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Abstract: Recently, several multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit solution of constrained 
Nonlinear Model Predictive Control (NMPC) problems have been suggested. The benefits of an explicit solution, in addition to the 
efficient on-line computations, include also verifiability of the implementation. However, the off-line computational complexity of the 
explicit NMPC approaches tends to increase rapidly with the number of states. In this paper, a parallel computing algorithm for design of 
explicit NMPC controllers is proposed, which is based on an approximate mp-NLP approach. The off-line computational efficiency of 
the mp-NLP approach is improved by allowing the computations to be performed in parallel on multi-core computer architectures. 
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INTRODUCTION  
 
Nonlinear Model Predictive Control (NMPC) involves the 
solution at each sampling instant of a finite horizon optimal 
control problem subject to nonlinear system dynamics and 
state and input constraints [1]. Several approaches to explicit 
solution of NMPC problems have been suggested in the 
literature [2], [3], [4], [5]. The benefits of an explicit solution, 
in addition to the efficient on-line computations, include also 
verifiability of the implementation. In [2], [3], [4], approaches 
for off-line computation of explicit sub-optimal piecewise 
linear (PWL) predictive controllers for general nonlinear 
systems with state and input constraints have been developed, 
based on the multi-parametric Nonlinear Programming (mp-
NLP) ideas [6]. It has been shown that for convex mp-NLP 
problems, it is straightforward to impose tolerances on the 
level of approximation such that theoretical properties like 
asymptotic stability of the sub-optimal feedback controller can 
be ensured [3]. In [4], practical computational methods to 
handle non-convex mp-NLP problems have been suggested. 
Algorithms for solving mp-NLP problems, including the non-
convex case, are described also in [5]. 
 
However, the off-line computational complexity of the explicit 
MPC tends to increase very rapidly with the number of states 
and this would restrict the application of the approximate mp-
NLP approaches only for systems with a few states. This has 
led to the development of several methods (e.g. [7], [8]) for 
complexity reduction of the explicit solution of MPC 
problems. 

Another way for decreasing the off-line computational burden 
of the explicit MPC approaches is to develop parallel 
computing algorithms, which will exploit the multi-core 
computer architectures available nowadays. In this paper, a 
parallel computing algorithm for design of explicit NMPC 
controllers is proposed. It uses the Parallel Computing 
Toolbox for MATLAB [9] and represents a parallel 
implementation of the approximate mp-NLP approach in [4]. 
 
FORMULATION OF NONLINEAR MODEL PREDICTIVE 

CONTROL PROBLEM 
 
Consider the discrete-time nonlinear system: 

( 1) ( ( ), ( ))x t f x t u t+ =     (1) 

( ) ( )y t Cx t=       (2) 

where ( ) nx t ∈ , ( ) mu t ∈ , and ( ) py t ∈  are the state, 

input and output variable, and : n m nf × →  is a 

nonlinear function. It is supposed that a full measurement of 
the state ( )x t  is available at the current time t . For the 

current ( )x t , the regulation NMPC solves the optimization 
problem: 

Problem P1: 
*( ( )) min ( , ( ))

U
V x t J U x t=        (3) 

subject to | ( )t tx x t=  and: 

min | max , 1, ... ,t k ty y y k N+≤ ≤ =    (4) 

min max , 0,1, ... , 1t ku u u k N+≤ ≤ = −    (5) 

|t N tx δ+ ≤            (6) 
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1| |( , ) , 0t k t t k t t kx f x u k+ + + += ≥        (7) 

| | , 0t k t t k ty Cx k+ += ≥          (8) 

with 1 1[ , ,..., ]t t t NU u u u+ + −=  and the cost function given by: 
1 2 2 2

| |
0

( , ( ))
N

t k t t k t N t PRQ
k

J U x t x u x
−

+ + +
=

⎡ ⎤= + +⎢ ⎥⎣ ⎦∑     (9) 

Here, N  is a finite horizon and , , 0P Q R . From a stability 

point of view it is desirable to choose δ  in (6) as small as 
possible [10]. However, the feasibility of problem P1 will rely 
on either δ  or N  being sufficiently large. A part of the 
NMPC design will be to address this tradeoff. The problem P1 
can be formulated in a compact form as follows: 

Problem P2: 
*( ( )) min ( , ( )) subject to ( , ( )) 0

U
V x t J U x t G U x t= ≤     (10) 

Problem P2 defines an mp-NLP, since it is NLP in U  
parameterized by ( )x t . An optimal solution to this problem is 

denoted * * * *
1 1[ , ,..., ]t t t NU u u u+ + −=  and the control input is 

chosen according to the receding horizon policy *( ) tu t u= . 

