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Abstract

This paper addresses the task of identification of nonlinear dynamic systems

from measured data. The discrete-time variant of this task is commonly re-

formulated as a regression problem. As tree ensembles have proven to be a

successful predictive modeling approach, we investigate the use of tree ensem-

bles for solving the regression problem. While different variants of tree ensem-

bles have been proposed and used, they are mostly limited to using regression

trees as base models. We introduce ensembles of fuzzified model trees with

split attribute randomization and evaluate them for nonlinear dynamic system

identification.

Models of dynamic systems which are built for control purposes are usually

evaluated by a more stringent evaluation procedure using the output, i.e., simu-

lation error. Taking this into account, we perform ensemble pruning to optimize

the output error of the tree ensemble models. The proposed Model-Tree En-

semble method is empirically evaluated by using input-output data disturbed

by noise. It is compared to representative state-of-the-art approaches, on one

synthetic dataset with artificially introduced noise and one real-world noisy data

set. The evaluation shows that the method is suitable for modeling dynamic
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systems and produces models with comparable output error performance to the

other approaches. Also, the method is resilient to noise, as its performance does

not deteriorate even when up to 20% of noise is added.

Keywords: decision tree ensemble, fuzzified model tree, nonlinear dynamic

system identification

1. Introduction

In this paper, we address the task of identification of nonlinear dynamic sys-

tems from measured input-output data. In particular, we address the discrete-

time variant of this task, which can be transformed into a regression problem

of predicting the next state/output of the system from states and inputs in

the recent past. Different regression approaches have been used for solving this

task, including neural networks, support vector machines and Gaussian process

regression. While most approaches to solving this task try to minimize the

one-step prediction error, the learned models are typically evaluated in terms of

their simulation (output) error.

We explore the use of tree ensemble methods for regression for modeling

dynamic systems from measured data. We propose a novel approach for learn-

ing ensembles of model trees with randomized attribute selection and fuzzified

splits. The approach includes an optimization step of ensemble pruning, which

is based on the simulation (output) error criterion. We evaluate the perfor-

mance of our Model-Tree Ensembles, comparing them to existing state-of-the-

art methods used for system identification, focusing on their performance on

noisy identification data.

The remainder of this section first introduces the task of discrete-time mod-

eling of dynamic systems. It then discusses existing approaches to solving this

task and some of their shortcomings. It next discusses tree ensemble approaches

for regression that we plan to use for overcoming these deficiencies. The section

concludes by laying out the aims of this paper and giving an outline of the

remainder of the paper.
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1.1. Discrete-time modeling of dynamic systems

The task of discrete-time modeling of nonlinear dynamic systems using mea-

sured input-output data is to find difference (recurrence) equations using the

input variable (u) and output and system variable (y). These equations de-

scribe the system at a time instant k using past values of the input and output

variables. Through the external dynamics approach (Nelles, 2001) the modeling

problem is reformulated as a regression task. The value of the system variable(s)

at time instant k, y(k), needs to be predicted from the lagged values of the input

and system variable(s), u(k−1), u(k−2), .., u(k−n), y(k−1), y(k−2), .., y(k−n)

using a static function approximator.

The evaluation of the performance of a dynamic system’s model is carried

out according to the purpose of the model and often requires a stringent and

purpose-specific evaluation. When evaluating a model using one-step-ahead

prediction, as shown in Figure 1 (a), the predicted values for the system variable

are compared to the measured values. On the other hand, the procedure of

simulation, illustrated in Figure 1 (b), introduces one substantial difference:

the one-step-ahead model predictions are fed back to the model to produce

predictions for the more distant future.

While the first step of one-step-ahead prediction and simulation is the same,

in simulation, the predicted value of the system variable y at time k (ŷ(k) is fed

back as input to the model, instead of a measured value (y(k)) at time k + 1.

Due to the realistic possibility of error accumulation in the case of an inaccurate

model, divergence of the simulation predictions from the measured values may

occur as we move further into the future. The cumulative error of simulation

is referred to as the output error, while in the case of one-step-prediction the

error is referred to as prediction error.

1.2. Methods for discrete-time modeling of dynamic systems

The task of discrete-time modeling of nonlinear dynamic systems from mea-

sured data can be approached using different modeling techniques. Over the
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Figure 1: a) A model for prediction; (b) The model used for simulation; (q−1 is the backshift
operator).

last few decades, numerous different methods have emerged. The earlier ap-

proaches included for example the block-oriented Hammerstein and Wiener sys-

tems (Giri & Bai, 2010) and the semi-parametric Volterra method (Haber & Un-

behauen, 1990). More recent approaches include the widely used basis-function

approaches of Artificial Neural Networks (Nelles, 2001) and fuzzy modeling, as

well as the nonparametric approaches of kernel methods (Cristianini & Shawe-

Taylor, 2000) and Gaussian Process models (Rasmussen & Williams, 2006), to

list just a few.

Existing approaches for dynamic systems identification can be classified ac-

cording to the type of model they produce. Some approaches learn one global

model describing the whole system, while other learn multiple-models. The fol-

lowing paragraphs describe the features that distinguish methods belonging to

the two categories.

Methods that build one global model include, for example the well-known

Artificial Neural Networks (Nelles, 2001), Gaussian Process models (Rasmussen

& Williams, 2006), and support vector regression (Cristianini & Shawe-Taylor,

2000). They learn one global model by using a nonlinear optimization procedure

on all identification (training) data in a single optimization task. The learned

model is valid in the whole operating region.

Artificial neural networks, which can be seen as universal approximators, are
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very powerful and flexible methods also used for modeling (nonlinear) dynamic

systems (Narendra & Parthasarathy, 1990). Different architectures of neural

networks exist, the most common ones being multilayer perceptron (MLP) net-

works and radial basis function (RBF) networks. However, in spite of their

advantages, as for the other approaches in this class, their main disadvantages

are the lack of transparency and curse of dimensionality (Ažman & Kocijan,

2011).

Gaussian Process models are nonparametric, probabilistic black-box models

that have been used for modeling dynamic systems (Rasmussen & Williams,

2006). One of their advantages is the measure of confidence for the predictions

they provide, which helps in assessing the quality of the model prediction at

each point. This approach is related to Support Vector Machines and especially

to Relevance Vector Machines (Rasmussen & Williams, 2006).

The multiple model approaches build several local models, each of them valid

in a subregion of the whole operating region. They are also referred to as local

model networks (Murray-Smith & Johansen, 1997). They include neuro-fuzzy

approaches like the Adaptive Neuro Fuzzy Inference System - ANFIS (Jang

et al., 1997), Local Linear Model Trees – Lolimot (Nelles, 2001), and other

methods based on the operating regime approach (Johansen & Foss, 1997).

