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ABSTRACT 1 

We present a new method of data assimilation with the aim of correcting the forecast of the 2 

maximum values of ozone in regional photo-chemical models for the areas over very complex 3 

terrain using multilayer perceptron artificial neural networks. Up until now all these models 4 

have been used as a single model for one location when forecasting concentrations of air 5 

pollutants. We propose how to construct a much more ambitious model - where the same 6 

model - one model - can be used at several locations - the model is spatially transferable and 7 

is valid for the whole 2D domain. To achieve these goals we have introduced three novel 8 

ideas. The new method improved on average by 10 % in the correlation at measurement-9 

station locations, and improving by roughly 5 % elsewhere. 10 

Keywords: ozone forecast, data assimilation, complex terrain, neural networks, changing 11 

altitudes, geographically transferable artificial neural network model 12 
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1. Introduction 25 

Forecasting ozone concentrations above complex terrain is still a current and somewhat 26 

unresolved issue. The established method is to use 3D photochemical models in combination 27 

with suitable NWP models (Kim et al., 2010). Despite its usefulness, the method does have 28 

certain flaws (Hogrefe et al., 2001). 29 

One of the reported flaws is its biased and inaccurate forecasting of the maximum ozone 30 

concentrations for the following day or days (Curier et al., 2012; Dutot et al., 2007; Gong and 31 

Ordieres-Meré, 2016; Porter et al., 2015). It is this very information that is important in 32 

planning outdoor activities for the parts of the population who are affected by the ozone, 33 

experiencing acute or chronic health issues. Studies show the non-linear nature of ozone-34 

health effects relationship (Schlink et al., 2006). 35 

Operational 3D photochemical models are regional by nature. This means that they are 36 

intended for notifying populations in large areas. Which is why their spatial resolution is poor, 37 

and the local inhomogeneity is not noticeable in the model. However, averaging over spatially 38 

large cells usually smooth and lowers the maximum concentrations in the event of 39 

inhomogeneous conditions (Božnar et al., 2014a). 40 

One of the possible approaches to improving the forecasting of the key piece of 41 

information, the maximum hourly concentration for the following day, is data assimilation. 42 

The aim of this data assimilation is to use the additional input data, i.e. local ground 43 

measurements or satellite observations, to improve the forecasting of the 3D photochemical 44 

model, as is demonstrated in the paper by Messina et al. or Zoogman (Messina et al., 2011; 45 

Zoogman et al., 2014). There are several ways of implementing data assimilation. 46 

Examples of these are empirical analysis schemes, least square methods, linear 47 

multivariate statistical methods and others  (Park et al., 2014). An overview of methods for 48 

data assimilation can be found in the literature, e.g. (Kalnay, 2003). 49 
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Data assimilation for areas over complex terrain is especially challenging, as the 50 

connections between influential variables and forecasts are decidedly nonlinear. 51 

In this paper we will present a new nonlinear data assimilation method of detailed 52 

atmospheric conditions in the 2D results of a photochemical model. 53 

The proposed data assimilation method is implemented using an artificial neural network, 54 

more precisely a multilayer perceptron (MLP), which is a universal approximator for complex 55 

nonlinear systems (Hornik et al., 1989; Kůrková, 1992). 56 

We presented and evaluated the method on the example of forecasting the daily 57 

maximum ozone values for the area of Slovenia. Due to Slovenia’s complex terrain, at the 58 

junction of the Alps, Pannonian Basin, Dinaric and coastal region by the Adriatic, this 59 

represents a particularly difficult challenge for all types of modelling of atmospheric events. 60 

This applies not only to weather forecasting, but also to the dispersion of air pollution in the 61 

atmosphere from local sources and regional photochemical models. However, this makes it 62 

representative of the various geographical regions such as the northern coasts of the 63 

Mediterranean, Alps, Dinaric and Pannonian Basin. 64 

2. Description of the problem 65 

The 3D photochemical regional model over complex terrain with inhomogeneous 66 

conditions for forecasting the ozone has the flaw of underestimating forecasts of the daily 67 

maximum concentration of ozone in the troposphere (Božnar et al., 2014a). On the contrary, 68 

suitable nonlinear empirical models developed for those locations where there are 69 

meteorological measurements and measurements of pollutant concentrations available are 70 

able to forecast the daily maximum concentrations much more accurately, but can only be 71 

used on measuring stations locations (Gradišar et al., 2016; Grašič et al., 2006; Ibarra-72 

Berastegi et al., 2008; Luna et al., 2014). Artificial neural networks based models constitute 73 
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an important part of such nonlinear group of models for more than a decade (Abdul-Wahab 74 

and Al-Alawi, 2002; Coman et al., 2008; Pelliccioni and Tirabassi, 2006). 75 

We want to find out how nonlinear empirical models can be used to improve results for 76 

