
I. SCIENTIFIC SESSIONS

I.8. Session

DISTRIBUTED
ARCHITECTURES,

HIGH PERFORMANCE
COMPUTING AND

APPLICATIONS

 International Conference
AUTOMATICS AND INFORMATICS’10

3-7 October 2010, Sofia, Bulgaria

I - 231

I - 232

A PARALLEL COMPUTING ALGORITHM FOR DESIGN OF EXPLICIT
NONLINEAR MODEL PREDICTIVE CONTROLLERS1

A. Grancharova1, J. Kocijan2, 3

1 Institute of System Engineering and Robotics, Bulgarian Academy of Sciences, Acad G. Bonchev str., Bl.2,
P.O.Box 79, Sofia 1113, Bulgaria, e-mail: alexandra.grancharova@abv.bg

2 Department of Systems and Control, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
e-mail: jus.kocijan@ijs.si

3 University of Nova Gorica, Centre for Systems and Information Technologies, Vipavska 13, 5000 Nova
Gorica, Slovenia

Abstract: Recently, several multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit solution of constrained
Nonlinear Model Predictive Control (NMPC) problems have been suggested. The benefits of an explicit solution, in addition to the
efficient on-line computations, include also verifiability of the implementation. However, the off-line computational complexity of the
explicit NMPC approaches tends to increase rapidly with the number of states. In this paper, a parallel computing algorithm for design of
explicit NMPC controllers is proposed, which is based on an approximate mp-NLP approach. The off-line computational efficiency of
the mp-NLP approach is improved by allowing the computations to be performed in parallel on multi-core computer architectures.

Key words: Parallel computations, Explicit Model Predictive Control, Multi-parametric Nonlinear Programming.

1 This work was financed by the National Science Fund of the Ministry of Education, Youth and Science of Republic of Bulgaria,
contract №DO02-94/14.12.2008 and the Slovenian Research Agency, contract №BI-BG/09-10-005 (“Application of Gaussian
processes to the modeling and control of complex stochastic systems”)

INTRODUCTION

Nonlinear Model Predictive Control (NMPC) involves the
solution at each sampling instant of a finite horizon optimal
control problem subject to nonlinear system dynamics and
state and input constraints [1]. Several approaches to explicit
solution of NMPC problems have been suggested in the
literature [2], [3], [4], [5]. The benefits of an explicit solution,
in addition to the efficient on-line computations, include also
verifiability of the implementation. In [2], [3], [4], approaches
for off-line computation of explicit sub-optimal piecewise
linear (PWL) predictive controllers for general nonlinear
systems with state and input constraints have been developed,
based on the multi-parametric Nonlinear Programming (mp-
NLP) ideas [6]. It has been shown that for convex mp-NLP
problems, it is straightforward to impose tolerances on the
level of approximation such that theoretical properties like
asymptotic stability of the sub-optimal feedback controller can
be ensured [3]. In [4], practical computational methods to
handle non-convex mp-NLP problems have been suggested.
Algorithms for solving mp-NLP problems, including the non-
convex case, are described also in [5].

However, the off-line computational complexity of the explicit
MPC tends to increase very rapidly with the number of states
and this would restrict the application of the approximate mp-
NLP approaches only for systems with a few states. This has
led to the development of several methods (e.g. [7], [8]) for
complexity reduction of the explicit solution of MPC
problems.

Another way for decreasing the off-line computational burden
of the explicit MPC approaches is to develop parallel
computing algorithms, which will exploit the multi-core
computer architectures available nowadays. In this paper, a
parallel computing algorithm for design of explicit NMPC
controllers is proposed. It uses the Parallel Computing
Toolbox for MATLAB [9] and represents a parallel
implementation of the approximate mp-NLP approach in [4].