The determination of the subregion boundaries and the subset of features

used for each subregion is frequently referred to as structure determination and

is usually the first subproblem these methods address. The second subproblem

is the identification of local model parameters. As expected, different solutions

exist for these two subproblems, while some iterative methods even solve both

subproblems at once (Nelles, 2001). Out of the plethora of possible solutions for

the structure identification part, the most frequently used techniques are: grid

partitioning, tree-based partitioning, fuzzy clustering, product space clustering,

genetic algorithms, and partitioning based on prior knowledge (Murray-Smith &

Johansen, 1997). The local model identification subproblem is solved by using

either local or global least squares optimization methods, the choice of which

has an effect on the accuracy and interpretability of the local models.
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1.3. Challenges in system identification

Noisy data. In practice, the measured input-output data used for identifica-

tion of the dynamic systems is disturbed by noise. The quality of the identified

model is dependent on the resilience of the learning method to noisy data. Ex-

isting approaches for modeling from data handle the overfitting-to-noise issue

using different strategies: probabilistic strategy, strategies including averaging

of predictions, or pruning over-complex models. These meet with a variable

degree of success and handling noise remains a challenging issue.

The curse of dimensionality. Modeling dynamic systems in some areas (such

as aerospace engineering) requires high-dimensional models. Further more,

discrete-time modeling of such systems, and in particular the introduction of

lagged variables using the external dynamics approach, increases the dimen-

sionality of the data used in the identification process. This can present a

challenge for many modeling methods.

Existing approaches scale differently as data dimensionality (number of vari-

ables and number of data points) increases (Ažman & Kocijan, 2011). Artificial

Neural Networks with their two most common architectures multilayer percep-

tron and radial basis functions have as disadvantages the curse of dimensionality

and lack of transparency. One of the widely used fuzzy modeling approaches,

ANFIS (Jang et al., 1997), also suffers from the dimensionality problem: the

number of parameters that it needs to estimate is proportional to pn where n

is the number of input variables and p is the number of membership functions

assigned to each variable. The learning of Gaussian Process models (Rasmussen

& Williams, 2006) is limited to at most a few thousand data points.

Optimization of output error. Most approaches to modeling dynamic systems

minimize prediction error during learning (parameter optimization or structure

determination). However, the validation of the learned model is typically per-

formed by simulation. This presents another challenge and raises the question

whether it is possible to directly optimize the output error while learning, in-

stead of optimizing the prediction error.

In this context, the works of Nelles (2001) (cf. also (Nelles, 1995)) conclude
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that a decrease of the prediction error does not necessarily lead to a decrease in

the output error of the model, when using neural-networks as models. Similarly,

Kocijan & Petelin (2011) deal with the same question in the context of Gaussian

Process models. They conclude that the direct optimization of output error is

a much harder task as compared to the optimization of prediction error, since

the optimization surface in the former case contains many local optima and its

contour plots depict quite irregular shapes.

However, at least some nonlinear identification methods make use of the out-

put error for model structure selection. An example is the Local Linear Model

Trees – Lolimot method (Nelles, 2001), which iteratively adds complexity to a

tree structure. In each iteration, the method solves the parameter optimization

problem using least squares estimation, evaluates the intermediate model using

simulation, and tries to improve the structure by adding one more node to the

tree. The author concludes that the structure search, a nonlinear optimization

problem solved by a greedy hill-climbing approach, could benefit from directly

estimating the simulation error. This approach is possible because: a) the it-

erative nature of the approach means that after each iteration an intermediate

solution, i.e., a fuzzy model tree, is ready to be used; b) the number of iterations,

or total number of nodes in the tree is typically not large, so the time-consuming

evaluation of the output error on the whole identification set does not increase

the overall time complexity substantially.

1.4. Tree ensembles for regression and system identification

As outlined above, early research in discrete-time system identification fo-

cused on parametric and semi-parametric regression approaches. More recently,

non- parametric approaches dominate, including Artificial Neural Networks, ker-

nel methods, and Gaussian Process models. In this context, we propose the use

of another non-parametric approach to regression, coming from the area of ma-

chine learning, namely tree ensembles.

As tree ensembles are a very successful predictive modeling approach, we

propose the use of tree ensembles for regression for the task at hand. Ensembles
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of regression trees have been extensively used and different variants thereof

explored (such as bagging and random forests). Bagging of model trees has also

been considered.

Trees and tree ensembles have a number of properties that directly address

some of the challenges mentioned in the previous section. On one hand, this

includes the handling of noisy data by tree pruning. On the other hand, this

includes the efficiency of tree induction. Finally, this includes the predictive

power and efficiency of tree ensembles, such as random forests.

The issue of overfitting to noise in decision trees and tree ensembles is con-

trolled by the depth of the individual tree or the trees in the ensemble (Segal,

2004). Larger trees are more sensitive to noise and prone to overfitting, while

smaller trees are less sensitive and less prone to overfitting. Tree pruning pro-

cedures can be used to reduce the depth of an overly large tree, and control the

overfitting to noise.

Tree learning algorithms are robust and have the potential to scale well

to large predictive modeling problems. The algorithms apply the divide-and-

conquer principle, by splitting the available learning data into smaller subsets

as the tree is constructed. They can thus handle a large number of train-

ing instances (identification points). They are not sensitive to irrelevant at-

tributes/features included in the data.

In the context of using tree-based models for system identification, we should

note that model trees for regression use linear or affine models in the terminal

nodes, so the model could be considered as a piecewise linear approximator.

Because of the recursive partitioning of the instance space the tree algorithms

apply, the potentially complex optimization problem is broken down to several

simpler optimization subproblems. Each optimization subproblem uses a proper

subset of the whole set of identification data, so the identification procedure is

simplified.

Ensembles for regression, or committees of predictors are known to improve

predictive accuracy. This is known in the field of neural-network ensembles

(Krogh & Vedelsby, 1995) as well as tree-based ensembles (Breiman, 1996). Tree
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ensemble approaches based on split attribute randomization can also handle

very large numbers of attributes/ features, effectively dealing with the curse

of dimensionality. Finally, regression and model tree approaches have been

recently extended to deal with multiple dependent/ target variables (cf. e.g.,

(Appice & Džeroski, 2007)), making them suitable to handle (with appropriate

modifications) the multi-output case of system identification.

Besides their potential advantages, there are several possible obstacles to

the use of trees and tree ensembles for regression for the task of system iden-

tification. The task of modeling dynamic systems requires a modeling pro-

cedure which produces a smooth fit and a reasonable extrapolation behavior.

Tree-based models have crisp decision boundaries in the internal nodes, causing

non-smooth responses. Regression trees (and ensembles thereof) have poor ex-

trapolation behavior. Finally, they are aimed at optimizing prediction (ant not

simulation/output) error.

1.5. Aim and outline of the paper

In this paper, we set out to explore the use of tree ensemble methods for

regression for the task of modeling dynamic systems from measured data. Aim-

ing to exploit the above-mentioned strengths of tree ensemble methods and

overcome their deficiencies in this context, we propose a novel approach for

learning ensembles of model trees. The individual trees are built with random-

ized attribute selection and have fuzzified splits. The approach also includes

an optimization step of ensemble pruning, which is based on the simulation

(output) error criterion. We evaluate the performance of our Model-Tree En-

sembles, comparing them to existing state-of-the- art methods used for system

identification, focusing on their performance on noisy identification data.

The remainder of the paper is organized as follows. Section 2 presents the

Model-Tree Ensembles (MTE) method for regression. This section introduces

tree-based ensembles, describes the proposed MTE algorithm and illustrates

the methodology on a simple static function approximation problem. Section

3 presents the experimental evaluation on noisy data, using two data sets, and
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discusses the empirical results. Section 4 presents further discussion of the

suitability of the proposed method for dynamic system identification, states our

conclusions and outlines some directions for further work.