2D areas of the troposphere over complex terrain where we use a 3D photochemical regional 77 

model to forecast the ozone. 78 

This type of 2D spatially transferable model for data assimilation that has to be developed 79 

on the basis of data obtained from measurement stations on air quality and meteorological 80 

parameters should be useful for the entire region where we have results from the 3D 81 

photochemical model and NWP model and should ensure better forecasting of maximum 82 

ozone concentrations. 83 

3. Material and methods 84 

3.1. Test bed 85 

The QualeAria system photochemical model has been operationally available to the 86 

public for the entire region of Slovenia and its neighbouring areas for several (Božnar et al., 87 

2014b; QualeAria, 2016), and which was developed in the Arianet research company in 88 

collaboration with other Italian institutions (Zanini et al., 2005). We extensively evaluated the 89 

system for Slovenia using long data sets of measured data (Božnar et al., 2014b). Evaluating 90 

the QualeAria system gave good, solid results, however, the challenge of forecasting key 91 

maximum concentrations is still not resolved  (Mircea et al., 2014). 92 

For Slovenia, the QualeAria system forecasts photochemical and other pollutants in the 93 

atmosphere at a resolution of 12km horizontally and at intervals of 1 hour for 2 days in 94 

advance (the forecast for the current day and the following day). The results are regularly 95 

available on the KOoreg project website (MEIS, 2012; Mlakar et al., 2012). 96 

Locally measured meteorological data and air quality data from 12 measuring stations 97 

from the national measurement network were used to improve these forecasts (SEA Data 98 
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portal, 2016). Data from this measurement network were used in the form of average hourly 99 

values. Twelve measuring stations can be considered a good number for such a small area as 100 

Slovenia, and therefore can provide a high-quality evaluation of the ozone forecasting 101 

improvements. 102 

 103 

Figure 1. Geographical location of the selected air quality stations (Source: Public 104 

information of Slovenia, Surveying and Mapping Authority of the Republic of Slovenia, Map 105 

of the Republic of Slovenija 1:500000, first edition 1997) 106 

The stations are spread out in a very diverse variety of locations that can be initially 107 

classified according to their altitude (from the coast to the Alps, at an altitude of 1853m). 108 

They have also been positioned in large towns (Ljubljana, Celje, Nova Gorica, Maribor, 109 

Koper), with some also in small towns (Trbovlje, Zagorje, Murska Sobota, Hrastnik), two are 110 

at higher altitudes (Otlica and Krvavec), and one is in a sparsely populated remote inland 111 

agricultural area (Iskrba). The locations are shown in Figure 1. 112 
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3.2. Modeling tools 113 

Data assimilation was performed using the Multilayer Perceptron Artificial Neural 114 

Network (MLPANN), which is an example of a feedforward neural network. 115 

MLPANN is a mathematical structure capable of the approximation of a random non-116 

singular nonlinear function of several independent variables (Hornik et al., 1989; Kůrková, 117 

1992). The principles of ozone formation depending on other meteorological and air quality 118 

variables in the terrestrial atmosphere are definitely such function. 119 

The complexity of MLPANN use is merely that the solution is not analytically 120 

achievable, but must be achieved with the use of iterative methods that minimize the function 121 

of the criteria – the mean squared error of prediction in the given set of known data. 122 

The MLPNN establishes the principles – connections between independent variables and 123 

the dependent variable – based on the information given in known measured values of these 124 

variables. In our case those are the known values of the meteorological measurements, 125 

meteorological forecasts and measurements of the concentration of pollutants in the air and 126 

concentrations predictions from the regional model with a rough spatial resolution. In the 127 

MLPANN terminology we call such variables, features. The set of the values of these features 128 

at the same location and at the same time is called a pattern. The set-up of the new data 129 

assimilation model can be done based on the numerous patterns available from different 130 

locations across Slovenia, where there are stations for measuring the quality of the outside air 131 

and meteorological variables, thus this is the typical example of a problem, which is very 132 

suitable for modelling with the MLPANN. 133 

With the MLPANN based model for the data assimilation method we would like to 134 

improve and localize the forecast of maximum ozone concentrations over complex terrain, 135 

which is produced with a general regional model with a rough spatial resolution. 136 

The key steps of the construction of the MLPANN model based on the given set of 137 

patterns described with features are: the selection of features, the selection of patterns, the 138 
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definition of a suitable MLPANN topology, which must include the hidden level with 139 

nonlinear transfer function neurons, the process of learning with the appropriate optimization 140 

algorithm and the optimization and testing of the built model. You can learn more about the 141 

theoretical background of these steps in the literature (Božnar, 1997; Lawrence, 1993; Mlakar, 142 

