling method
The parameters of a dynamic system can be 

estimated in various ways and it depends on the 
modeler's objectives and the system at hand. In 
our case,the selected cost function is a square of 
errors because it exaggerates and differentiates 
between large and small errors, because it has 
other nice mathematical properties, and because 
it is frequently used. Other cost functions can be 
used as well.

In our case, we estimate only four parameters, 
but the manifold of cost function has multiple, 
local minima, which means multiple, locally 
optimal points of the optimisation-problem solu-
tion in which the optimisation can get stuck. The 
optimisation-problem solution is very sensitive 
to the selection of initial values for optimised 
parameters, and was tested with several opti-
misation attempts with the local optimisation 
method. Consequently, the stochastic and global 
optimisation method, like the Genetic algorithm, 
Differential evolution, Particle swarm optimisa-
tion, etc., seems to be a convenient tool to find 
optimal parameters.

A common characteristic among all stochastic 
optimisation methods is that, although they come 

close, they do not provide the optimal solution in 
a single run. There are two ways to deal with this 
issue. One is that one does multiple runs of the 
selected method and looks for the mean solution. 
The other is to use the solution of the stochastic 
optimisation method as the initial values for one 
of the deterministic and local optimisation meth-
ods that bring the solution to the optimal value. 
In our case, the later approach was selected.

The Differential evolution method was, in our 
case, selected as a stochastic optimisation method 
due to personal familiarity with the method and 
its good properties. The minimum search with 
the gradient descent method, in particular the 
interior-point algorithm, was used as the deter-
ministic optimisation method.

Differential evolution is a method for nu-
merical optimisation without explicit knowledge 
of the gradients. It works on multidimensional, 
real-valued functions that are not necessarily 
continuous or differentiable, and was introduced 
by Storn and Price [10]. The method searches 
for a solution to a problem by maintaining a 
population of candidate solutions and creating 
new candidate solutions by combining existing 
ones according to its simple for mulae of vector 

Fig. 3. Simulation scheme in Simulink used for parameter optimisation.
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crossover and mutation. It then keeps whichever 
candidate solution has the best score or fitness on 
the optimisation problem at hand. The optimisa-
tion problem is treated as a black box that merely 
provides a measure of quality given a candidate 
solution and, therefore, the gradient is not needed. 
More details about Differential evolution can be 
found in [11].

The gradient descent method is a well 
known family of deterministic, and at the same 
time local optimisation, methods. And, the 
interior-point algorithm is the one that is already 
implemented within Matlab software. Optimisa-
tions were pursued with Matlab with embedded 
Simulink simulation. The simulation scheme 
that incorporates model structure as well as cost 
function is depicted in Fig. 3. The model was 
simulated with a variable integration step in 
each run. Parameters for stochastic optimisation 
was as follows: the population size was set to 50 

individuals and the number of iterations to 1000.

RESULTS AND DISCUSSION

The obtained estimated-parameter results of 
stochastic optimisation that were used in the next 
stage as initial values for deterministic optimisa-
tion are as follows:

1/m = 197970,
d/m = 43,
a/m = 193507,
b/m = 789822.                                         (3)             
The parameters correspond to the electroni-

cally implemented system and therefore cannot 
be characterised with measurement units. It is not 
clear whether the unit for mass, for example, is 
expressed with equivalents to kilograms, tones, 
or perhaps some non SI system units. Conse-
quently, the parameters are depicted without 
measurement units.

Fig. 4. Model simulation response versus validation signal and corresponding residuals.
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The final values of the deterministic optimisa-
tion are as follows:

1/m = 199875,
d/m = 43,
a/m = 193471,
b/m = 794733. 		                          (4)

And, so, the estimated parameters of the 
Equation (1) are as follows:

m = 5.10-6,
d = 2.151.10-4, 
a = 0.968,
b = 3.976.					      (5)

The model was validated with a simulation 
on the data that was not used for parameter es-
timation. Fig. 4 shows a detail of response for a 
5 second interval. It is clear that the simulation 
response of the model with estimated parameters 
fits the measured data on the validation signal 
very well. 

To validate model simulation response for 
the entire validation signal,the normalised root-
mean-square-error (NRMSE) criterion is used:

	                  (6)

where y is the vector of validation values, ŷ is 
the vector of model response values, and E(y) 
is the mean value of y. NRMSE has value 1 for 
a perfect match and −∞ for an extremely bad 
match of validation and mean predicted values. 
The obtained result for the entire validation sig-
nal is NMRSE = 0,971 = 97,1 %;which can be 
considered as a very good fit.

The residuals left from the estimated model 
shall be white noise representing measurement 
noise. The distribution of residuals fitted with a 
Gaussian function is shown in Fig. 5. It is clear 
from Fig. 5 that the residuals are white noise. The 
phase plot of the model with estimated parameters 
is shown in Fig. 6.

Fig. 5. Distribution of residuals for the validation signal.
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CONCLUSIONS

A possible procedure for the parameter esti-
mation of a nonlinear benchmark problem was 
presented in the paper and illustrated with available 
data. The multiple-minima problem of optimisation 
was tackled with the combination of a stochastic 
and a deterministic optimisation method.

Simulation responses of the obtained model 
show a good match with the measurements taken 
from the electronic device named Silver box, 
which is confirmed by validation of input/output 
response and residuals analysis. 

The obtained model may be used for various 
analysis of modelling and control methods with 
the Silver box benchmark, which have been, 
until present, limited to methods that can exploit 
available measurements.

Fig. 6. Phase plot of the model with estimated parameters.
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