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Abstract

Standard bearing fault detection features are shown to be ineffective for estimating bearings’ remaining useful
life (RUL). Addressing this issue, we propose an approach for bearing fault prognostics, which employs Rényi
entropy based features to describe the statistical properties of the envelope of the generated vibrations and
a set of Gaussian process (GP) models to relate the feature value to RUL. GP models are non-parametric
black-box models which search for the relationships among measured data rather than trying to approximate
the modelled system by fitting the parameters of the selected basis functions. Bearing’s RUL is estimated
as a posterior distribution following the Bayes’ rule using GP models’ output as likelihood distribution.
The proposed approach was evaluated on the data set provided for the IEEE PHM 2012 Prognostic Data
Challenge.

Keywords: Prognostics, Gaussian process models, wavelet packet transform, Rényi entropy, remaining
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1. Introduction

Several surveys show that bearing faults represent the most common cause for failure of mechanical drives
[1, 2]. Therefore, suitable methods for fault detection and prognostics of bearing faults is of significant
practical merit. As a result, a plethora of the methods for detection of bearing mechanical faults have
been developed. Most of the available methods rely on a well-established feature set, which is based on
characteristic bearing fault frequencies linked to specific bearing surface faults [3]. Despite the effectiveness
for bearing fault detection, these features are ineffective for estimating bearings’ remaining useful life (RUL)
since their values are almost constantly zero up until the moment when a surface fault occurs [4]. Addressing
the problem of bearing fault prognostics, in this paper we propose a combination of new Rényi entropy
features based on the describing the statistical properties of the envelope of bearing’s vibrations and Gaussian
process (GP) models for calculating bearing’s RUL.

The problems of bearing fault prognostics attracted a lot of attention in the past years. Majority of the
proposed approaches try to describe the relationship between the defect growth and the time evolution of
some statistical characteristic of the generated vibrations like energy, peak-to-peak values, RMS, kurtosis,
crest factor, etc. [4–8]. Usually, the selected statistical characteristics are calculated on a specific frequency
bands of the generated vibrations and their ratios are used as features for estimating the bearing’s RUL.

The effectiveness of these ratios as features for RUL estimation can be explained by the time evolution
of the bearing’s natural frequency [9–11]. By observing this time evolution, Qiu et al. [12] were able to
specify a relation between bearing’s natural frequency, the running time and bearing’s RUL. Although the
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results look promising, the paper lacks clear description how the evolving bearing natural frequency was
estimated. Under similar assumption, Ocak et al. [13] model the evolution of the energy of particular wavelet
packet nodes using hidden Markov models. The changes in the nonlinear dynamics of the bearing enabled
Janjarasjitt et al. [14] to estimate the bearing’s RUL by tracking the increase of the dimensional exponents
of the generated vibrations.

The time evolution of the natural frequency and the increase of the dimensional exponents indicate that
the generated vibrations become more “complex” as the bearings’ RUL decreases. Following this idea, in
this paper we present a set of features that quantify the statistical complexity of the generated vibrations
by employing computationally efficient approach based on wavelet packet transformation.

The concept of signals statistical complexity is readily applied for analysis of EEG signals [15–17]. The
idea exploits the fact that the increase of the number of complex (pseudo-)random components present in the
observed signal increases its statistical complexity. This paper employs a particular definition of statistical
complexity that is a product of Jensen-Rényi divergence (statistical contrast function) and Rényi information
entropy. In the context of bearing prognostics, any change in the bearing’s surface can be treated as a source
of additional signal components with complex dynamics, hence increasing the statistical complexity of the
generated vibrations. In this paper we show that the evolution of the (Jensen-)Rényi entropy based indices
of the generated vibrations can be related to the bearing’s RUL. In addition, the process for calculating
the statistical complexity requires no prior information about the operating conditions and no previous
knowledge about the physical characteristics of the monitored drive [18, 19].