1997). In the continuation of this text we will explain the implementation of these steps on a 143 

practical example. 144 

4. Theory: methodology of non-linear data assimilation 145 

However, in this paper we have made a key breakthrough by using the appropriate 146 

methodology of model use on the basis of MLP – we have created a spatially transferrable 147 

model for nonlinear data assimilation with which we have significantly improved the basic 148 

ozone forecasts, which are the result of the FARM 3D photochemical model in the QualeAria 149 

system over the whole model domain. 150 

Our first goal was to improve the forecasting of the maximum one-hour concentrations of 151 

ozone for the following day for each of the selected locations where measurements and results 152 

from the NWP and QualeAria FARM model were available. The method is based on our 153 

previous methods (Kocijan, 2016; Kocijan et al., 2015; Petelin et al., 2015), but which we 154 

have significantly upgraded with additional input features (regressors) and a new approach to 155 

model development with which we have achieved spatial transferability between various 156 

locations where air pollution measurements are carried out. 157 

Instead of creating a model for each measurement location, we created a model that 158 

would work for all locations. 159 

Our second, even more ambitious goal was to create a 2D spatially transferrable model of 160 

nonlinear data assimilation that would work for the ground level of entire modelled area, 161 

therefore even where there are no air pollution or meteorological measurements, but there are 162 

improved numerical weather forecasts available in a detailed spatial and time resolution. 163 
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This type of spatially transferable model has to be developed on the basis of data 164 

obtained from measurement stations on air quality and meteorological parameters, but can be 165 

used for all other areas where we have the results from the 3D photochemical model and 166 

NWP in a more detailed resolution. In other words, this means that we can significantly 167 

improve the entire 2D ground level photochemical model result for all the modelled areas, all 168 

ground cells of this basic model, and in this way we can achieve the true spatial transferability 169 

of the nonlinear data assimilation model. 170 

Whereby, the key feature of this new model should be highlighted, namely the fact that it 171 

is based on measured laws of ozone behaviour in combination with local meteorological 172 

characteristics at the selected measurement location itself, and not on the linear interpolation 173 

and Kriging-related methods (Stein, 1999) that depend on the Euclidean position of the 174 

locations in view of the neighbouring locations, which are unsuitable from the point of view 175 

of their theoretical basis for inhomogeneous conditions above complex terrain, such as it is 176 

dealt with in this paper. 177 

We tested the validity of both resulting models using independent data of the measuring 178 

stations described in the test bed chapter. 179 

4.1. The general procedure of constructing an MLP-based model 180 

The construction of an MLP-based model has the following steps: features determination, 181 

patterns selection, determining the network topology, training the model for the selected 182 

measured data by optimizing the model parameters, and testing – validating – using 183 

independent data measured in nature and which were not used in the model development 184 

process (Mlakar and Božnar, 1997). These steps are described in more detail in the 185 

subchapters that follow. 186 

To achieve the model’s transferability to the entire domain of the photochemical model 187 

on the basis of the selected learning locations only, the generalizing capability of the universal 188 
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approximator is taken advantage of. This capability means that the MLP-based model is able 189 

to also forecast the value of the output variable for input variable values that somewhat 190 

deviate from known learning patterns, therefore for similar patterns. Learning patterns for 191 

training the model must be selected in such a way that the physical patterns from any location 192 

on the domain will be similar to at least some of the learning patterns. 193 

4.1.1 Features 194 

Features or regressors must be suitably informative. This means that they comprise of 195 

those quantity values that affect the formation of the ozone. As ozone-forming laws are not 196 

entirely known, especially over complex terrain, systematic searching methods can be used. 197 

An overview of methods can be found in the literature, e.g. (Guyon and Elisseeff, 2003; May 198 

et al., 2011). 199 

4.1.2 Learning patterns 200 

Learning patterns or regression vectors are measured values or known numeric variable 201 

forecasts included in the input and output features. They must be selected so that they contain 202 

the key characteristics of the geographically and meteorologically varied locations. In theory, 203 

it would be best if they included all the locations for which the model is being developed. As 204 

this is not possible, it is necessary to select the most representative locations that can be 205 

chosen on the basis of experience or algorithms. 206 

In addition to the known patterns for training the model, we also need known patterns for 207 

evaluating the model. These have to be independent known patterns that were not used in the 208 

model development process. 209 

In the Test Bed chapter we have described the measuring station locations. We used data 210 

from three of these stations for training the model for the proposed nonlinear data assimilation 211 

procedure. We then tested the model using independent data. These are data that were not 212 

used in the model development process; they come from the same stations but for other time 213 
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periods than those that were used for learning. However, the additional test using other 214 

completely independent stations and their data was the key point. 215 

4.2. Input features for nonlinear data assimilation 216 

The initial selection of features is based on past studies (Grašič et al., 2006; Kocijan, 217 

2016; Petelin et al., 2015). The selection of previously known and evaluated features (Table 218 