2. Model-Tree Ensembles

In this section, we first discuss some background to the approach we propose:

in particular, tree ensembles for regression, fuzzified model trees and ensemble

pruning/selection. We then present our approach to learning fuzzified model

tree ensembles, which includes randomized attribute selection and ensemble

pruning. Finally, we illustrate our approach on a simple example.

2.1. Tree ensembles for regression

Ensembles based on the resampling principle work by repeatedly sampling

with replacement from the original data set and using a base learner to build

predictive models from each sample. The simplest ensemble creation procedure

based on the resampling principle is known as Bootstrap Aggregation (Bagging)

(Breiman, 1996). It creates bootstrap replicates, i.e., random samples with re-

placement, of the identification set, which have an equal number of identification

points as the identification set. Later, each bootstrap sample is used to build

a base model, using the base learner algorithm. A prediction by the ensemble

model is obtained by averaging the predictions of the base models. The bagging

principle is successful due to the smoothing effect it has on individual model

estimates and due to the reduction of variance of the ensemble (Grandvalet,

2004).

Tree ensembles for regression use algorithms for learning regression or model

trees as base learners. Model trees are hierarchical structures of nodes, where the

inner nodes consist of feature attribute tests, while the terminal nodes consist of

local models: functions of the feature attributes. The splits in the inner nodes of

the tree perform a partitioning of the instance space into a set of partitions, for

which local models are learned. Regression trees have constants in the terminal
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Figure 2: A tree with 4 local models and the corresponding partitioning of the instance space.
x=[x1,x2] is the two-dimensional feature vector.

nodes, while model trees typically use linear models with a constant term. A

simple tree is shown in Figure 2 (a), while Figure 2 (b) depicts the partitioning

of the two-dimensional instance space represented by this tree.

Motivated by the simple yet successful bagging strategy, Breiman (2001)

concluded that adding randomness within the base learners can be beneficial:

it increases the diversity of the ensemble and allows for even more accurate

predictions. The introduction of randomness into the tree building algorithm

is achieved by randomly choosing a different subset of feature variables in each

internal node to be used as candidate split variables. The methodology is known

as Random Forests (Breiman, 2001) and has been shown to perform well as com-

pared to many other methods: discriminant analysis, support vector machines,

and neural networks.

However, both bagging and Random Forests have been originally designed

to use regression trees. Since bagging only manipulates the training data, and

does not randomize the base learners, it can be used with any base learner,

including algorithms that learn model trees. The only other ensemble method

for regression that utilizes model trees, to our knowledge, is the semi-random

model tree ensemble approach (Pfahringer, 2011). This approach modifies the

base-level tree-learning algorithm to produce balanced trees: the number of

points falling in each terminal node of the tree is approximately the same.

This approach is thus not well-suited for dynamic systems, whose identification
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is performed on data that are not evenly distributed in the instance space.

The partitioning of the instance space using semi-random model tree ensembles

would be denser around the equilibrium points, as these regions contain more

points than the out-of-equilibria regions. As a consequence, the critical out-of-

equilibria regions would be covered by a small number of partitions, resulting

in poor approximation.

2.1.1. Discontinuities

Modeling nonlinear dynamic systems by using the external dynamics ap-

proach requires approximating a smooth function mapping between the input

and the output. However, tree models introduce discontinuities at the bound-

aries between local models. The discontinuities could increase the prediction

error and potentially degrade the simulation performance. One possible ap-

proach to solving this problem is to use smoothing with the help of fuzzy set

theory.

Several different fuzzy tree approaches have been introduced. Some of the

methods introduced earlier start by learning a crisp tree, convert the splits from

crisp to fuzzy, and optimize the fuzzy parameters (Suarez & Lutsko, 1999).

Other fuzzy tree methods learn directly both the tree structure and fuzzy pa-

rameters (Olaru & Wehenkel, 2003). However, the existing fuzzy tree approaches

only deal with constant predictions in the terminal nodes of the tree.

2.1.2. Optimization of the ensemble

Several researchers using ensembles for regression have concluded that the

prediction performance of the ensemble increases when the ensemble structure is

optimized. In the context of neural-network ensembles for regression, the work of

Perrone & Cooper (1993) uses weighted averaging of the base model predictions.

The weights are optimized, such that the squared prediction error is minimized.

The work of Aho et al. (2012) (learning rule ensembles for regression) also

includes an ensemble optimization step, which selects the best subset of rules

for the ensemble and determines their respective weights.
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A special case of weighting uses only zero/one weights. In this case en-

semble optimization means reducing the number of models in the ensemble.

This is called ensemble selection (Caruana et al., 2004) or ensemble pruning

(Tsoumakas et al., 2009; Zhou, 2012) and has been shown to improve the over-

all performance of the ensemble.

2.2. Model-Tree Ensembles

In this section, we describe the method that we propose for learning an en-

semble of fuzzified model trees with split attribute randomization. A preliminary

version of this approach was considered earlier by Aleksovski et al. (2013). The

preliminary version was evaluated using only prediction error (and not output

error). Also, it did not optimize the ensemble structure by performing ensemble

pruning, a procedure designed toward optimizing the output error.

The pseudocode describing our approach is shown in the upper part of Table

1. The learning procedure starts by creating M bootstrap replicates of the

identification data. Using each of the M data samples, a collection of fuzzified

pruned model trees is trained: f1, f2, .., fM .

Three key features distinguish our approach from other existing machine

learning approaches. First, the split attribute randomization is unique, as de-

scribed below. Second, after each tree is learned, the conditions in its internal

nodes are fuzzified. Finally, a subset is selected from all the trees learned and

only the selected trees form the final ensemble. The ensemble selection proce-

dure is shown in the lower part of Table 1.

2.2.1. Learning fuzzified model trees

The algorithm that learns a fuzzified model tree with split attribute ran-

domization, to be used as a component model of the ensemble, is based on the

M5′ model tree learning method (Wang & Witten, 1997). Its operation can

be divided into three phases: tree growing phase, tree pruning phase and tree

fuzzification. The pseudocode of the algorithm, including all three phases, is
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Table 1: Pseudocode for the Model-Tree Ensembles method.
Learn ensemble(D)
Inputs: data set D
Outputs: an ensemble E

Create M bootstrap samples of D : D1, D2, .., DM

Build a tree using each of the M samples: Ti = Learn model tree(Di)
Let E′ =Ensemble selection( {T1, T2, .., TM} , D)
Return the ensemble E′

Ensemble selection(E, D)
Inputs: ensemble E, consisting of trees T1, T2, .. , identification set D
Outputs: ensemble E′

Let errfull be the output error of E, obtained by simulation on data set D
Let M = |E|
Create M ensembles, E1, .., EM where Ei = {Tj |j 6= i}
Let erri be the output (simulation) error of ensemble Ei

Let errreduced = mini=1..M (erri) and j = argmini=1..M (erri)
If (errfull > errreduced)

Return the ensemble Ensemble selection(Ej, D)
otherwise

Return the ensemble E

given in Tables 2 and 3. Note that the novel parts we introduce concern the

randomized selection of attributes, and the fuzzification of model trees.