Based on the values of the Jensen-Rényi divergence and Rényi entropy, the bearing’s RUL is estimated
using GP models. The GP models are probabilistic, non-parametric models based on the principles of
Bayesian probability. They differ from most of the other black-box identification approaches in that they
search for relationships among the measured data rather than try to approximate the modelled system by
fitting the parameters of the selected basis functions. The output of the GP models is a normal distribution,
expressed in terms of the mean and the variance. The mean value represents the most likely output and
the variance can be interpreted as a measure of its confidence. The obtained variance, which depends on
the amount and the quality of the available identification data, is important information when it comes to
distinguishing the GP models from other computational intelligence methods. Due to their properties, the
GP models are especially suitable for modelling when data are unreliable, noisy or missing, and therefore have
been used in various fields, for instance: biological systems [20, 21], environmental systems [22], chemical
engineering [23] and many others. Kocijan and Tanko [24] used GP models for the modelling of time series
describing gear health and the prediction of the critical value of harmonic component feature that indicates
the wear of gear. In this paper the GP models are used for smoothing noisy features and estimating the
RUL based on smoothed features.

The proposed approach for estimating bearing’s RUL is depicted in Figure 1. It consists of four main
steps. In first step Rényi entropy based features are extracted from input signals. The detailed definition of
the selected features and their applicability for bearing prognostics are presented in Sections 2 and 3, and
their numerical estimation is presented in Section 4. In the second step these features are smoothed using the
GP models. Afterwards, in the third step, RUL is estimated with GP models. The definition and properties
of GP models are presented in Section 5. In the last step, presented in Section 6, the RUL distribution
p(RUL) is obtained as a posterior distribution by using the output of the GP models as likelihood. The
evaluation of the proposed approach, presented in Section 7, is evaluated on the data set provided for the
IEEE PHM 2012 Prognostic Challenge [25].

2. Signal complexity

The definitions of the statistical complexity of a signal vary depending of the context, such as data
compression, computational algorithms and predictability. In the context of signals, one can define two
extremes: periodic and purely random signals. Both cases belong to the class of low complexity signals:
the former due to its repetitive pattern and the latter due to its compact statistical description [26, 27].
Consequently, the “complex” signals should be located somewhere in between. Therefore, typical candidates
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Figure 1: Schematic representation of the prognostics algorithm.

are signals generated by a system with chaotic behaviour. Despite the deterministic nature, such signals
contain sufficiently complicated patterns, which are difficult to predict.

Let a random signal be generated by a random source described by its probability distribution P. In
this paper the statistical complexity C (P) is assessed through the information carried by the observed
signal generated by the source [16, 28]. The statistical complexity provides a link between the entropy
of the source H(P) and the “distance” D(P,Pe) between the probability distribution P and the uniform
distribution Pe. Before defining the statistical complexity C (P), one has to revisit the basic concepts of
entropy and “distance” between two probability distributions.

2.1. Concepts of entropy
The concept of entropy serves to characterise the probability distribution functions (PDF). For a discrete

probability distribution P = {p1, p2, . . . , pN}, the simplest definition of entropy is the one according to
Shannon:

H(P) = −
∑
p∈P

p ln(p). (1)

For a discrete set with cardinality N Shannon entropy can acquire values between 0 and N lnN . A problem
with the Shannon entropy is that it is relatively insensitive to the changes in the tails of the distribution.
In many cases, faults in the drives affect the tails. Consequently, we adopted an extension of the Shannon
entropy in the form of Rényi entropy [29]:

Hα(P) =
1

1− α
ln
∑
p∈P

pα(x), α ≥ 0α 6= 1. (2)

Rényi entropy introduces the parameter α, which can be employed in order to manage the sensitivity of the
entropy towards particular segments of the probability distribution P.

2.2. Jensen-Rényi divergence
Divergence is a concept which is helpful in expressing the dissimilarities (or “distance”) between the

distribution functions. The Jensen-Rényi divergence between two distribution functions P and Q defined
on the same set is [30]:

Dw
α (P,Q) = Hα (wP + (1− w)Q)− {wHα(P) + (1− w)Hα(Q)} , (3)

where w ≥ 0. The values of the exponent α governs the sensitivity of these two quantifiers to particular
segments of the PDF, i.e. it specifies the relative importance of small values versus large values of the
probability mass [31].