1) is supplemented with basic ground meteorology, pollutant concentration measurements and 219 

photochemical model forecasts for these variables, both for the present time and for the 220 

following day. 221 

We also used meteorological parameter forecasts in significantly more detailed spatial 222 

resolution than the QualeAria system originally uses. The MEIS system for weather 223 

forecasting based on WRF and GFS input data is used (Božnar et al., 2011). To make an 224 

improvement we use the morning numerical weather forecast for the current day and the 225 

following day. The end result – a 2D forecast of the maximum ozone concentration – is given 226 

in a detailed spatial resolution, just as the WRF forecasts are, where the cells are three times 227 

shorter horizontally than those in the QualeAria system (from 12km × 12km to 4km × 4km). 228 

Better spatial resolution is another improvement when forecasting maximum ozone 229 

concentrations using our proposed method. 230 

As the number of potential additional features is manageable, we evaluated them by 231 

systematically adding and taking away, using the forward selection method (May et al., 2011) 232 

until we reached the best possible selection of features.  233 
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Table 1: Input features of the initial model (Kocijan, 2016; Petelin et al., 2015). 234 

Code Parameter    Source 

O3(k) ozone 

concentration 

1-h 

average 

measured daily 

maximum 

present AMS 

pGlSolRad(k+1) global solar 

radiation 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pTemp(k+1) air temperature 1-h 

average 

forecasted daily 

maximum 

predicted WRF 

Temp(k)  air temperature 1-h 

average 

measured daily 

maximum 

present AMS 

GlSolRad(k) global solar 

radiation 

1-h 

average 

measured daily 

maximum 

present AMS 

pRelHum(k+1) relative 

humidity 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pNOx(k+1) nitrogen oxides 1-h 

average 

forecasted daily 

maximum 

predicted QualeAria 

pPressure(k+1) air pressure 1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pPressure(k) air pressure 1-h 

average 

forecasted daily 

maximum 

present WRF 

pO3(k+1) ozone 

concentration 

1-h 

average 

forecasted daily 

maximum 

predicted QualeAria 

AMS ... Automatic measuring station 235 
WRF ... The Weather Research & Forecasting Model 236 
QualeAria ... Forecast system for the Air Quality 237 
k+1 ... the day for which the forecast is made  238 
k ... the day before the day for which the forecast is made 239 

 240 

We first expanded the basic set of features from Table 1 with the feature – model forecast 241 

of diffuse solar radiation. Diffuse solar radiation and direct solar radiation form the global 242 

solar radiation. The amount of direct solar radiation is proportional to the UV radiation, which 243 

is key for the formation of ozone (Finlayson-Pitts and Pitts, 1999). This is the main reason 244 

that leads us to the idea of it being possible to use complementary diffuse solar radiation to 245 

improve ozone forecasting. NWP models already have a global solar radiation forecast built 246 

in and it is considered in the 3D diffuse photochemical model. The local forecast of direct 247 

solar radiation is a potentially good feature to improve ozone forecasts. But as there is no 248 

direct solar radiation model available in NWP model, a complementary feature – diffuse solar 249 

radiation is used. That is the output of the statistical MLP model for the 2D distribution of 250 

diffuse solar radiation, which uses values from the NWP model as its input (Božnar et al., 251 

2016). The model forecasts diffuse solar radiation for the entire area of Slovenia in the 252 

KOoreg system in a spatially horizontal resolution of 4km and in a temporal interval of up to 253 
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two days in advance and half hour resolution. Additional confirmation of the choice of 254 

features were the known models for global and diffuse solar radiation for clear sky conditions 255 

(Badescu et al., 2012) where the rule of connection between the ozone and solar radiation that 256 

reaches the ground is used in the opposite direction. 257 

However, since the goal is to achieve spatial transferability of the model for the proposed 258 

data assimilation, we had to also find a solution for the normalization/relativization of the 259 

meteorological input features which have significantly varied ranges depending on altitude or 260 

spatial locations due to the variety of climate conditions. Examples of this type of input 261 

feature are air temperature and air pressure. Instead of absolute air pressure, we used air 262 

pressure reduced to sea level (Pugh, 1996). Instead of air temperature, we used potential 263 

temperature (Bolton, 1980). 264 

The final set of features for locations for which meteorological measurements and ozone 265 

concentration measurements, as well as QualeAria FARM 3D photochemical model and 266 

NWP WRF model results are available in detailed resolution are shown in Table 2.  267 
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Table 2: Input feature of the basic type of transferrable model 268 