The tree growing phase is a recursive procedure which creates the initial

tree structure. It determines whether to split the set of data, and if splitting

is to be performed, also determines the split parameters. The optimal split

is chosen from a set of candidate splits created in a randomized fashion as

described below.

First, a random subset of all features is created, as in random forests (Breiman,

2001). Then, for each candidate attribute in this subset, an optimal cut-point

is selected using the standard deviation reduction (SDR) score. Note that the

size of the feature subset (K) is a function of the number of available features

and this function is a parameter of the algorithm. When the size of the random

subset of features is equal to the total number of available features, we eliminate

the randomness in the split attribute selection and obtain bagging as a special
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case.

The candidate splits are evaluated using the SDR, i.e., standard deviation

reduction (Wang & Witten, 1997) score

SDR = σ2
D −

|Dl|
|D|

σ2
Dl
− |Dr|
|D|

σ2
Dr

(1)

where D is the set of identification points falling in the current node, Dl and Dr

are the left and right subsets of the identification data set created by the split,

and σ2
D is the standard deviation of the target attribute in the set D. The split

that maximizes this score is chosen for the current tree node. The data points

are divided into two subsets, based on the chosen split, and the procedure is

recursively applied on each subset.

The growing phase stops when either of the two stopping (pre-pruning) cri-

teria are met. The first criterion is low variance of the target variable in a

partition, as compared to the overall variance of that variable. The second is

small number of identification points in a partition, i.e., less than the value of

the algorithm parameter N , which could prevent reliable estimation of linear

model coefficients.

The tree pruning phase employs a bottom-up post-pruning procedure that

reduces the size of the tree. Overly large trees, built in the first phase, are prone

to overfitting. Tree pruning reduces overfitting by reducing the tree size. The

procedure starts by estimating linear models in all nodes of the tree, using linear

regression. The linear model in a node is estimated using only features found

in the tests in the subtree rooted at that node. The linear model estimation

procedure also includes an attribute removal part: attributes are dropped from

a linear model when their effect is small, i.e., expected to increase the estimated

error.

After estimating linear models in all tree nodes, the pruning procedure com-

pares the accuracy of the linear model at each inner node of the tree with the

accuracy of the subtree rooted at that node. The accuracy of the linear model

learned for a tree node and the accuracy of the subtree below the node are
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calculated using only data points corresponding to the sub-partition that the

node defines. The decision to replace the subtree with a terminal node, i.e.,

to prune the subtree, is made if the estimated (squared) error of the subtree is

larger than or equal to the (squared) error of the linear model.

Note that apart from the modifications of M5′, which is implemented in

WEKA (Hall et al., 2009), regarding the split attribute randomization, we

modify two other aspects of the algorithm. The first modification concerns the

smoothing procedure of M5′, which in our experience produces low performing

models, and is turned off. The second modification concerns the building of lin-

ear models. We stop building a linear model, when a matrix singularity (within

the computer’s numerical precision) is detected in the LU matrix decomposition

procedure of linear regression. The tree node is converted into a terminal node

in this case.

Tree fuzzification. To smooth out the discontinuities that each split in-

troduces in the model tree, we implement a split fuzzification procedure. A

crisp split of the form s[xj < c], where xj is the j-th feature, and c is a cut-

point, is transformed to a fuzzy split by using a sigmoidal membership function

µ(xj , c, α) with a fuzzy parameter α (the inverse split width) :

µ(xj , c, α) =
1

1 + exp(−α(xj − c))
(2)

The choice between sigmoidal, Gaussian or triangular membership functions

(Nelles, 2001) does not have an effect on the identification performance in the

case when the function parameters are not optimized globally. So, for the sig-

moidal membership function of Eq.2, the value of α is calculated such that the

overlap between the two subpartitions is equal to a predetermined percentage

poverlap of the size of the partition in the dimension of the split attribute. Larger

values for poverlap mean smoother transitions between the local models. The

optimal value of poverlap is determined using (internal) cross-validation.

The prediction of a fuzzy tree with one fuzzy split µ(xj , c, α) and two local
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models fLM1 and fLM2 is calculated by using the following formula:

f̂(x) = µ(xj , c, α)f̂LM1 (x) + (1− µ(xj , c, α))f̂LM2 (x) (3)

2.2.2. Ensemble selection

After the ensemble is built, it is optimized by using a greedy ensemble selec-

tion procedure. Trees that do not contribute to the accuracy of the ensemble are

removed from the ensemble. A tree’s contribution is evaluated by considering

the reduced ensemble without the tree and comparing its performance to the

current ensemble.

The selection procedure operates in a greedy fashion, reducing the ensemble

size by one tree in each step, as shown in the lower part of Table 1. It stops

when no improvement can be made to the performance of the ensemble. If

used for static regression (one-step prediction), the method evaluates the trees

and ensembles by using the prediction error function. For dynamic systems,

simulation on the identification data is performed and the evaluation is carried

out by using the output error function.

After the ensemble selection procedure, assume that the resulting ensemble

has M trees: E = {f1, f2, ..fM}. The prediction of the ensemble is a uniformly

weighted average of the model tree predictions:

f̄(x) =
1

M

M∑
i=1

f̂i(x) (4)

2.2.3. Computational complexity

The computational complexity of the top-down growing procedure for a sin-

gle tree is O(P · D · logD), where D is the number od data points (examples)

and P is the number of descriptive variables. The complexity of the bottom-up

pruning procedure is O(D ·P 2). This term accounts for the learning of the local
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Table 2: Pseudocode for learning a fuzzified model tree.

Learn model tree(D)
Inputs: an identification data set D
Outputs: a tree T

Let T be an empty tree
T =Grow tree(D)
T =Prune tree(T )
T =Fuzzify tree(T )
Grow tree(D)
Inputs: an identification data set D
Outputs: a pointer to the root node of the induced tree

If |D| < N
Return a terminal node

If the st.dev. of the target var. on set D
is less than 5% of the st.dev. on the whole training set

Return a terminal node
Let R be a random subset of features, that contains K elements
For each feature x in R

For all possible split cut-points c
Calculate the SDR of the split s[x < c] using Equation 1

Let s be the split with maximum SDR
Split the set D into subsets Dl and Dr based on split s
Let Tl=Grow tree(Dl), Tr=Grow tree(Dr)
Return a tree with a root node with split s and subtrees Tl and Tr
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Table 3: Pseudocode for learning a fuzzified model tree (cont.).