3



2.3. Statistical complexity and its application for prognostics
The statistical complexity C (P) of a signal with distribution P based on (2) and (3) is defined as [16]:

C (P) = Q0D
w
α (P,Pe)Hα(P), (4)

where Pe is the uniform distribution and Q0 is a normalisation constant so that Q0D
w
α (P,Pe) ∈ [0, 1]. The

product (4) is in accordance with the initial idea that signals with perfect order Hα(P) = 0 and maximal
disorder Dw

α (P,Pe) = 0 have the lowest complexity.
In the context of prognostics it is important to specify the time evolution of the statistical complexity

(4). The concept of time is present in (4) indirectly through the entropy Hα(P) by using the fact that the
system’s entropy increases in time. Therefore, the statistical complexity C (P) is usually plotted versus the
entropy Hα(P) [16]. This plot always covers a specific area depending on the number of bins used for the
estimation of the probability P, as shown in Figure 2. The pre-defined shape of the plot outlines the possible
time evolution of the signal’s complexity. The evolution of the statistical complexity is directly related to
the nature of the observed system. Therefore, by trending the evolution of the statistical complexity within
the pre-defined area one can perform the prognostics task. For the task of estimating the bearing’s RUL, the
first step is to analyse how bearing’s condition affects the statistical complexity of the generated vibrations.
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Figure 2: Signal’s statistical complexity area.

3. Complexity of bearing vibrations

Healthy bearings produce negligible vibrations. However, in the case of surface damage, vibrations are
generated by rolling elements passing across the damaged site on the surface. Each time this happens,
impact between the passing ball and the damaged site triggers a system impulse response s(t). The time
of occurrence of these impulse responses as well as their amplitudes should be considered as purely random
processes. Consequently, the vibrations generated by damaged bearings can be modelled as [32]:

y(t) =

+∞∑
i=−∞

Ais(t− νi) + n(t), (5)

where Ai is the impulse of force that excites the entire structure and νi is the time of its occurrence. The
final component n(t) defines an additive random component that contains all non-modelled vibrations as
well as environmental disturbances.

At this point, it should be noted that the impulse response s(t) is influenced by the transmission path
from the point of impact to the measurement point [33]. As the position of the damaged spot on the bearing
surface rotates the transmission path changes in time. However, the main characteristic of s(t), regardless
of its true form, is that it usually resides in the high-frequency range. Since this is the only characteristic
relevant for our analysis, we will adopt the model (5) as sufficiently accurate one.
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3.1. Evolution of the statistical complexity of the generated bearing vibrations
The main diagnostic information regarding bearing faults are the time moments νi when the impulse

responses s(t) are excited. Therefore, the usual approach is to analyse the envelope of the generated
vibrations. In our case, we look for any changes in the statistical characteristics of the envelope [18].

For healthy bearing, the envelope of the generated vibrations will be without any visible structure due
to the lack of impacts s(t− νi). Therefore, the envelope will have low complexity but high entropy. In the
context of the plot from Figure 2, such a signal would be positioned in the lower right corner.

The occurrence of a surface fault will introduce some “structure” in the envelope of the generated vibra-
tions. Consequently, its statistical complexity will increase while in the same time the entropy will decrease.
In the terminal phase, when the surface faults would became detectable even by the standard bearing fault
detection features, the envelope will contain “repetitive” impulses with sufficiently high amplitude. From a
statistical point of view, the presence of these impulses makes the signal statistically similar to a determin-
istic one. Thus, towards the end of the bearing’s life, the signal complexity will sharply drop accompanied
with a significant decrease in its entropy, hence the final position will be in the lower left corner of the pre-
defined area shown in Figure 2. Therefore, the time evolution of the statistical complexity of the envelope of
the generated vibrations from the lower right to the lower left point of the pre-defined area can be employed
as a feature in the process of estimating RUL.