FORMULATION OF NONLINEAR MODEL PREDICTIVE

CONTROL PROBLEM

Consider the discrete-time nonlinear system:

(1) ((), ())x t f x t u t+ = (1)

() ()y t Cx t= (2)

where () nx t ∈ , () mu t ∈ , and () py t ∈ are the state,

input and output variable, and : n m nf × → is a

nonlinear function. It is supposed that a full measurement of
the state ()x t is available at the current time t . For the

current ()x t , the regulation NMPC solves the optimization
problem:

Problem P1:
*(()) min (, ())

U
V x t J U x t= (3)

subject to | ()t tx x t= and:

min | max , 1, ... ,t k ty y y k N+≤ ≤ = (4)

min max , 0,1, ... , 1t ku u u k N+≤ ≤ = − (5)

|t N tx δ+ ≤ (6)

 International Conference
AUTOMATICS AND INFORMATICS’10

3-7 October 2010, Sofia, Bulgaria

I - 233

1| |(,) , 0t k t t k t t kx f x u k+ + + += ≥ (7)

| | , 0t k t t k ty Cx k+ += ≥ (8)

with 1 1[, ,...,]t t t NU u u u+ + −= and the cost function given by:
1 2 2 2

| |
0

(, ())
N

t k t t k t N t PRQ
k

J U x t x u x
−

+ + +
=

⎡ ⎤= + +⎢ ⎥⎣ ⎦∑ (9)

Here, N is a finite horizon and , , 0P Q R . From a stability

point of view it is desirable to choose δ in (6) as small as
possible [10]. However, the feasibility of problem P1 will rely
on either δ or N being sufficiently large. A part of the
NMPC design will be to address this tradeoff. The problem P1
can be formulated in a compact form as follows:

Problem P2:
*(()) min (, ()) subject to (, ()) 0

U
V x t J U x t G U x t= ≤ (10)

Problem P2 defines an mp-NLP, since it is NLP in U
parameterized by ()x t . An optimal solution to this problem is

denoted * * * *
1 1[, ,...,]t t t NU u u u+ + −= and the control input is

chosen according to the receding horizon policy *() tu t u= .

Define the set of N-step feasible initial states as follows:

{ | (,) 0 for some }n Nm
fX x G U x U= ∈ ≤ ∈ (11)

In parametric programming problems one seeks the solution
*()U x as an explicit function of the parameters x in a set

n
fX X⊆ ⊆ [6].

PARALLEL COMPUTING ALGORITHM FOR DESIGN

OF EXPLICIT NMPC

Here, a parallel computing algorithm for design of explicit
NMPC controllers is proposed, which represents a parallel
implementation of the approximate mp-NLP approach in [4].

Let nX ⊂ be a hyper-rectangle where we seek to

approximate the optimal solution *()U x to the problem P2. It
is required that the state space partition is orthogonal and can
be represented as a k – d tree. The main idea is to construct a

feasible PWL approximation ˆ ()U x to *()U x on X , where
the constituent affine functions are defined on hyper-
rectangles covering X [4]. The computation of an affine state
feedback associated to a given region iX includes the

following steps. First, a close-to-global solution of problem P2
is computed at a set of points in iX . Then, based on the

solutions at these points, a local linear approximation
ˆ ()i i iU x K x g= + to the close-to-global solution *()U x , valid

in the whole hyper-rectangle iX , is determined by applying

the following procedure [4]:
Procedure 1:
Consider any hyper-rectangle iX X⊆ with a set of points

{ }10 1 2, , , ... ,i N iV v v v v X= ⊂ . Compute iK and ig by solving

the following NLP:
1 2* *

2, 0

min ((,) () ())
i i

N

i j i j j i j i j
K g j

J K v g v V v K v g U vµ
=

+ − + + −∑ (12)

subject to (), 0 ,i j i j j iG K v g v v V+ ≤ ∀ ∈ (13)

In (12), (,)i j i jJ K v g v+ is the sub-optimal cost, *()jV v

denotes the cost corresponding to the close-to-global solution
*()jU v , i.e. * *() ((),)j j jV v J U v v= , and the parameter

0µ > is a weighting coefficient. After a state feedback

ˆ ()i i iU x K x g= + has been determined, an estimate îε of the

maximal cost function approximation error in iX is computed

as follows:

{ }1

*

0,1,2, ... ,
ˆ max ((,) ())i i j i j j

j N
J K v g v V vε

∈
= + − (14)

If îε ε> , where 0ε > is the specified tolerance of the

approximation error, the region iX is divided and the

procedure is repeated for the new regions.