Prune tree(T )
Inputs: a subtree T
Outputs: pruned subtree rooted at the same node as T

If the root node of T is not a terminal node
Prune tree( T → left subtree )
Prune tree( T → right subtree )
Learn a linear model for the root node of T using linear regression
Let errLM be the error of the linear model
If Subtree error(T ) > errLM then

Convert the root node of T to a terminal node
Subtree error(T )
Inputs: a subtree T
Outputs: a numeric value - the error of the subtree model

Let Tl = T → left subtree, Tr = T → right subtree
Let D0 = T → examples, Dl = Tl → examples, Dr = Tr → examples
If the root node of T is not a terminal node

Return ( |Dl| * Subtree error(Tl) + |Dr| * Subtree error(Tr) ) / |D0|
Otherwise

Return the error of the linear model of the root node of T
Fuzzify tree(T )
Inputs: a subtree T
Outputs: fuzzified subtree rooted at the same node as T

If the root node of T is not a terminal node
Let the split at the root node of T be : s[xj < c]
Let D = T → examples
Let [xmin

j , xmax
j ] be the range of the data points of D in dimension j

Using Eq.2 calculate α, s.t. the split width is equal to poverlap|xmax
j − xmin

j |
Create a fuzzy split in the root node of T using Eq.2 : µ(xj , c, α)
Fuzzify tree(T → left subtree)
Fuzzify tree(T → right subtree)
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linear models in all nodes of the tree. Note that the least-squares estimation

of a linear model in a tree node is performed by using only variables found in

the tests in the subtree rooted at that node. Finally, the complexity of the

ensemble selection procedure depends on the square of the number of trees in

the ensemble M (which is set to a constant value).

2.3. Illustrative example

To illustrate how ensembles of model trees are learnt, consider the regression

problem of fitting the static nonlinear function

f(x) = sin(2πx) + 2x (5)

using 100 points (x, y), with x uniformly distributed in the interval [0,1]. Four

fitting scenarios are presented. In the first scenario, one model tree is used

to approximate the nonlinear function. The second fits an ensemble model

composed of 50 model trees to the nonlinear function. The third and the fourth

scenario fit one model tree and an ensemble of 50 model trees, respectively, to

a noisy version of the data, where white noise with a standard deviation equal

to 20% of the target variable deviation was added.

The results of the fits are shown in Figure 3. The top parts of the figure

present the approximator fit and the true nonlinear function, while the bottom

parts of the figure present the error of the fit: f(x)− f̂(x). Some properties of

the model tree and the ensemble of model tree approximations can be clearly

seen from Figure 3. The single model tree with fuzzy splits, whose approxi-

mation is presented in Figure 3 (a), does not produce a good fit around the

points x = 0.3 and x = 0.7, where the derivative of the function changes sign.

The parts of the function where the derivative has the same sign (the intervals

(0, 0.3), (0.3, 0.7), and (0.7, 1)) are approximated better, but not perfectly, as

shown by the sloped error lines that can be seen in the bottom part of Figure 3

(a).

The ensemble of 50 model trees, using randomized splits and averaging of the
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Figure 3: Fitting the nonlinear function f(x) = sin(2πx) + 2x with (a) a model tree; (b) an
ensemble; (c) a model tree from noisy data (20% noise) and (d) an ensemble from noisy data
(20% noise). Dashed lines represent the function f(x) we are trying to fit; solid lines represent

the model predictions f̂(x); dots represent noisy function values. The lower panels show the

approximation error f(x) − f̂(x).

individual tree predictions (Figure 3 (b)), performs better in the problematic

regions. The error on the regions where the derivative changes sign is lowered,

and the error lines corresponding to the three intervals are much closer to zero

and straight, as depicted in bottom part of Figure 3 (b).

On the other hand, the fit to noisy data (Figure 3 (c) and (d)), is not as

accurate as in (a) and (b), according to the mean-squared error of the fit: it

increases by a factor of approximately 4. However, the ensemble fit improves

over the fit of a single tree both for the parts where the derivative changes sign,

as well as for the three mentioned intervals. The ensemble fit to the noisy data is

mostly smooth and the model is not severely affected by the noisy identification

data.
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3. Experimental evaluation

3.1. Experimental questions

This section sets out to evaluate the performance of the model-tree ensembles

method proposed above and to compare it with some state-of-the-art methods

for dynamic system identification. We are especially interested in its perfor-

mance in the presence of noise. More specifically, the aim of this section is to

address the three following experimental questions:

1. Is the MTE method resilient to noise?

2. How does the method compare to selected state-of-the-art methods when

identifying dynamic systems from noisy data in controlled conditions?

3. How does the method perform on real-world noisy data?

Two data sets (case studies) are used in the experimental evaluation. The

first one is a synthetic data set generated from a dynamic system model, to

which noise has been artificially added. The second data set presents measured

data for a semi-industrial pilot gas-liquid-separator plant.

In order to answer the first experimental question, the model tree ensembles

method is evaluated on the synthetic data set with artificially added white noise.

Besides the data without noise, we also consider data with three different noise

levels: 5 %, 10 %, 20 %. When introducing noise at level n%, we add to each

measured value xi of the variable x noise, which is sampled from the distribution

N(0, nσx/100) where σx is the standard deviation of the variable x.

The second question is addressed by a comparison to representative meth-

ods, i.e., selected state-of-the-art approaches for modeling nonlinear dynamic

systems. In particular, the method is compared to a multilayer perceptron neu-

ral network approach, a neuro-fuzzy approach, and a tree-based fuzzy approach.

The third question is tackled by using a measured data set originating from a

process engineering system.
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3.2. Selected methods for comparison

We compare the MTE method with three methods that are well-established

in the area of system identification: Neural Networks (Cristianini & Shawe-

Taylor, 2000), ANFIS (Jang et al., 1997) and Lolimot (Nelles, 2001). From the

parameter identification perspective, two of the methods utilize global optimiza-

tion of the parameters: Artificial Neural Networks and ANFIS. On the other

hand, Lolimot and the proposed model-tree ensembles use local optimization of

the local model parameters.

The models that the compared methods learn are of two types: a feed-

forward neural-network model and a Takagi-Sugeno fuzzy model. Two different

methods that build a Takagi-Sugeno model are compared, since the learning

strategies are different. ANFIS uses a separate structure identification step

and global optimization of the model parameters, while Lolimot uses an inte-

grated structure identification and local parameter estimation approach. A brief

overview of the properties of the methods is given in the following paragraphs.

We use feedforward Artificial Neural Networks (NN) (Cristianini & Shawe-

Taylor, 2000), more specifically a multilayer perceptron with one hidden layer of

neurons, trained by using a backpropagation procedure. The number of neurons

in the hidden layer is the only parameter whose value needs selection. We use

the Neural Network Toolbox implementation in Matlab. The network training

is performed using Levenberg-Marquardt optimization.

The Adaptive network based fuzzy inference system (ANFIS) (Tran et al.,

2009; Jang et al., 1997) is a hybrid neural-network approach, which builds a

Takagi-Sugeno fuzzy model. ANFIS solves the parameter estimation problem by

using a hybrid learning rule that combines the backpropagation gradient descent

and the least-squares method. The structure identification task - determining

the number of fuzzy rules and initial positioning of the fuzzy rule centers is

handled by using different methods: grid partitioning of the instance space,

fuzzy clustering, or a tree-based approach (Jang, 1994).

ANFIS suffers from the curse of dimensionality as the number of input di-

mension gets larger. In this work, we use the Matlab implementation of the
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ANFIS method (available in the Fuzzy Logic Toolbox). For the structure iden-

tification problem, we utilize the fuzzy c-means clustering method. We do not

use the clustering method’s automatic procedure of determining the number of

clusters, since (in our experience), it produces sub-optimal models. Instead, we

utilize a version of the clustering algorithm with a single tunable parameter:

the number of fuzzy clusters.