Code Parameter    Source 

O3(k) ozone 

concentration 

1-h 

average 

measured daily 

maximum 

present AMS 

pGlSolRad(k+1) global solar 

radiation 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pPotTemp(k+1) potential air 

temperature 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

PotTemp(k)  potential air 

temperature 

1-h 

average 

measured daily 

maximum 

present AMS 

GlSolRad(k) global solar 

radiation 

1-h 

average 

measured daily 

maximum 

present AMS 

pRelHum(k+1) relative 

humidity 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pNOx(k+1) nitrogen oxides 1-h 

average 

forecasted daily 

maximum 

predicted QualeAria 

pPressure(k+1) mean sea-level 
air pressure 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pPressure(k) mean sea-level 

air pressure 

1-h 

average 

forecasted daily 

maximum 

present WRF 

pO3(k+1) ozone 

concentration 

1-h 

average 

forecasted daily 

maximum 

predicted QualeAria 

pDifSolRad(k+1) diffuse solar 

radiation 

daily 

sum 

forecasted daily 

sum energy 

predicted ANN-WRF 

AMS ... Automatic measuring station 269 
WRF ... The Weather Research & Forecasting Model 270 
QualeAria ... Forecast system for the Air Quality 271 
ANN-WRF ... Artificial Neural Network model of diffuse solar radiation based on WRF inputs 272 
k+1 ... the day for which the forecast is made  273 
k ... the day before the day for which the forecast is made 274 

 275 

The set from Table 2 is used to develop a basic type of model that only works for 276 

locations where there are concentration measurements and meteorological measurements 277 

available. 278 

The end goal is to implement the data assimilation for all other ground level 2D areas for 279 

which only QualeAria FARM photochemical model results are available and measurements 280 

not. This is why we developed the upgraded model type. The difference between the basic and 281 

the upgraded model is in used input features. It only uses FARM and WRF forecasts for its 282 

input features (Table 3). It should be emphasized that for this model, solely for the training 283 

process, ozone data and other air quality and meteorological parameters from the selected 284 

representative training locations where there are measuring stations were nonetheless used. 285 

These data are not used for forecasting. The MLP model draws on information from known 286 
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data that describe the studied rule. If it is successfully trained, the rule that is dealt with can be 287 

used in a general way. 288 

 289 

Table 3: Input feature of the upgraded type of transferrable model 290 

Code Parameter    Source 

pO3(k) ozone 

concentration 

1-h 

average 

measured daily 

maximum 

present QualeAria 

pGlSolRad(k+1) global solar 

radiation 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pPotTemp(k+1) potential air 

temperature 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

PotTemp(k)  potential air 

temperature 

1-h 

average 

measured daily 

maximum 

present WRF 

GlSolRad(k) global solar 

radiation 

1-h 

average 

measured daily 

maximum 

present WRF 

pRelHum(k+1) relative 

humidity 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pNOx(k+1) nitrogen oxides 1-h 

average 

forecasted daily 

maximum 

predicted QualeAria 

pPressure(k+1) mean sea-level 
air pressure 

1-h 

average 

forecasted daily 

maximum 

predicted WRF 

pPressure(k) mean sea-level 

air pressure 

1-h 

average 

forecasted daily 

maximum 

present WRF 

pO3(k+1) ozone 

concentration 

1-h 

average 

forecasted daily 

maximum 

predicted QualeAria 

pDifSolRad(k+1) diffuse solar 

radiation 

daily 

sum 

forecasted daily 

sum energy 

predicted ANN-WRF 

WRF... The Weather Research & Forecasting Model 291 
QualeAria ... Forecast system for the Air Quality 292 
ANN-WRF ... Artificial Neural Network model of diffuse solar radiation based on WRF inputs 293 
k+1 ... the day for which the forecast is made  294 
k ... the day before the day for which the forecast is made 295 

4.3. Selection of patterns for nonlinear data assimilation 296 

In this chapter, the key new step in pattern selection is presented which ensures that we 297 

can develop just one model that is spatially transferable and because of that it is not necessary 298 

to develop a model for each location separately, as was in the articles that deal with the model 299 

for the same area (Božnar et al., 1993; Kocijan, 2016; Kocijan et al., 2015; Mlakar and 300 

Božnar, 2011; Petelin et al., 2015). 301 

We achieved spatial transferability by constructing a model for the proposed nonlinear 302 

data assimilation on the basis of the data for three measuring stations all together and not for 303 

each one separately. The MLP’s characteristic of being a universal approximator with 304 

generalizing capabilities is used. 305 
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We used data from the stations in Koper (on the Adriatic coast), Krvavec (a high-altitude 306 

station in the Alps) and Murska Sobota (in the Pannonian Basin, on one of the rare flat areas 307 

in Slovenia). These three stations illustrate the key differences between the characteristics of 308 

modelling the ozone above Slovenia (an urban, coastal, suburban flat area, and high-altitude 309 

station). Because MLP model is sensitive to the selected stations care needs to be taken how 310 

to select these three or more stations. 311 

We developed the model using the training data from these stations, which are combined 312 

into one common set of learning patterns. The same principle of combining patterns from 313 

various stations into one common training set was first used for the basic model with basic 314 

features, and secondly for the upgraded model. 315 

4.4. Training the MLP model for data assimilation 316 

To train the basic and upgraded model we used the following MLP configuration, which 317 