The parallel computations in the algorithm for design of
explicit NMPC controllers are implemented by using the
function parfor (for creating parallel for-loops) of the Parallel
Computing Toolbox for Matlab [9]. The basic concept of a
parfor-loop in MATLAB software is the same as the standard
MATLAB for-loop: MATLAB executes a series of statements
(the loop body) over a range of values. Part of the parfor body
is executed on the MATLAB client (where the parfor is
issued) and part is executed in parallel on MATLAB workers
[9]. MATLAB workers evaluate the parfor-loop iterations in
no particular order, and independently of each other.
Therefore, in order to create a parfor-loop, each iteration of
the loop must be independent on all other iterations. Parfor
divides the loop iterations into groups so that each worker
executes some portion of the total number of iterations.

The parallel computing algorithm for design of explicit NMPC
is described as follows:
Algorithm 1 Approximate mp-NLP based on parallel computations

Input: Data to problem P2, the parameter µ (used in Procedure 1),

the approximation tolerance ε .
Output: Partition 1 2{ , , ... , }

regionsNX X XΠ= and associated PWL

function 1 2
ˆ ˆ ˆ ˆ{ , , ... , }

regionsNU U U U= .

1. Initialize the partition to the whole hyper-rectangle, i.e.

1 :X X= , 1: { }XΠ = , : 1regionsN = . Mark the hyper-rectangle

1X as unexplored, flag:=1.

2. while flag=1 do
3. parfor i=1, 2, … , regionsN do

4. if the hyper-rectangle iX ∈Π is unexplored then

5. Compute a solution to problem P2 at the center
point 0v of iX .

6. if P2 has a feasible solution at 0v then

7. Define a set of points { }10 0 1 2, , , ... , NV v v v v=

associated to iX .

8. Compute a close-to-global solution to problem
P2 for x fixed to each of the points

1, 1, 2, ... ,iv i N= .

9. if P2 has a feasible solution at all points

1, 1, 2, ... ,iv i N= then

10. Compute an affine state feedback ˆ ()iU x using

Procedure 1, as an approximation to be used in

iX .

11. if a feasible solution was found then
12. Mark iX feasible. Compute an estimate

îε of the error bound iε in iX according

to (14).
13. If îε ε> , mark the hyper-rectangle iX to

be split. Otherwise, mark iX explored.

14. else
15. Mark iX infeasible. Compute the size of

iX using some metric. If it is smaller than

I - 234

some given tolerance, mark iX explored.

Otherwise, mark iX to be split.

16. end if
17. else
18. Mark iX infeasible. Compute the size of iX

using some metric. If it is smaller than some
given tolerance, mark iX explored.

Otherwise, mark iX to be split.

19. end if
20. else
21. Mark iX infeasible. Compute the size of iX

using some metric. If it is smaller than some
given tolerance, mark iX explored. Otherwise,

mark iX to be split.

22. end if
23. end if
24. end parfor
25. flag:=0
26. if there are hyper-rectangles in Π that are marked to be

split then
27. flag:=1
28. parfor i=1, 2, … , regionsN do

29. if the hyper-rectangle iX ∈Π is marked to be split

then
30. if iX is feasible then

31. for j=1, 2, … , n do
32. Split iX by a hyperplane through its center

and orthogonal to the axis jx . Denote the

new hyper-rectangles with ,1
j

iX and ,2
j

iX .

33. Compute affine state feedbacks ,1
ˆ ()j

iU x

and ,2
ˆ ()j

iU x , valid respectively in ,1
j

iX

and ,2
j

iX , by applying Procedure 1.

