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Abstract: Identification of nonlinear dynamic systems from experimental data can be difficult when, as 
often happens, more data are available around equilibrium points and only sparse data are available far from 
those points. The probabilistic Gaussian Process model has already proved to model such systems 
efficiently. The purpose of this paper is to show how one can relatively easily combine measured data and 
linear local models in this model. It is shown how uncertainty can be propagated through such models when 
predicting ahead in time in an iterative manner with Markov Chain Monte Carlo approach. The approach is 
illustrated with a simple numerical example. 
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INTRODUCTION 
One of the problems frequently met in practice when modelling dynamic systems is 

the difficulty of constructing a nonlinear model on a reliable and consistent basis from 
available measured data. The purpose of this paper is to show how linear local models can 
be incorporated in Gaussian process (GP) models of dynamic systems. The use of 
Gaussian processes for modelling dynamic systems has recently been studied, e.g. 
[1,2,3]. A key issue when modelling with this probabilistic model is that, in its simplest 
form, the computational burden associated with it is cubic in the number of data points 
used, as it requires the inversion of an N×N matrix, where N is the number of data points. 
Although employing approximate inverses can reduce this computational burden, we 
suggest an alternative approach that summarizes measured data in the vicinity of an 
equilibrium point with derivative observations, i.e. a local linear model. Therefore, this 
approach is not only in accord with engineering practice but it can also directly reduce the 
computational burden. The main contribution of this paper is the propagation of  
uncertainty ahead in time with Monte Carlo simulation for the GP model with incorporated 
local models, when such models are used for multiple-step-ahead prediction. 

The paper is organized as follows. Gaussian process models are briefly reviewed and 
the incorporation of derivative observations is then discussed. Afterwards the modelling of 
dynamic systems with such models is described.  An example illustrates the modelling and 
simulating the dynamic system model. Conclusions are summarized at the end of the 
paper. 
 

GAUSSIAN PROCESS MODEL 
A detailed presentation of Gaussian processes can be found in [7]. A Gaussian 

process is a random process, fully characterized by its mean and covariance matrix 
�

. For 
simplicity, we assume a zero-mean process. Given { x1,...,xn} , the corresponding f(x1),..., 
f(xn) can be viewed as a collection of random variables which have a joint multivariate 
Gaussian distribution: f(x1),...,f(xn) ~ N (0, 

�
), where � pq gives the covariance between f(xp) 

and f(xq) which is a function of the corresponding xp and xq: � pq=C(xp, xq). The covariance 
function C(.,.) can be of any kind, provided that it generates a positive definite covariance 
matrix 

�
. The Gaussian Process model fits naturally in the Bayesian modelling framework. 

It places a prior directly over the space of functions instead of parameterizing f(x). A 
common choice of covariance function is the squared exponential, i.e. Gaussian function: 
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where xp
d denotes dth component of the D-dimensional input vector xp, and v, w1,...,wD are 

free parameters. The smoothness assumption holds for covariance function (1), as the 
points lying closer together in the input space are more correlated as the points lying more 
far apart. The parameter v controls the vertical scale of variation and the wd's are inversely 
proportional to the horizontal length-scale in dimension d (� d=1/

�
wd). 

Let the input/target relationship be y=f(x)+� . We assume an additive white noise with 
variance v0, �  ~ N(0, v0), and put a GP prior with covariance function (1) and unknown 
parameters on f(.). Within this probabilistic framework, we can write 

) ,( ++ 11N1  ~ y ,,y N

�
0N� ,  with Kpq=� pq+v0� pq, where � pq=1 if p=q and 0 otherwise. If we split 

 y ,,y 1N1 +�  into two parts,  y=[y1,..., yN] and y* , we can write  
 

y, y* ~ N(0, KN+1),   (2) 
with 
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where K is an N × N matrix giving the covariances between yp and yq, for p,q=1 ... N, k(x*) 
is an N × 1 vector giving the covariances between y*  and yp (kp(x* )=C(x* , xp), for p=1 ... N), 
and � (x* )=C(x* , x* ) is the covariance between the test output and itself. 

For our modelling purposes, we can then divide this joint probability into a marginal 
and a conditional part. Given a set of N training data pairs, N

1ppp }y ,{ =x , the marginal term 

gives us the likelihood of the observed data: y| X ~ N(0, K), where y is the N × 1 vector of 
training targets and X the N × D  matrix of the corresponding training inputs. We can then 
estimate the unknown parameters of the covariance function, as well as the noise variance 
v0, via maximization of the log-likelihood. The conditional part of (2) provides us with the 
predictive distribution of y*  corresponding to a new given input x* . We only need to 
condition the joint distribution on the training data and the new input x* ,  p(y* |y,X, x* ) = 
 p(y, y* )/p(y|X). It can be shown that this distribution is Gaussian with mean and variance 

tKk(x*)(x*) 1T −
=µ  (4) 

0
2 1T v+−

−= k(x*)Kk(x*)(x*)(x*) κσ  (5) 

This way, we can use the predictive mean � (x* ) as an estimate for y*  and the predictive 
variance, or standard deviation � (x* ), as the uncertainty attached to it. 
 