is based on the number of neurons depending on the number of patterns, as was determined in 318 

our preliminary study (Grašič et al., 2006) where there were 50 neurons. We reduced this 319 

number by trial and error so that we achieved rapid training without the excessive memorizing 320 

of learning patterns. 321 

Both final MLPs in our study share the same properties: 322 

 input features as listed in Tables 2 and 3; 323 

 20 neurons in hidden layer based on a tangent sigmoid activation function; 324 

 output layer with one neuron based on a linear activation function to reproduce 325 

output feature; 326 

 iterative backpropagation training algorithm (gradient descent with a momentum 327 

optimization algorithm; momentum = 0.1; learning rate = 0.1). 328 
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4.5. Model development and validation data 329 

To develop and independently evaluate the models for the proposed data assimilation 330 

method, we have data on the features for the following periods at our disposal: 331 

 332 

Table 4: Model development and evaluation periods 333 

Purpose Period 

Model development 1 January 2012 – 31 December 2012  

(1 year) 

Model evaluation 1 January 2013 – 31 December 2014  

(2 years) 

 334 

The first year’s data were used to train and optimize the models, while the remaining two 335 

years of data are used to independently test the models. This means of pattern selection was 336 

also used in the previous study (Petelin et al., 2015). 337 

For training the basic model we used 1,000 learning patterns from three different 338 

locations and 1,030 learning patterns from the same three locations for the upgraded model. 339 

The number is not equal to the sum of all the days for the selected period, as it was necessary 340 

to exclude some of the intervals where not all the measurements or forecasts were available. 341 

This is normal in measuring networks and operational modelling systems. 342 

5. Results and discussion 343 

In the present paper we propose how to construct a model for nonlinear data assimilation 344 

- where the same model - one model - can be used at several locations - the model is spatially 345 

transferable and is valid for the whole 2D domain. To achieve this we propose two 346 

approaches: 347 

 how to construct a model that can be used on an arbitrary location in a 2D domain 348 

where air quality and meteorological measurements are available – basic model; 349 
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 how to construct a model that can be used over the whole 2D domain under the 350 

condition that a numerical weather forecast is available in a better resolution than was 351 

used originally by the photo-chemical regional model – upgraded model. 352 

 In both cases, only one model should be constructed and not several models, one for 353 

each location under examination. To achieve these goals we have introduced the following 354 

novel ideas: 355 

 a new method of model training patterns selection; 356 

 normalized values of air temperature and pressure (potential temperature and mean sea 357 

level pressure) were used as input features for the data assimilation model; this enables 358 

the model to be used regardless of the altitude; 359 

  new feature - diffuse solar radiation - adds additional information and improves 360 

results; 361 

 the multilayer perceptron artificial neural network based model was used as a method 362 

of non-linear data assimilation for 2D areas (and not as a model for the direct forecasting 363 

of pollutant concentration at one location - as is the case in the known models since our 364 

first publication of the SO2 prediction model in the Atmospheric Environment in 1993 365 

(Božnar et al., 1993)). 366 

For the proposed data assimilation basic and upgraded model, estimators for the basic 367 

output from the QualeAria FARM model for the output feature of forecasting one-hour 368 

maximum ozone concentrations for the following day were used as the starting point for 369 

comparison. 370 

Both models for the proposed data assimilation method were first tested on the three 371 

stations that were used in the training process. The evaluation was carried out on completely 372 

independent patterns from these stations that were not used for training. Then both models 373 

were tested on the remaining stations for which measurements were available. These other 374 

stations were not used in training the models. 375 
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The evaluation of the quality of data assimilation can only be implemented for the 376 

measuring station locations, even for the upgraded model which can be used for the entire 2D 377 

output area from the FARM model. On the basis of this result we predict that a similar 378 

improvement will occur on the entire 2D area. We reason this prediction with the fact that we 379 

have a relatively large number of stations available in Slovenia that are distributed throughout 380 

parts of the territory that have very different characteristics. 381 

We used the following evaluators for the statistical processing of the validation results 382 

(Badescu et al., 2012; Gradišar et al., 2016; Kocijan et al., 2016):  383 

• The root mean square error (RMSE) 384 

• The normalized mean squared error (NMSE) 385 

• The coefficient of determination (R²) 386 

• Pearson’s correlation coefficient (PCC) 387 

• The mean fractional bias (MFB) 388 

• The factor of the modelled values within a factor of two of the observations (FAC2). 389 

• The normalized mean bias error (MBE) MBE [%] 390 

• The coefficient of variation based on the root mean square value CV(RMSE) [%]. 391 

 392 

In Tables 5, 6 and 7, we have presented the evaluator values for ozone forecasts from the 393 

QualeAria model, the basic MLP model and the upgraded MLP model for data assimilation. 394 