The Local Linear Model Trees (Lolimot) (Nelles, 2001) method is a multi-

model approach which builds a fuzzy model tree. It solves the structure identifi-

cation and parameter estimation problems in an integrated, iterative procedure.

In each iteration, the method adds one local model to the tree structure and

calculates the parameters of the model using local parameter estimation. It has

been successfully used for identification of dynamic systems (Rouhani et al.,

2007; Nelles, 2001).

More specifically, Lolimot builds linear model trees with smooth transitions

between the affine local models in the tree leafs. It fits a Gaussian basis function

in the center of each leaf node, where the standard deviation vector is calculated

based on the size of the partition in each dimension. The Lolimot algorithm

does not perform pruning, but instead, the building of the tree is halted when

the tree size increases beyond a predefined number of leaf nodes.

Using Lolimot for dynamic system identification requires determining the

optimal lag for the premise part (variables included in split tests) and the op-

timal lag for the consequent part (variables used in linear models in the tree

leafs). The best performing Lolimot tree is obtained by a trial-and-error proce-

dure: running the method with different lag value combinations for the premise

and consequent part and evaluating the obtained fit. Additional details about

the method are given by Nelles (2001).

The parameters of the MTE methodology are set and used as follows. The

number of trees in the ensemble (M) is set to 50. Our preliminary experiments

with different numbers of trees showed no improvement in accuracy by using

larger values. Also, the value of the minimal number of identification points

in a partition (N), is not crucial for the overall accuracy of the model being
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learned. From our experience, setting this parameter to its minimal value of

4, results in optimal model performance. On the other hand, the size of the

random subset of feature attributes (K), used in the tree growing phase, has an

effect on the overall performance of the method. The value of this parameter

determines whether the ensemble approach is bagging or Random Forests.

After the optimal lag and optimal value for the parameter K have been

found, the overlap width parameter poverlap is optimized. The values considered

for this parameter range from 5% to 50%. After the parameter optimization

step, the training of the ensembles is carried out, by learning 50 trees.

Our choice to use randomness in the split attribute selection, was due to

the experience that it can produce models with more diverse predictions. A

comparison of the MTE method with or without random split attribute selection

(Forests of Model Trees (FMT) vs. bagging of Model Trees (BMT) respectively)

is also shown in each of the tables in the Experimental results section (Section

3.6).

3.3. Experimental design

For each of the methods considered, the experimental evaluation required

determining the optimal lag (order) of the variables, as well as optimal values

for the method’s parameters. This task involved evaluating the performance of

the methods with different lag and parameter combinations on the identification

data. The determination of the optimal lag and parameter combination was

performed using internal 5-fold cross-validation, creating 5 train/test splits of

the identification data, learning a model for each of the folds, and evaluating

the prediction error. The lag and parameter combination that produced optimal

(mean-squared) prediction error for the cross validation procedure was selected.

The values of the lag and parameter combinations tested are shown in Table

4. After the optimal values for the lag and the method’s parameters were

determined, they were used to evaluate the performance of the method on the

validation data.

For the identification using the synthetic input-output data, the methods
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were trained by using both the noiseless data and data with added white noise

with mean zero and standard deviation of 5%, 10% and 20% of the standard

deviation of the system variable. The noise was added only to the system

variables in the identification data, i.e., to all corresponding lagged variables in

the set of features as well as in the target variable of the identification set. No

noise was added to the validation data.

The error measure reported is root relative mean-squared error (RRMSE):

RRMSE =

√∑
(yi − ŷi)2√∑
(yi − ȳ)2

(6)

To obtain more reliable estimates of the performance, each experiment was re-

peated 20 times1, using different random seeds for the randomization included in

the methods. We report the mean and the standard deviation of the simulation

(output), measured as RRMSE across the 20 runs.

It is worth noting here that Lolimot does not include any randomization and

is a purely deterministic method. On the other hand, Neural networks, ANFIS

and MTE use randomization. Neural networks use randomization to set the

initial values of the neuron parameters. The structure determination of ANFIS,

carried out by using c-means fuzzy clustering, uses random initial standard

deviations of the fuzzy membership Gaussian functions. The MTE method uses

randomization in the bootstrap sampling and split attribute selection.

3.4. Case study: pH neutralization

The control of alkalinity (pH) is common in biotechnological industries and

chemical processes. The topic of this case study is the identification of the

pH neutralization process, which exhibits severe nonlinear behavior (Henson &

1In machine learning, performance is standardly evaluated by cross-validation. A more
reliable measure of the performance can be obtained by repeating the cross-validation proce-
dure 10 times and reporting the mean and variance of the error measure. We selected a larger
number of runs, to be sure that if a model built by using the current parameter combination
had a possibility of divergent simulation, it would be detected.
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Figure 4: A schematic diagram of the pH neutralization system.

Seborg, 1994; Kocijan & Petelin, 2011). What follows is a short description of

the process itself, the equations governing the process and the synthetic data

generated from this model of the pH neutralization process, which are used for

the task of system identification.

The pH neutralization system, described in detail by Henson & Seborg

(1994), consists of an acid stream Q1, a buffer stream Q2, and a base stream

Q3 that are mixed in a tank T1. Before mixing takes place, the acid stream

Q1 enters another tank T2. The measured variable is the effluent pH, which is

controlled by manipulating the flow rate of the base stream Q3. The flow rates

of the acid and buffer streams are taken to be constant. A schematic diagram

of the system is shown in Figure 4.

A model of this dynamic system is derived by Henson & Seborg (1994),

which contains the following state, input and output variables:

x = [Wa4 Wb4 h1]T , u = Q3, y = pH (7)

where Wa4 and Wb4 are the effluent reaction invariants and h1 is the liquid

level of tank T1. Also, it is assumed for the state variable h1 that a controller

has already been designed to keep its level at a nominal value of h′1 = 14cm

by manipulating the exit flow rate Q4. The state-space model obtained has the
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form:

ẋ = f(x) + g(x)u (8)

c(x, y) = 0 (9)

where f(x) and g(x) are nonlinear functions of the state vector x, while c(x, y)

is a nonlinear function which is a part of the implicit output equation (9).

The sampling time selected was 25s, same as in the work of Kocijan & Petelin

(2011). The input variable u changed its value every 500s, each time being set

to a value generated by using a uniform random distribution. The input-output

data used, shown in Figure 5, consist of 320 data points for identification and

320 data points for validation.

The experimental procedure included determining the optimal method pa-

rameters, as well as the optimal order (lag) of the variables, whose value was

in the range from 1 to 4. The parameter values considered are shown in Table

4. For example, for the Neural Networks method, we tried 10 different values

for the number of hidden neurons parameter and 4 values for the lag, which

gave a total of 40 combinations. Each of these was evaluated by using (internal)

cross-validation on the identification data. The best performing combination of

parameter values, also reported in Table 4, was selected.

To evaluate the resilience of the identification methods to noise, four different

variants of the data were considered, where white noise was added to the output

(system) variable only in the identification data. The standard deviations of the

added white noise were 0%, 5%, 10% and 20% of the output variable’s standard

deviation. The bottom left panel in Figure 5 shows the identification data with

20% noise. The validation data were not disturbed by white noise.