Define the set of N-step feasible initial states as follows: 

{ | ( , ) 0 for some }n Nm
fX x G U x U= ∈ ≤ ∈  (11) 

In parametric programming problems one seeks the solution 
*( )U x  as an explicit function of the parameters x  in a set 

n
fX X⊆ ⊆  [6]. 

 
PARALLEL COMPUTING ALGORITHM FOR DESIGN 

OF EXPLICIT NMPC 
 
Here, a parallel computing algorithm for design of explicit 
NMPC controllers is proposed, which represents a parallel 
implementation of the approximate mp-NLP approach in [4]. 

Let nX ⊂  be a hyper-rectangle where we seek to 

approximate the optimal solution *( )U x  to the problem P2. It 
is required that the state space partition is orthogonal and can 
be represented as a k – d tree. The main idea is to construct a 

feasible PWL approximation ˆ ( )U x  to *( )U x  on X , where 
the constituent affine functions are defined on hyper-
rectangles covering X  [4]. The computation of an affine state 
feedback associated to a given region iX  includes the 

following steps. First, a close-to-global solution of problem P2 
is computed at a set of points in iX . Then, based on the 

solutions at these points, a local linear approximation 
ˆ ( )i i iU x K x g= +  to the close-to-global solution *( )U x , valid 

in the whole hyper-rectangle iX , is determined by applying 

the following procedure [4]: 
Procedure 1: 
Consider any hyper-rectangle iX X⊆  with a set of points 

{ }10 1 2, , , ... ,i N iV v v v v X= ⊂ . Compute iK  and ig  by solving 

the following NLP: 
1 2* *

2, 0

min ( ( , ) ( ) ( ) )
i i

N

i j i j j i j i j
K g j

J K v g v V v K v g U vµ
=

+ − + + −∑ (12) 

subject to   ( ), 0 ,i j i j j iG K v g v v V+ ≤ ∀ ∈   (13) 

In (12), ( , )i j i jJ K v g v+  is the sub-optimal cost, *( )jV v  

denotes the cost corresponding to the close-to-global solution 
*( )jU v , i.e. * *( ) ( ( ), )j j jV v J U v v= , and the parameter 

0µ >  is a weighting coefficient. After a state feedback 

ˆ ( )i i iU x K x g= +  has been determined, an estimate îε  of the 

maximal cost function approximation error in iX  is computed 

as follows: 

{ }1

*

0,1,2, ... ,
ˆ max ( ( , ) ( ))i i j i j j

j N
J K v g v V vε

∈
= + −      (14) 

If îε ε> , where 0ε >  is the specified tolerance of the 

approximation error, the region iX  is divided and the 

procedure is repeated for the new regions. 
 
The parallel computations in the algorithm for design of 
explicit NMPC controllers are implemented by using the 
function parfor (for creating parallel for-loops) of the Parallel 
Computing Toolbox for Matlab [9]. The basic concept of a 
parfor-loop in MATLAB software is the same as the standard 
MATLAB for-loop: MATLAB executes a series of statements 
(the loop body) over a range of values. Part of the parfor body 
is executed on the MATLAB client (where the parfor is 
issued) and part is executed in parallel on MATLAB workers 
[9]. MATLAB workers evaluate the parfor-loop iterations in 
no particular order, and independently of each other. 
Therefore, in order to create a parfor-loop, each iteration of 
the loop must be independent on all other iterations. Parfor 
divides the loop iterations into groups so that each worker 
executes some portion of the total number of iterations. 
 
The parallel computing algorithm for design of explicit NMPC 
is described as follows: 
Algorithm 1 Approximate mp-NLP based on parallel computations 

Input: Data to problem P2, the parameter µ  (used in Procedure 1), 

the approximation tolerance ε . 
Output: Partition 1 2{ , , ... , }

regionsNX X XΠ=  and associated PWL 

function 1 2
ˆ ˆ ˆ ˆ{ , , ... , }

regionsNU U U U= . 