4. Wavelet based estimation of the statistical complexity of the signal envelope

According to (4), the first step in the computation of the statistical complexity is the estimation of the
PDF of the envelope of the generated vibrations. Due to the link between the signal’s envelope and its
instantaneous power [34], in this approach the underlying PDF is estimated through the energy distribution
of the wavelet packet coefficients.

For the computation of the coefficients the so-called wavelet packet transform (WPT) is used [35]. The
structure of WPT is described by a binary tree structure, as shown in Figure 3. A wavelet packet tree with
depth dM and nodes (d, n), where d = {1, 2, . . . , dM} represents the depth of the tree and n = {1, 2, . . . , 2d}
stands for the number of the node at depth d. WPT allows arbitrary partition of the time-frequency plane.
The wavelet coefficients in the set of terminal nodes contain all information regarding the analysed signal.
The analysis of the envelope is performed by analysing the signal’s energy within each terminal node.

f(t)
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(1,1)

(2,1)

(3,3)(3,2)(3,1) (3,4)

(2,4)

(1,2)

(2,3)

(3,7)(3,6)(3,5) (3,8)

Figure 3: Example of a full WPT tree with depth dM = 3.

Each of the n nodes at level d contains Nd wavelet coefficients Wd,n,t t = 0, . . . , Nd − 1, Nd = 2−dNs,
Ns is the sample length of the signal [36]. Using these coefficients, the portion of the signal’s energy Ed,n
contained within one node (d, n) reads [37]:

Ed,n =

Nd−1∑
t=0

‖Wd,n,t‖2 . (6)

The total signal’s energy can be obtained by summing the energy contained within the set of terminal nodes
T :

Etot =

Nd−1∑
t=0

d,n∈T

‖Wd,n,t‖2 =
∑
d,n∈T

Ed,n. (7)

5



The set Pd,n expresses the contribution of each wavelet coefficient to the energy of the signal within the
terminal node (d, n):

Pd,n =

{
pd,nt =

‖Wd,n,t‖2

Ed,n
, t = 0, · · · , Nd − 1

}
. (8)

A similar set can be defined for the contribution of the energy of each terminal node (d, n) ∈ T in the total
energy of the signal Etot:

PT =

{
pd,n =

Ed,n
Etot

, d, n ∈ T
}
. (9)

The elements contained in both sets Pd,n and PT can be treated as realisation of a random process.
Based on these realisations one can estimate the corresponding probability distributions and calculate their
entropies and statistical complexity according to relations (2)–(4).

4.1. Condition monitoring based on the statistical characteristics of the sets Pd,n and PT

The idea of monitoring the condition of a drive is illustrated in Figure 4. At the beginning of the
monitoring process the reference condition should be defined by computing the values of C (P) and the
corresponding Rényi entropy for both Pd,n and PT . In the course of time, the values are calculated on
a short segment of signal. If the bearing’s condition is normal, no significant difference between the two
distributions should exist. A fault in the system can cause changes in the distribution of the particular node
at hand, hence altering the corresponding values of Dw

α (P,Pe) and Hα(P). This can be used as means to
detect and, in some cases, to isolate a fault.

It is important to emphasise that the window length is usually very short and the operating conditions
within the node can therefore be assumed constant. If the speed actually varies, the spectral content will
also move along the frequency axis. In spite of that, the distribution pattern associated with the WPT
will not change much as the shifted harmonics are still within the specific frequency band associated to the
particular node. However, if a change in the operating speed is severe enough, it might happen that the
frequency content from one node moves to the adjacent node, thus fooling entirely the diagnostic reasoning.
In the case of variations in the load, mild variations normally have no significant impact on the frequency
distribution pattern. Furthermore, even in the case of significantly increased load, additional sideband
components might occur but without any major impact on the energy distribution within a node.

4.2. Running example
To show the applicability of the concept, simulated signals reflecting fault-free run as well as run with

bearing fault are shown in Figure 4. The signals are processed by WPT with depth dM = 3. The histograms
of Pd,n values for the node (3, 4) are shown at the bottom.