Scatter diagrams on Figures 2 to 5 illustrate the matching measurements and forecasts 395 

obtained through data assimilation. 396 

 397 

  398 
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Table 5: Evaluators for the QualeAria model ozone forecast for all locations using data not 399 

used in model development. 400 

 401 

Station RMSE 

[μg/m3] 

NMSE R² PCC MFB FAC2 MBE 

[%] 

CV 

(RMSE) 

[%] 

Celje 30.685 0.161 0.652 0.807 -0.164 0.91 20.71 35.72 

Hrastnik 19.669 0.068 0.692 0.832 -0.100 0.96 12.32 24.44 

Iskrba 20.583 0.063 0.644 0.802 -0.152 0.99 15.54 22.98 

Koper 25.691 0.094 0.744 0.863 -0.236 0.97 20.97 27.27 

Krvavec 40.268 0.209 0.517 0.719 -0.430 0.85 33.99 37.19 

Ljubljana 29.412 0.153 0.703 0.838 -0.201 0.91 22.43 34.46 

Maribor 20.611 0.086 0.694 0.833 -0.053 0.93 10.47 27.70 

Murska Sobota 21.213 0.080 0.695 0.834 -0.139 0.96 15.10 26.10 

Nova Gorica 26.007 0.111 0.741 0.861 -0.117 0.94 16.96 30.30 

Otlica 26.302 0.099 0.659 0.812 -0.283 0.93 23.11 27.65 

Trbovlje 17.760 0.060 0.682 0.826 -0.007 0.95 5.51 23.76 

Zagorje 18.344 0.066 0.678 0.823 0.068 0.92 0.83 25.50 

 402 

Table 6: Evaluators for the basic MLP model for air quality automatic measuring station 403 

locations ozone forecast using data not used for training the MLP model. 404 

 405 

Station RMSE 

[μg/m3] 

NMSE R² PCC MFB FAC2 MBE 

[%] 

CV 

(RMSE) 

[%] 

Celje 17.720 0.041 0.808 0.899 0.100 0.94 -4.28 20.63 

Hrastnik 15.788 0.035 0.787 0.887 0.123 0.95 -9.13 19.62 

Iskrba 14.032 0.023 0.728 0.853 0.073 0.99 -5.52 15.67 

Koper 12.984 0.019 0.841 0.917 0.034 0.99 -1.48 13.78 

Krvavec 11.669 0.012 0.761 0.872 -0.031 1.00 3.04 10.78 

Ljubljana 17.179 0.038 0.822 0.907 0.116 0.94 -6.17 20.12 

Maribor 16.433 0.044 0.819 0.905 0.165 0.92 -10.39 22.09 

Murska Sobota 14.980 0.032 0.798 0.893 0.103 0.95 -6.45 18.43 

Nova Gorica 16.935 0.037 0.824 0.908 0.110 0.94 -5.12 19.73 

Otlica 12.536 0.018 0.726 0.852 0.000 1.00 0.86 13.18 

Trbovlje 17.700 0.049 0.771 0.878 0.174 0.94 -13.54 23.68 

Zagorje 18.719 0.058 0.786 0.887 0.218 0.91 -16.24 26.02 

 406 

  407 
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Table 7: Evaluators for the upgraded MLP model for the 2D area of the entire Slovenia ozone 408 

forecast using data not used for training the MLP model. 409 

Station RMSE 

[μg/m3] 

NMSE R² PCC MFB FAC2 MBE 

[%] 

CV 

(RMSE) 

[%] 

Celje 21.736 0.058 0.763 0.873 0.170 0.91 -9.53 25.29 

Hrastnik 22.795 0.066 0.750 0.866 0.240 0.92 -21.06 28.32 

Iskrba 20.256 0.047 0.620 0.788 0.149 0.97 -12.95 23.37 

Koper 15.854 0.027 0.806 0.898 0.058 0.98 -2.37 16.59 

Krvavec 19.500 0.035 0.527 0.726 -0.096 1.00 8.41 18.00 

Ljubljana 19.638 0.048 0.801 0.895 0.159 0.92 -8.92 22.85 

Maribor 24.760 0.088 0.773 0.879 0.300 0.87 -24.48 33.05 

Murska Sobota 19.512 0.050 0.784 0.885 0.201 0.93 -15.76 24.05 

Nova Gorica 22.174 0.059 0.807 0.898 0.205 0.90 -12.79 25.80 

Otlica 17.433 0.031 0.597 0.773 0.004 1.00 1.08 17.57 

Trbovlje 28.171 0.109 0.700 0.837 0.326 0.89 -30.39 37.67 

Zagorje 30.670 0.134 0.744 0.863 0.388 0.85 -36.28 42.66 

 410 

  411 
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 412 

Figure 2: Comparison of modelling results of the 1st group of stations (Koper, Krvavec and 413 

Murska Sobota, these three stations were used to train both MLP models) from three models 414 