3.5. Case study: gas-liquid separator

The system being modeled in this case study is a unit for the separation of

gas from liquid (Kocijan & Likar, 2008). The separator unit is a semi-industrial

process plant which belongs to a larger pilot plant. A scheme of the structure

of the plant is given in Figure 6.
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Figure 5: Input-output data for identification of the pH system; detrended identification data
(left) and detrended validation data (right). The bottom left panel shows both the non-noisy
data (solid line) and the data with 20% noise (dots).
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Figure 6: A schematic diagram of the semi-industrial process plant.

The purpose of the modeled system is to capture flue gases under low pres-

sure from the effluent channels using a water flow, cool the gases down, and

supply them with increased pressure to other parts of the pilot plant. The flue

gases coming from the effluent channels are absorbed by the water flow into the

water circulation pipe through the injector I1. The flow of water is generated by

the water ring pump (P1), whose speed is kept constant. The pump feeds the

gas-water mixture into the tank T1, where the gas is separated from the water.

The accumulated gases in the tank form a kind of a pressurized gas ’cushion’.

Due to this pressure, the flue gases are blown out from the tank into the neu-

tralization unit, while on the other hand, the water is forced by the ’cushion’ to

circulate back to the reservoir. The water quantity in the circuit is constant.

The first-principles model of the system is a set of differential equations.

The variable p1 is the relative air pressure in the tank T1, the variable h1 is the

liquid level of the tank T1, while u1 and u2 are command signals for the valves

V1 and V2 respectively. The differential equation for the air pressure variable
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p1 has the form:

dp1

dt
= fa(h1)[α1 +α2p1 +α3p

2
1 + fb(u1)

√
p1 + fc(u2)

√
(p1 + α4 + α5h1)] (10)

where the values αi are constants, while fa(h1), fb(u1) and fc(u2) are functions

of the corresponding variables. fa(h1) is a rational function of h1, while fb(u1)

and fc(u2) are the valve characteristics (exponential functions of u1 and u2

respectively). The details of the model are given by Kocijan & Likar (2008).

The aim of the system identification in this case study is to build a model for

predicting the value of the pressure variable p1, from lagged values of itself, as

well as lagged values of the input variables. The sampling time selected was 20

seconds, same as in the work of Kocijan & Grancharova (2010). The identifica-

tion and the validation data both consist of 733 input-output data points, shown

in Figure 7, and are disturbed by intrinsic measurement noise. The optimal lag

was chosen by considering lag values from 1 to 3. For illustration, for a lag of

2, the system identification problem is transformed to the following regression

problem:

p1(k) = f(p1(k−1), p1(k−2), u1(k−1), u1(k−2), u2(k−1), u2(k−2), h1(k−1), h1(k−2))

(11)

The experimental procedure was identical to the one for the previous case study

(Section 3.4). Again, all possible parameter and lag combinations were tested

and the best performing combination, based on the cross-validation evaluation

using the identification data, was selected. The selected parameters for each

method are reported in Table 4, while the performance on the validation data

is reported in Tables 5 and 6.

3.6. Experimental results

The results of the evaluation of the five methods, i.e., Neural Networks,

ANFIS, Lolimot and the two variants of MTE (Forests of Model Trees and

Bagging of Model Trees) on the pH data are shown in Table 5 and Figure 8.
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Figure 7: Input-output data for identification of the gas-liquid separator system. Detrended
identification data are shown in the left and detrended validation data in the right four panels.

The y axis of the figure depicts the output error of the methods, in terms of

RRMSE, aggregated over the 20 runs. The curves display the mean error, while

the error bars represent the standard deviations of the output error in terms of

RRMSE.

It can be observed from Figure 8 that, apart from Neural Networks, there

is no large difference between the compared methods. Neural Networks have

the worst performance among all considered methods, as well as the largest

deviation of the error measure. The performance of ANFIS and Lolimot is

approximately the same, except for the 5% noise case, where ANFIS has lower

error. FMT, on the other hand, performs worse than ANFIS for the 0% and 5%

noise cases, while their performance is approximately the same for the 10% and

20% noise cases. It can be also observed that FMT is very resilient to noise,

as its error increases only slightly with increased levels of noise. The variability

of the error measures is almost zero for ANFIS and exactly zero for Lolimot,

which is a purely deterministic method, while MTE shows small variations in

the value of the error measure. However, this small variation does not affect the
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Table 4: Method parameters and lag values considered and selected for the experimental
evaluation.

parameter
pH neutralization Gas-liquid separator
values
tried

best
value

values
tried

best
value

Neural number of hidden neurons 1,2,..,10 6 1,2,..,10 6
Networks lag 1,2,3,4 2 1,2,3 1

ANFIS
number of fuzzy clusters

(rules)
2,3,..,10 3 2,3,..,10 2

lag 1,2,3,4 2 1,2,3 1

Lolimot
maxiumum num.local

models
5,10,20,
30,50

50 5,10,20,
30,50

20

premise space lag 1,2,3,4 2 1,2,3 2
consequent space lag 1,2,3,4 2 1,2,3 2

Forest of
Model

size of random subset of
feature att. (K)

1,2,3,4 1 1,2,3 1

Trees poverlap 5,10,15,
.., 50%

25% 5,10,15,
.., 50%

50%

lag 1,2,3,4 2 1,2,3 1
Bagging of

Model
poverlap 5,10,15,

.., 50%
30% 5,10,15,

.., 50%
40%

Trees lag 1,2,3,4 2 1,2,3 1

reliability of the ensemble models produced.

Table 5: Performance of the methods on the pH data set in terms of simulation/output error
(RRMSE) on the validation data.

noise 0% noise 5% noise 10% noise 20%
Neural Networks 0.1498±0.0712 0.1617±0.0512 0.1617±0.0478 0.1996±0.0630

ANFIS 0.0766±0.0000 0.0843±0.0000 0.1123±0.0000 0.1270±0.0001
Lolimot 0.0834±0.0000 0.1175±0.0000 0.1203±0.0000 0.1180±0.0000
Forest of 0.1085±0.0111 0.1076±0.0086 0.1141±0.0084 0.1229±0.0142

Model Trees
Bagging of 0.1262±0.0173 0.1109±0.0088 0.1109±0.0089 0.1353±0.0154

Model Trees

Below we give an illustration of the fit of the MTE models to the validation

data. Figure 9 shows the model predictions (simulations) for all noise cases

(top), as well as the error of the fit ŷ − y (bottom). It can be seen that the

model learned in the presence of 20% noise in the identification data performs

the worst. This is clearly visible for the time interval [0s, 500s], where the

predicted and true values differ the most, as well as around the time points

2500s, 4500s, and 6500s. However, it can be observed that the model simulation

for the lower noise levels is smooth and closely approximates the output variable

of the validation data. The only exceptions are the out-of-equilibria points,
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Figure 8: Average output error (RRMSE) of the different methods on the pH validation data
across 20 runs (error bars represent standard deviation). The models are learned using noisy
identification data.
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around 1500s, 3500s, and 7000s, where the model is not as accurate. This is

due to the small number of identification data points in the out-of-equilibria

regions.