The histogram of the fault free case shows that the majority of the wavelet packet coefficients W3,4,t

have zero value. According to (8) we can claim that for the fault free case the node (3, 4) is without any
content. The small number of wavelet coefficients that have value greater than zero can be attributed to
the simulated Gaussian noise n(t) from (5).

Conversely, presence of bearing fault significantly alters the frequency content in this node. The his-
togram of P3,4 has completely different shape than the one of the fault free case. By quantifying the shape
alterations of the histograms of particular WPT nodes, using the relations (2)–(4), one can estimate the
bearing’s RUL sufficiently accurate.

5. Gaussian process models

GP models are flexible, probabilistic, non-parametric models. Their modelling properties are reviewed
in [38–41]. A Gaussian process is a collection of random variables, which have a joint multivariate Gaussian
distribution. Assuming a relationship of the form y = f(x) between input x and output y, we have
y1, . . . , yN ∼ N (0,K), where Kpq = Cov(yp, yq) = C(xp,xq) gives the covariance between output points

6



Time

Vibration signal

Bearing faultFault free bearing
0

0.005

0.01

0

0.005

0.01

f(t)

(2,2)

(1,1)

(2,1)

(3,3)(3,2)(3,1) (3,4)

(2,4)

(1,2)

(2,3)

(3,7)(3,6)(3,5) (3,8)

f(t)

(2,2)

(1,1)

(2,1)

(3,3)(3,2)(3,1) (3,4)

(2,4)

(1,2)

(2,3)

(3,7)(3,6)(3,5) (3,8)

Figure 4: Calculation scheme.

corresponding to input points xp and xq. Thus, the mean µ(x) and the covariance function C(xp,xq) fully
specify the Gaussian process.

The value of covariance function C(xp,xq) expresses the correlation between the individual outputs f(xp)
and f(xq) with respect to inputs xp and xq. It should be noted that the covariance function C( · , · ) can be
any function that generates a positive semi-definite covariance matrix. It is usually composed of two parts,

C(xp,xq) = Cf(xp,xq) + Cn(xp,xq), (10)

where Cf represents the functional part and describes the unknown system we are modelling, and Cn

represents the noise part and describes the model of noise.
Presuming white noise, the most commonly used is the constant covariance function. The choice of the

covariance function for the functional part depends on the stationarity of the process. Assuming stationary
data most commonly used covariance function is the square exponential covariance function. The composite
covariance function is therefore

C(xp,xq) = v1 exp

[
−1

2

D∑
d=1

wd(xdp − xdq)2
]

+ δpqv0, (11)

where wd are the automatic relevance determination hyperparameters, v1 and v0 are hyperparameters of
the covariance function, D is the input dimension, and δpq = 1 if p = q and 0 otherwise. Hyperparameters
can be written as a vector Θ = [w1, . . . , wD, v1, v0]T . The wd indicate the importance of individual inputs.
If wd is zero or near zero, it means the inputs in dimension d contain little information and could possibly
be discarded. Other forms and combinations of covariance functions suitable for various applications can be
found in [38].

To accurately reflect the correlations presented in the training data, the hyperparameter values of the
covariance function need to be optimized. Due to the probabilistic nature of the GP models, the common
model optimization approach where model parameters and possibly also the model structure are optimized
through the minimization of a cost function defined in terms of model error (e.g. mean square error), is not
readily applicable. A probabilistic approach to the optimization of the model is more appropriate. Actually,
instead of minimizing the model error, the probability of the model is maximized.
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Consider a set of N D-dimensional input vectors X = [x1,x2, . . . ,xN ]T and a vector of output data
y = [y1, y2, . . . , yN ]. Based on the data (X,y), and given a new input vector x∗, we wish to find the predictive
distribution of the corresponding output y∗. Based on training set X, a covariance matrix K of size N ×N
is computed. The output of GP model is predictive distribution p(y∗|y,X,x∗) of the target y∗, given the
training data (y,X) and an input x∗. However, this distribution is conditioned on the hyperparameters Θ,
which should be integrated out as:

p(y∗|y,X,x∗) =

∫
p(y∗|Θ,y,X,x∗)p(Θ|y,X)dΘ. (12)

The computation of such integrals can be difficult due to the intractable nature of the non-linear functions. A
solution to the problem of intractable integrals is to adopt numerical integration methods such as the Monte-
Carlo approach. Unfortunately, significant computational efforts may be required to achieve a sufficiently
accurate approximation.