1. Initialize the partition to the whole hyper-rectangle, i.e. 

1 :X X= , 1: { }XΠ = , : 1regionsN = . Mark the hyper-rectangle 

1X  as unexplored, flag:=1. 

2. while flag=1 do 
3. parfor i=1, 2, … , regionsN  do 

4. if the hyper-rectangle iX ∈Π  is unexplored then 

5. Compute a solution to problem P2 at the center 
point 0v  of iX . 

6. if P2 has a feasible solution at 0v  then 

7. Define a set of points { }10 0 1 2, , , ... , NV v v v v=  

associated to iX . 

8. Compute a close-to-global solution to problem 
P2 for x  fixed to each of the points 

1, 1, 2, ... ,iv i N= . 

9. if P2 has a feasible solution at all points 

1, 1, 2, ... ,iv i N=  then 

10. Compute an affine state feedback ˆ ( )iU x  using 

Procedure 1, as an approximation to be used in 

iX . 

11. if a feasible solution was found then 
12. Mark iX  feasible. Compute an estimate 

îε  of the error bound iε  in iX  according 

to (14). 
13. If îε ε> , mark the hyper-rectangle iX  to 

be split. Otherwise, mark iX  explored. 

14. else 
15. Mark iX  infeasible. Compute the size of 

iX  using some metric. If it is smaller than 
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some given tolerance, mark iX  explored. 

Otherwise, mark iX  to be split. 

16. end if 
17. else 
18. Mark iX  infeasible. Compute the size of iX  

using some metric. If it is smaller than some 
given tolerance, mark iX  explored. 

Otherwise, mark iX  to be split. 

19. end if 
20. else 
21. Mark iX  infeasible. Compute the size of iX  

using some metric. If it is smaller than some 
given tolerance, mark iX  explored. Otherwise, 

mark iX  to be split. 

22. end if 
23. end if 
24. end parfor 
25. flag:=0 
26. if there are hyper-rectangles in Π  that are marked to be 

split then 
27. flag:=1 
28. parfor i=1, 2, … , regionsN  do 

29. if the hyper-rectangle iX ∈Π  is marked to be split 

then 
30. if iX  is feasible then 

31. for j=1, 2, … , n do 
32. Split iX  by a hyperplane through its center 

and orthogonal to the axis jx . Denote the 

new hyper-rectangles with ,1
j

iX  and ,2
j

iX . 

33. Compute affine state feedbacks ,1
ˆ ( )j

iU x  

and ,2
ˆ ( )j

iU x , valid respectively in  ,1
j

iX  

and ,2
j

iX , by applying Procedure 1. 

34. Compute estimates ,1ˆ j
iε  and ,2ˆ j

iε , 

respectively of the error bounds ,1
j

iε  in 

,1
j

iX  and ,2
j

iε  in ,2
j

iX  according to (14). 

Let ,1 ,2ˆ ˆ ˆj j j
i i iε ε ε= + . 

35. end for 
36. Split iX  by a hyperplane through its center 

and orthogonal to the axis jx  where ˆ j
iε  is 

minimal. Mark the new regions ,1
j

iX  and 

,2
j

iX  unexplored, remove iX  from Π , and 

add ,1
j

iX  and ,2
j

iX  to Π . 

: 2regions regionsN N= + . 

37. else 
38. Split iX  into hyper-rectangles ,1iX , ,2iX , 

…, , si NX  by applying heuristic splitting 

rules. Mark ,1iX , ,2iX , …, , si NX  

unexplored, remove iX  from Π , add ,1iX , 

,2iX , …, , si NX  to Π . 

:regions regions sN N N= +  

39. end if 
40. end if 
41. end parfor 
42. end if 
43. end while 

The details about the generation of a set of points associated to 
a given region, the computation of a close-to-global solution 
to problem P2, and the heuristic rules used to split a region in 
step 38 of the algorithm can be found in [4]. 
 

EXAMPLE 
 
Consider the following 2-nd order compressor model [4] with 

1x  being normalized mass flow, 2x  normalized pressure and 

u  normalized mass flow through a close-coupled valve in 
series with the compressor: 

1 1 2( ( ) )ex B x x u= Ψ − −     (15) 

2 1 2
1

( ( ))x x x
B

= −Φ     (16) 

The following compressor and valve characteristics are used 
[4]: 

3
1 1

1 0( ) 1 1.5 1 0.5 1e c
x x

x H
W W

ψ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟Ψ = + + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

    (17) 

2 2 2( ) sign( )x x xγΦ =     (18) 

with 0.5γ = , 1B = , 0.18H = , 0 0.3cψ =  and 0.25W = . 