(first column photochemical model QualeAria, second column MLP Basic Model, third 415 

column MLP Upgraded Model)  416 

 417 
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 418 

Figure 3: Comparison of modelling results of the 2nd group of stations (Celje, Hrastnik and 419 

Iskrba) from three models (first column photochemical model QualeAria, second column 420 

MLP Basic Model, third column MLP Upgraded Model) 421 

 422 
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 423 

Figure 4: Comparison of modelling results of the 3rd group of stations (Ljubljana, Maribor 424 

and Nova Gorica) from three models (first column photochemical model QualeAria, second 425 

column MLP Basic Model, third column MLP Upgraded Model) 426 
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 427 

Figure 5: Comparison of modelling results of the 4th group of stations (Otlica, Trbovlje and 428 

Zagorje) from three models (first column photochemical model QualeAria, second column 429 

MLP Basic Model, third column MLP Upgraded Model) 430 

 431 

It is clear from Figure 2 and the corresponding evaluator values from Table 5, 6 and 7 432 

that nonlinear data assimilation significantly improves the results of the QualeAria 433 

photochemical model. 434 

The main result is visible in Figures 3, 5 and 5 and the corresponding evaluator values 435 

from Table 5, 6 and 7 where we can see that the proposed nonlinear data assimilation is 436 

successful throughout the entire ground-level 2D domain. An example of the 2D one-hour 437 

maximum ozone ground concentrations is presented on Figure 6. 438 
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 439 

Figure 6: Example of the one-hour maximum ozone ground concentrations forecasted by 440 

QualeAria FARM model (left figure) and proposed nonlinear data assimilation upgraded 441 

model (right figure) 442 

The basic model for automatic air quality measuring station locations indicates a great 443 

improvement in ozone forecasting, while the upgraded model for the 2D area of entire 444 

Slovenia predicts slightly worse, but still shows a significant improvement. The greatest 445 

improvement was achieved with the highest ozone values. The new method improved on 446 

average by 10% in the correlation at measurement station locations, and improving by 447 

roughly 5% regarding the remaining intermediate ground level area of the modelling domain. 448 

This was the goal, and in doing so we confirmed the proposed concept on this example. 449 

With great likelihood we can predict that the behaviour of the proposed method will give 450 

comparable results on other complex terrains. 451 

6. Conclusions and future work 452 

In this paper, a method of nonlinear data assimilation of measured and forecasted data on 453 

atmospheric characteristics into 2D ground level results of ozone forecasts from a 3D 454 

photochemical model. New method was tested using the example of ozone forecasting in 455 

Slovenia. The same methodology might be used for other pollutants concentrations including 456 

other than maximal values forecasting but this assumptions are yet to be investigated. 457 
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Using the proposed method of nonlinear data assimilation we significantly improved the 458 

key forecasting of the maximum one-hour ozone concentration for one day in advance. This 459 

forecast of maximum ozone concentration is crucial for planning daily activities for the 460 

sensitive section of the population where high concentrations cause a worsening of their state 461 

of health. 462 

We developed a model for nonlinear data assimilation based on MLP so that it has a key 463 

new feature – spatial transferability. We were able to successfully integrate the general 464 

information of the link between the concentration of ozone with the remaining meteorological 465 

characteristics of the atmosphere and the characteristics of atmospheric pollution. We 466 

extracted this information from the measured data from only three measuring stations in 467 

Slovenia, while the model proved to work for all 12 stations in Slovenia which we have at our 468 

disposal to use for validation. The stations are located over very complex terrain of Slovenia – 469 

a junction of Alpine mountains, Pannonian plains and the Mediterranean sea. 470 

According to our knowledge of the field, this is the first example in the world of an MLP-471 

based model for the ozone which is spatially transferable and successfully improves the 472 

results of photochemical models for the ground level. But on a similar atmospheric problem 473 

of investigating solar radiation, we have just successfully developed spatially transferable 474 

model of diffuse solar radiation using similar methodology (Božnar et al., 2016). 475 

The basic model of nonlinear data assimilation is useful for locations where 476 

meteorological and ozone measurements are available in real time. This model demonstrates a 477 

significant improvement in ozone forecasting. The upgraded model of nonlinear data 478 

assimilation is useful for all ground level cells in the QualeAria FARM photochemical model 479 

for the entire area of Slovenia and does not require additional measurements. Due to its 480 

greater generality, the upgraded model achieves somewhat smaller, but still significant, 481 

improvements in ozone forecasting. 482 
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However, it is both models that demonstrate a key new capability – spatial transferability 483 

– which originates from the means of development as we have described it. 484 

Regarding our future work, we foresee the testing of both models also for neighbouring 485 

countries where we have the QualeAria system and measuring data at our disposal. We want 486 

to evaluate the level of universal spatial transferability of the two nonlinear data assimilation 487 

models developed. 488 
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