Another standard practice for determining the predictive distribution is by maximum-likelihood estima-
tion of hyperparameter values. This is achieved by minimising the following negative log-likelihood function:

L(Θ) = −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π). (13)

Since the covariance matrix K in (13) depends on Θ, the likelihood function is non-linear and multi-
modal. Therefore efficient optimisation routines require gradient information. The computation of the
derivative of L(Θ) with respect to each of the parameters is as follows:

∂L(Θ)

∂θi
= −1

2
trace

(
K−1

∂K

∂θi

)
+

1

2
yTK−1

∂K

∂θi
K−1y. (14)

GP models can be easily utilised for regression, where the goal is to find the distribution of the corre-
sponding output y∗ for some new input vector x∗ = [x1(N+1), x2(N+1), . . . , xD(N+1)]. For the collection
of random variables [y1, . . . , yN , y

∗] we can write:

p(y, y∗|X,x∗) = N (0,K∗), (15)

with the covariance matrix

K∗ =


K k(x∗)

kT (x∗) κ(x∗)

 , (16)

where y = [y1, . . . , yN ] is an 1×N vector of training targets, k(x∗) = [C(x1,x
∗), . . . , C(xN ,x

∗)]T is the N×1
vector of covariances between the test and training cases, and κ(x∗) = C(x∗,x∗) is the covariance between
the test input itself. The predictive distribution of the output p(y∗|y,X,x∗) is obtained by marginalising
(15) and has a normal PDF with mean and variance:

µ(y∗) = k(x∗)TK−1y, (17)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗). (18)

As can be seen from (18), the GP model, in addition to mean value, also provides information about
the confidence in prediction by the variance. Usually the confidence of the prediction is depicted with 2σ
interval which corresponds to approximately 95%. This confidence region can be seen as a grey band in
Figure 5. It highlights areas of the input space where the prediction quality is poor due to the lack of data
or noisy data, by indicating a wider confidence band around the predicted mean.
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Figure 5: Modelling with GP models: in addition to mean value (prediction), we obtain a 95% confidence
region for the underlying function f (shown in grey).

6. Procedure for the RUL estimation

The procedure for the RUL estimation from the complexity feature values consists of three main steps,
namely the pre-processing of the feature values, RUL modelling with GPs and computation of the posterior
PDF of the bearing’s RUL.

6.1. Pre-processing of feature values
The computed features (2)–(4) include a relatively strong random component. Therefore, we introduced

an intermediate step in which this random component is removed with a GP-based smoothing model. We
assume, that the random component follows a normal distribution. The GP model for this task uses a
composite covariance function (11).

The smoothing is then simply performed by estimating distribution of each training data time-series.
The result of this process is a set of Gaussian distributions N (µt, σ

2
t ) estimated at each time moment t. This

process is schematically shown in Figure 6. It should be noted that GP smoothing is performed without
introducing any additional lag in the smoothed time-series, unlike other commonly used filtering methods
such as moving average, exponential smoothing, etc.
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Figure 6: Smoothing process.

6.2. RUL modelling with GPs
The joint distribution of all smoothed time-series in the training dataset are used to construct a set of GP

models that relate the feature value to the bearing’s RUL. As the duration of the training datasets varies,
the actual experiment time t was replaced by the life-cycle relative time index τi. The resulting training
data are shown in Figure 7.
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The result of the training process is a GP model which defines the evolution of the feature value for each
τi ∈ [0, 1]. Given the input value of τi, the output of the GP model is a normal distribution describing the
PDF of the feature value at the relative time τi. These points τi ∈ [0, 1] are interpreted as a percentage of
the used life. The training process can be described as:

GP : N (µi, σ
2
i |τi), where τi ∈ [0, 1] and i ∈ N. (19)

The mean values µi are shown with thick line in Figure 7.
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Figure 7: Time evolution of Dw
α (P,Pe) normed in the interval [0, 1].