The results of the evaluation of the different methods on the real-world gas-

liquid-separator data are shown in Table 6. The table displays the mean and

standard deviation of the simulation error (RRMSE), across the 20 runs. The

globally optimized model of ANFIS, with only two rules, has the best simulation

performance. The locally optimized MTE follows, showing only slightly worse

performance.

On this case study, Neural networks and Lolimot show the worst perfor-

mance. The variability of the error measure is close to zero for ANFIS, small

for MTE, and quite large for the Neural Network models. The small variability

of the simulation error on real-world data shows that MTEs are able to produce

models with reliable simulation performance.

Figure 10 illustrates the predictions (simulations) of the model that the FMT

variant of the MTE method produces and their fit to the validation data. The

model consists of 5 trees, while the total number of local linear models, i.e.,

total number of tree leaves is 36. The fit closely approximates the validation

data, while the predictions for the out-of-equilibria points, for example around

time points 4000 or 5000, are not as accurate. The error of the MTE ensemble

is shown in the bottom part of the figure.

Table 6: Performance of the system identification methods on the gas-liquid separator data
set in terms of output error (RRMSE).

Gas-liquid
separator

Neural Networks 0.2106±0.0402
ANFIS 0.1622±0.0014
Lolimot 0.2368±0.0000

Forest of Model
Trees

0.1711±0.0119

Bagging of Model
Trees

0.2081±0.0147

The two variants of the MTE method – Forests of Model Trees and their
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Figure 9: Simulations (predictions) of the MTE models for the pH data at different noise
levels: Validation data and simulations of models learned from noisy data are shown at the
top, simulation errors at the bottom panel.
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Figure 10: Simulations (predictions) of the MTE model for the gas-liquid separator data:
Validation data and simulation of the model are shown at the top, simulation errors at the
bottom panel.

special case of Bagging Model Trees show different performance. Tables 5 and 6

show that the performance of BMT is worse or equal to the performance of FMT.

This shows that the attribute randomization parameter K, which determines

whether the variant is FMT or BMT, needs selection.

The complexity of the models is shown in Table 4. It can be observed that

ANFIS creates global models with very few local models: 3 for the pH data set

and 2 for the gas-liquid separator data set. This is because the global optimiza-

tion of the parameters produces accurate predictions using a small number of

widely applicable local models. The neural networks method, which also opti-

mizes the model parameters globally, requires quite a small model complexity -

only 6 neurons. On the other hand, the methods which utilize local estimation

of the local model parameters - Lolimot and MTE (the Forests of Model Trees

variant), build global models containing more local models (Table 7).
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Table 7: Information about the complexity of models learned by the five different methods.
pH neutral-

ization
Gas-liquid
separator

Neural number of hidden neurons 6 6
Networks lag 2 1

ANFIS
number of fuzzy clusters (rules) 3 2

lag 2 1

Lolimot
number of local models 45 20

premise space lag 2 2
consequent space lag 2 2

Forest of Model
Trees

number of trees after reduction
(A)

6 5

average number of local models
per tree (B)

7.5 7.2

total number of local models
(A·B)

45 36

lag 2 1
Bagging of Model

Trees
number of trees after reduction

(A)
6 9

average number of local models
per tree (B)

11 15

total number of local models
(A·B)

66 135

lag 2 1

4. Conclusions, Discussion, and Further Work

Summary

We address the task of discrete-time modeling of nonlinear dynamic systems

using measured data, which is typically converted into a regression problem.

We investigate the use of tree ensembles for regression, a very successful pre-

dictive modelling approach, for this task. We consider existing tree ensemble

approaches to regression, such as bagging of model trees, and propose the use

of a novel approach of learning model tree ensembles tailored to the task of

modeling dynamic systems. The latter learns random forests of fuzzified model

trees and performs ensemble selection based on the output error measure.

We evaluate the performance of the tree ensemble methods and three state-

of-the-art methods for system identification typically used in control engineer-

ing. We consider the predictive performance of the learned models and in par-

ticular their resilience to noise. For this purpose, we use one synthetic task

without noise, one synthetic task with different levels of artificially introduced
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noise, and one real task of modeling nonlinear dynamic systems, all coming from

the area of control engineering.

Introduction of a new machine learning method for modeling dynamic systems

The task of modeling dynamic systems requires a modeling procedure which

produces a smooth fit and a reasonable extrapolation behavior. Regression

trees and ensembles thereof do not meet these two criteria and are thus not

appropriate for the task at hand: Both fail on the extrapolation front, with

ensembles producing smoother fits than individual regression trees Aleksovski

et al. (2013).

Instead, we propose the use of ensembles of model trees with fuzzified splits.

Here already the base models produce much smoother fits and have better ex-

trapolation capabilities. The ensembles (random forests) of such trees produce

better behavior still, which is further improved by performing ensemble selection

(guided by the output error as a measure).

Noise resilience

The proposed Model-Tree Ensembles method demonstrates useful noise-

tolerance properties, even in quite noisy scenarios. The experimental evaluation

confirms the beneficial noise resilience properties of the method by adding a

large amount of noise to the identification data for the pH problem, which was

as high as 20%. The output error of the model increases only slightly as the

noise level increases.

Comparison to system identification methods

The experimental evaluation revealed that the number of rules (local mod-

els) is smaller when the method at hand utilizes global optimization for its

parameters, as compared to the methods which only utilize local optimization,

as the proposed MTE method does. However, the globally optimal approaches

use nonlinear optimization procedure, which is more computationally complex

than the linear optimization used in the locally optimal approaches.
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Our proposed Model-Tree Ensembles have comparable predictive perfor-

mance to the models learned by state-of-the-art methods for system identifi-

cation typically used in control engineering. Having in mind that the Model-

Tree Ensembles is a method that includes randomization, the empirical analysis

showed that the variance of the error measure is low and the method demon-

strates reliable performance. The computing time of our approach is comparable

to that of the state-of-the-art methods on the small problems considered, with

the potential to scale much better to large modeling problems.

The MTE method has the potential to scale well, as it can handle data

sets that are large along both dimensions, i.e., the number of features and the

number of examples (identification points). Decision trees as a base method

are among the most efficient machine learning methods in terms of handling a

large number of examples. Random forests, which take random subsets of the

set of features at each step of building the tree, can handle very large numbers

of features. This translates to handling either a large number of system/input

variables, a large time lag, or both.

Further work

We intend to pursue several directions for further work, including the fur-

ther development of the model tree ensemble methodology, a more extensive

evaluation and practical applications thereof. In terms of the latter, we plan

to apply our methodology to additional problems/tasks of modeling dynamic

systems, especially to larger problems. This would allow us to investigate and

demonstrate the scalability of our approach.

As further work, we would also like to extend our method for the multi-

input multi-output (MIMO) case. This would increase the applicability of the

methodology and would produce dynamic system models of smaller sizes as com-

pared to learning several single-output models. Related approaches for learning

multi-output model trees already exist (Appice & Džeroski, 2007): These could

be extended to include fuzzified splits and be used as base model learners within

an ensemble setting similar to the one considered here.
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