34. Compute estimates ,1ˆ j
iε and ,2ˆ j

iε ,

respectively of the error bounds ,1
j

iε in

,1
j

iX and ,2
j

iε in ,2
j

iX according to (14).

Let ,1 ,2ˆ ˆ ˆj j j
i i iε ε ε= + .

35. end for
36. Split iX by a hyperplane through its center

and orthogonal to the axis jx where ˆ j
iε is

minimal. Mark the new regions ,1
j

iX and

,2
j

iX unexplored, remove iX from Π , and

add ,1
j

iX and ,2
j

iX to Π .

: 2regions regionsN N= + .

37. else
38. Split iX into hyper-rectangles ,1iX , ,2iX ,

…, , si NX by applying heuristic splitting

rules. Mark ,1iX , ,2iX , …, , si NX

unexplored, remove iX from Π , add ,1iX ,

,2iX , …, , si NX to Π .

:regions regions sN N N= +

39. end if
40. end if
41. end parfor
42. end if
43. end while

The details about the generation of a set of points associated to
a given region, the computation of a close-to-global solution
to problem P2, and the heuristic rules used to split a region in
step 38 of the algorithm can be found in [4].

EXAMPLE

Consider the following 2-nd order compressor model [4] with

1x being normalized mass flow, 2x normalized pressure and

u normalized mass flow through a close-coupled valve in
series with the compressor:

1 1 2(())ex B x x u= Ψ − − (15)

2 1 2
1

(())x x x
B

= −Φ (16)

The following compressor and valve characteristics are used
[4]:

3
1 1

1 0() 1 1.5 1 0.5 1e c
x x

x H
W W

ψ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟Ψ = + + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (17)

2 2 2() sign()x x xγΦ = (18)

with 0.5γ = , 1B = , 0.18H = , 0 0.3cψ = and 0.25W = .

Like in [4], the control objective is to avoid surge, i.e. stabilize
the system. This is formulated as:

1
* * 2

| |
0

2 * *
| |

(, ()) () ()

() ()

N
T

t k t t k t t k
k

T
t N t t N t

J U x t x x x x ku

Rv x x x x

α

β

−

+ + +
=

+ +

⎡ ⎤= − − + +⎣ ⎦

+ − −

∑ (19)

with , , , 0k Rα β ≥ and the set-point *
1 0.40x = , *

2 0.60x =

corresponds to an unstable equilibrium point. We have chosen
1α = , 0β = and 0.08k = . The horizon is 12T = , which is

split into 15N = equal-sized intervals, leading to a piecewise
constant control input parameterization. Valve capacity
requires the input constraint to hold:

 0 () 0.3u t≤ ≤ (20)
The pressure constraint:

2() 0.4x t v≥ − (21)

avoids operation too far left of the operating point. The
variable 0v ≥ is a slack variable introduced in order to avoid
infeasibility and 8R = is a large weight. The approximation

tolerance is chosen as *
0 min() max(0.005,)X cVε = where

0.03c = and
0

* *
min min ()

x X
V V x

∈
= . The state space to be

partitioned is defined by [0,0.9] [0,0.75]X = × . The partition

of the approximate explicit NMPC controller has 320 regions
and is shown in Fig. 1. The performance of the closed-loop

system is simulated for initial condition (0) [0.1 0.05]Tx =

and the resulting response is depicted in Fig. 1.

The off-line computation of the explicit NMPC is performed
on a 3 GHz Intel Core 2 Duo processor. The CPU time
corresponding to 11 consecutive iterations (steps 3 to 42) of
Algorithm 1 is shown in Fig. 2. For comparison in Fig. 2, the
CPU time associated to the non-parallel implementation of the
partitioning algorithm is also given. In Table 1, the average
CPU time necessary to compute a single region of the partition
and the total CPU time spent to obtain the partition of the
explicit NMPC are given for both the parallel and the non-
parallel methods. As it should be expected, the algorithm
based on parallel computations performs faster than the non-
parallel algorithm (which can be observed from Fig. 2 and
Table 1). However, the improvement of computational
efficiency is not significant with a dual-core processor. The

I - 235

computational efficiency can be improved furtherly on a
multi-core processor.