6.3. RUL estimation
The bearing’s RUL is estimated by computing the posterior distribution of the bearing life-cycle relative

time index τi. As the training data points are normalised to lie on the interval τi ∈ [0, 1], the RUL is simply
1 − τi. The posterior PDF of the distribution p(τi) is computed from the feature value Dw

α (Pt,Pe) at the
time instant t by following the Bayes’ rule in the following form:

P (τi|Dw
α (Pt,Pe)) ∝ P (Dw

α (Pt,Pe)|τi)P (τi), (20)

where the likelihood P (Dw
α (Pt,Pe)|τi) is given by the GP model (19) and the prior P (τi) in (20) can

either include any additional knowledge related to the RUL distribution or can be set to an uninformative
distribution.

If the informative prior is used in (20), the distribution P (τi) has to satisfy two main criteria. Firstly,
it has to be conditioned on the current experiment duration t and secondly, it should be designed in a way
that will give more weight to the prior at the beginning and more weight on the measurements, once they
become significant. For this purpose, we propose the truncated normal distribution TN

(
µ, σ2

)
with PDF

given as:

p(τ) =
1√

2πσ2

exp

(
− (τ − µ)

2

2σ2

)

Φ

(
b− τ
σ

)
− Φ

(
a− τ
σ

)I[a,b](τ), (21)

where Φ( · ) is the standard normal cumulative density function and I[a, b](τ) = 1 if a ≤ τ ≤ b and zero
otherwise.

The posterior distribution is interpreted as a relative time of the experiment and therefore the prior
should be limited to positive values of τi. To achieve this, the support of (21) is set to a = 0, b = ∞.
Furthermore, the conditioning of the prior to current experiment time t is achieved by setting its mean value
to µ = E(τ)−t, where E(τ) is the expected value of 1−RUL (mean time to failure). Finally, the covariance
is time dependent and set to σ2 = V0 · t, where V0 is the inflation constant. The result of inflation is that in
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the initial stages of the bearing’s life cycle, the prior will have a low covariance and will be the dominating
part of (20). As the time progresses, the inflating covariance will effectively put more weight to the observed
data and the GP model likelihood P (Dw

α (Pt,Pe)|τi) will dominate. Using the above definition, the proposed
prior distribution p(τ) takes the form:

p(τ) =
1√

2πV0t

exp

(
− (τ − (E(τ)− t))

2V0t

)
1− Φ

(
− (E(τ)− t)

2V0t

) I[0,∞](τ). (22)

The important characteristic of this specific prior distribution is the truncation, which limits the prior
only on positive values of time τi. From inspection of the (22), it can be seen that when the mean value
E (τ) − t is far above 0 (e.g. more that 3σ), the truncation has practically no effect and the distribution
is indistinguishable from a Gaussian one. However, when the mean value is approaching 0, the truncation
limits the support to the selected interval and the denominator in (22) normalizes the function values. The
resulting distribution thus has a mean value that is always greater than 0 and is slowly approaching it, which
is an expected behavior of the distribution of the RUL.

The numerical estimation of the posterior (20) is schematically described in Figure 8. For a specific
feature value Dw

α (Pt,Pe), measured at time t, the likelihood p(Dw
α (Pt,Pe)|τi) is computed for each value

of τi ∈ [0, 1]. The likelihood is then multiplied by the prior (22), evaluated at the same values of τi and
normalised. The result of the computation is the posterior PDF p(τi|Dw

α (Pt,Pe)).

Used life τi = 1−RUL [%]
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Figure 8: Calculating the probability for feature value Dw
α (Pt,Pe) = 1.15.