Like in [4], the control objective is to avoid surge, i.e. stabilize 
the system. This is formulated as: 

1
* * 2

| |
0

2 * *
| |

( , ( )) ( ) ( )

( ) ( )

N
T

t k t t k t t k
k

T
t N t t N t

J U x t x x x x ku

Rv x x x x

α

β

−

+ + +
=

+ +

⎡ ⎤= − − + +⎣ ⎦

+ − −

∑  (19) 

with , , , 0k Rα β ≥  and the set-point *
1 0.40x = , *

2 0.60x =  

corresponds to an unstable equilibrium point. We have chosen 
1α = , 0β =  and 0.08k = . The horizon is 12T = , which is 

split into 15N =  equal-sized intervals, leading to a piecewise 
constant control input parameterization. Valve capacity 
requires the input constraint to hold: 

 0 ( ) 0.3u t≤ ≤      (20) 
The pressure constraint: 

2( ) 0.4x t v≥ −      (21) 

avoids operation too far left of the operating point. The 
variable 0v ≥  is a slack variable introduced in order to avoid 
infeasibility and 8R =  is a large weight. The approximation 

tolerance is chosen as *
0 min( ) max(0.005, )X cVε =  where 

0.03c =  and 
0

* *
min min ( )

x X
V V x

∈
= . The state space to be 

partitioned is defined by [0,0.9] [0,0.75]X = × . The partition 

of the approximate explicit NMPC controller has 320 regions 
and is shown in Fig. 1. The performance of the closed-loop 

system is simulated for initial condition (0) [0.1 0.05]Tx =  

and the resulting response is depicted in Fig. 1. 
 
The off-line computation of the explicit NMPC is performed 
on a 3 GHz Intel Core 2 Duo processor. The CPU time 
corresponding to 11 consecutive iterations (steps 3 to 42) of 
Algorithm 1 is shown in Fig. 2. For comparison in Fig. 2, the 
CPU time associated to the non-parallel implementation of the 
partitioning algorithm is also given. In Table 1, the average 
CPU time necessary to compute a single region of the partition 
and the total CPU time spent to obtain the partition of the 
explicit NMPC are given for both the parallel and the non-
parallel methods. As it should be expected, the algorithm 
based on parallel computations performs faster than the non-
parallel algorithm (which can be observed from Fig. 2 and 
Table 1). However, the improvement of computational 
efficiency is not significant with a dual-core processor. The 
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computational efficiency can be improved furtherly on a 
multi-core processor. 
 
It should be noted that a modification of Algorithm 1 was 
used, where the second parfor-loop includes the steps 32, 33, 
34 (instead of steps 28 to 41). The reason is that the steps 32, 
33, 34 involve the computations of two new regions (the 
region iX  is split by a hyperplane through its center and 

orthogonal to the axis jx ), which are performed in parallel 

with the available dual-core processor. 
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Fig. 1. The state space partition of the approximate explicit 
NMPC, the approximate (solid curve) and the exact (dotted 

curve) state trajectories. 
 
 
 

1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000

14000

iterations

CPU time per iteration [s]

 

 

parallel computations
non-parallel computations

 
Fig. 2. CPU time corresponding to 11 consecutive iterations of 

the partitioning algorithm. 
 
 
 

Table 1. CPU times for the methods based on parallel and 
non-parallel computations. 

Method 
Average CPU time 

per region [s] 

Total CPU time 
for design of 

explicit NMPC [s] 
Parallel 

computations 
42 45786 

Non-parallel 
computations 

62 60190 

 
 
 

CONCLUSIONS 
 
In this paper, a parallel computing algorithm for design of 
explicit NMPC controllers is proposed. It uses the Parallel 
Computing Toolbox for MATLAB [9] and represents a 
parallel implementation of the approximate mp-NLP approach 
[4]. The parallel partitioning algorithm is applied to design an 
explicit NMPC for compressor surge control. It is shown that 
the parallel computations improve the off-line computational 
efficiency of the approximate mp-NLP approach. 
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