It should be noted that a modification of Algorithm 1 was
used, where the second parfor-loop includes the steps 32, 33,
34 (instead of steps 28 to 41). The reason is that the steps 32,
33, 34 involve the computations of two new regions (the
region iX is split by a hyperplane through its center and

orthogonal to the axis jx), which are performed in parallel

with the available dual-core processor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x - space

x
1

x 2

Fig. 1. The state space partition of the approximate explicit
NMPC, the approximate (solid curve) and the exact (dotted

curve) state trajectories.

1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000

14000

iterations

CPU time per iteration [s]

parallel computations
non-parallel computations

Fig. 2. CPU time corresponding to 11 consecutive iterations of

the partitioning algorithm.

Table 1. CPU times for the methods based on parallel and
non-parallel computations.

Method
Average CPU time

per region [s]

Total CPU time
for design of

explicit NMPC [s]
Parallel

computations
42 45786

Non-parallel
computations

62 60190

CONCLUSIONS

In this paper, a parallel computing algorithm for design of
explicit NMPC controllers is proposed. It uses the Parallel
Computing Toolbox for MATLAB [9] and represents a
parallel implementation of the approximate mp-NLP approach
[4]. The parallel partitioning algorithm is applied to design an
explicit NMPC for compressor surge control. It is shown that
the parallel computations improve the off-line computational
efficiency of the approximate mp-NLP approach.

REFERENCES

1. Allgöwer F., A. Zheng. Nonlinear Model Predictive

Control, Progress in System and Control Theory, vol. 26,
Birkhäuser Verlag, Basel, 2000.

2. Johansen T. A. On multi-parametric nonlinear
programming and explicit nonlinear model predictive
control. Proceedings of IEEE Conference on Decision
and Control, Las Vegas, NV, 2002, vol. 3, pp. 2768-
2773.

3. Johansen T. A. Approximate explicit receding horizon
control of constrained nonlinear systems. Automatica,
vol. 40, pp. 293-300, 2004.

4. Grancharova A., T. A. Johansen, and P. Tøndel.
Computational aspects of approximate explicit nonlinear
model predictive control. In R. Findeisen, F. Allgöwer
and L. Biegler, editors, Assessment and Future
Directions of Nonlinear Model Predictive Control,
Lecture Notes in Control and Information Sciences, vol.
358, Springer-Verlag, Germany, pp. 181-192, 2007.

5. Pistikopoulos E. N., M. C. Georgiadis, and V. Dua.
Multi-parametric Programming: theory, algorithms, and
applications, Wiley-VCH, 2007.

6. Fiacco A. V. Introduction to sensitivity and stability
analysis in nonlinear programming. Orlando, Fl:
Academic Press, 1983.

7. Alessio A., A. Bemporad. A survey on explicit model
predictive control. In: L. Magni, D. M. Raimondo and F.
Allgöwer (Eds.), Nonlinear Model Predictive Control:
Towards New Challenging Applications, Lecture Notes
in Control and Information Sciences, vol. 384, Springer-
Verlag, Germany, 2009, pp. 345-370.

8. Grancharova A., T. A. Johansen. Approaches to explicit
nonlinear model predictive control with reduced partition
complexity. Proceedings of European Control
Conference, Budapest, Hungary, 2009, pp. 2414-2419.

9. Parallel Computing ToolboxTM 4 User’s Guide, The
MathWorks, Inc., Natick, MA 01760-2098, USA, 2008.

10. Mayne D. Q., J. B. Rawlings, C. V. Rao, and P. O. M.
Scokaert. Constrained model predictive control: Stability
and optimality. Automatica, vol. 36, pp. 789-814, 2000.

I - 236