7. Prognostics results

7.1. Experimental setup
The proposed approach was evaluated on the data set for the IEEE PHM 2012 Data Challenge [25].

Provided data consist of three batches, each corresponding to different speed and load conditions. The
generated vibrations were sampled with 22 kHz for duration of 100 ms, repeated every 5 minutes. The
experiments were stopped when the RMS value of the generated vibrations surpassed 20 m/s2.

Some of the experimental runs were rejected from the training process, since the time evolution of their
features substantially differs from the majority. These rejections can be explained by two factors. Firstly,
the tested bearings were subjected to loads several orders higher than the nominal ones. Secondly, the
criterion for experiment end was selected as a hard threshold. Consequently, regardless of the initial high
values of the vibration variance, some experiments lasted significantly longer. Therefore, as the majority
of the experiments, 11 out of 17, show similar feature evolution, we assumed that the 6 rejected are not
representative candidates, hence rejecting them from the training process.
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7.2. Results
The procedure for RUL estimation described in Section 6 is applied for each of the 16 WP nodes, which

results into 16 GP models. Each GP model describes the evolution of the Rényi entropy based features for
each WP node. The final prediction of RUL is performed by fusing the predictions of all 16 GP models.
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Figure 9: Evolution of P (τi|Dw
α (Pt,Pe)) (bearings’ used life) using the 3rd WP node.

Using the Bayes’ rule (20) with the truncated prior (22) bearing’s RUL can be computed at any time
moment. Such an evolution of RUL is shown in Figure 9. As experiment durations vary, the x-axis is
normalised on the interval [0, 1]. The results exhibit almost linear relationship between the experiment time
and the increase of the used life. At the very beginning, up to 20% of the experiment time, the variance
of the posterior P (τi|Dw

α (Pt,Pe)) (20) is small. In the middle of the experiment, the uncertainty of the
estimates are somewhat higher. Towards the end of the experiment, when the measured feature values
become sufficiently high, the estimates become more precise.

It should be noted that the RUL evolution differs depending on the WP node. In many cases, WP nodes
spanning higher frequency bands exhibit early RUL decrease. On the other hand, the WP nodes spanning
lower frequency bands become sensitive to RUL changes towards the end of the experiment. This effect,
for WP nodes 4 and 14, is shown in Figure 10. It is clearly visible that the posterior distribution (20)
for the 4th WP node has its mode around τi = 30% for the majority of the experiment duration. At the
same time, the posterior distribution (20) for the 14th WP node assigns sufficiently high likelihood values
for τi > 70% fairly early in the experiment. This effect can be employed as an early warning indicator of
condition deterioration.

8. Conclusions

Monitoring the evolution of the Jensen-Rényi divergence and the Rényi entropy of vibrational signals
using GP models leads to sufficiently accurate estimation of bearing’s RUL. The proposed approach has
two main advantages. Firstly, the calculation of the corresponding entropy based features requires no prior
knowledge about the bearing’s physical characteristics and no information about the operating conditions.
Secondly, their wavelet based numerical estimation imposes no limits on the statistical characteristics of
the analysed signals, which makes them suitable for monitoring bearings running under constant as well as
variable operating conditions.

The benefits of applying GP models are twofold. As a pre-processing step, GP models performed
smoothing of the feature values without inducing the lag in the time series. Based on this smoothed values,
the training process defines the relation between the feature values and experiment time. The bearing’s RUL
is obtained as a posterior distribution using the Bayes’ rule, where the likelihood is the relation specified
by the GP model. The only element left is the prior distribution, which was in our case chosen to be a
truncated Gaussian distribution.
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Figure 10: P (τi|Dw
α (Pt,Pe)) estimates for different WP nodes.

The proposed approach was evaluated on limited data set. Increasing the set of available data should
contribute to more precise definition of the prior distribution as well as the accuracy of the GP model
mappings. However, regardless of the size and the quality of the available data set, the proposed approach
is generally applicable for estimating bearing’s RUL.
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