COMPRISING DERIVATIVE OBSERVATIONS 
The Gaussian process modelling framework is readily extended to include situations 

where derivatives of the function are observed, as well as (or instead of) the values of the 
function itself. More on this topic can be found in [4,5,6]. Since differentiation is a linear 
operation, the derivative of a GP remains a GP. Assuming a zero-mean GP for y=f(x), with 
Gaussian covariance function (1), the mean and covariance functions of the derivative 
process (in a given dimension) are readily obtained. The output (target) vector  y, which 
before consisted solely of output measurements, now also contains derivative 
observations. The corresponding inputs are the values of the regressors associated with 
each function and derivative observation. The covariance matrix is changed accordingly 
where derivative data is introduced. When using Gaussian covariance function (1) for 
covariance between two functional observations yp=f(xp) and yq=f(xq), the covariance 
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between a derivative and functional observation becomes  
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 denotes the first derivative of yp in direction of dth component of the D-

dimensional input vector xp. Similary, the covariance between two different derivative 
observations becomes 
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The GP model acts to integrate and smooth the noisy derivative observations. 

Derivative observations around an equilibrium point can be interpreted as observations of 
a local linear model about this equilibrium point. This means that the derivative 
observations can be synthesized using standard linear regression. Such synthetic 
derivative observations can then be used to summarize training points in the vicinity of 
equilibrium points, thereby effectively reducing the number of data points in the model for 
computational purposes.  It is important to note that a local linear input-output model such 
as a transfer function model only specifies a derivative observation up to a co-ordinate 
transformation. For simplicity, in this paper, we use lagged input signal samples and 
lagged output signal samples as our state co-ordinates, although other choices are 
possible as well.  

Given that derivative and function observations are available, the predictive 
distribution of a function output corresponding to a new x has mean and variance given by 
equations (4) and (5), with the matrix K and the vector k*  changed adequately. In fact, 
they can be written so as to reflect the mixed nature of the training data (see [4] for 
details). 

  
MODELLING OF DYNAMIC SYSTEMS 
The above modelling procedure can be readily applied to dynamic systems, within an 

auto-regressive (AR) representation of the system [1,3]. Consider the following ARX 
model, where the current output depends on delayed outputs and exogenous control 
inputs: 

( ) ε+−−−−= )(,),1(),(,),1()( LkukuLkykyfky ��  (8) 
 
where �  is a white noise and k denotes consecutive number of data sample. Let x(k) be the 
state vector at k, composed of the previous outputs y and inputs u, up to a given lag L 
(x(k)=[y(k-1),y(k-2),…,y(k-L),u(k-1),u(k-2),…,u(k-L)]T) and y(k) the corresponding output. We 
can then model this dynamic system using a Gaussian Process. 
 

MULTIPLE-STEP-AHEAD PREDICTIONS WITH MARKOV CHAIN MONTE CARLO 
APPROACH 

Assuming the time-series is known up to, say, k, we wish to predict n steps ahead: 
That is to say, to find the predictive distribution of y(k+n) corresponding to x(k+n) = [y(k+n-
1),…, y(k+n-L)]T. Multiple-step-ahead predictions of a system modelled by (8) can be 
achieved by iteratively making repeated one-step-ahead predictions, up to the desired 
horizon k+n.  

A naive way of doing so is, at each time-step, to feed back the predictive mean 
(estimate of the output) thus considering x(k+n) = [� (k+n-1),…,� (k+n-L)]T, where � (k+n-i) is 
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the point estimate of y(k+n-i).  
 
More realistic approach is, at each time step, to feed back complete output 

distribution from the GP model. At the time step k+1, the output of the GP model is:  
) ,( +++ )()(~ 1

2
11 kkky xx σµ�

 (9) 

For the prediction at time step k+2 complete output distribution 1+ky  is taken into account 
when forming input x(k+2) = [� (k+1),…,� (k-L+1)]T. The output can be evaluated using 
simple Markov Chain Monte Carlo (MCMC) approach, where it is represented as the 

mixture of Gaussians: �
=

++ =
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, where s

ky 2+ is the output of the GP model at x(k+2) 

= [� s(k+1),…,� (k-L+1)]T and � s(k+1) are samples from normal distribution (9).  
At the next time step the input x(k+3) contains the mixture of Gaussians 2+ky . The 

next prediction is calculated by numerically integrating over the input distribution x(k+3) 
using MCMC methods. The input distribution x(k+2) is represented with a large number of 
samples S, and the ouput becomes a mixture of corresponding number of Gaussians, 
again fed back as the next input. This procedure is repeated until the desired horizont 
(k+n) is reached.  

 
EXAMPLE 
The following example is intended to explore the potential of achieving an accurate 

model of a dynamic system, when using derivative observations at equilibrium points and 
a small number of function observations at off-equilibrium points. 

 
Consider the nonlinear dynamic system described by 
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where the sampling time is one step. We select six equilibrium points, uniformly spanning 
the operating region of interest. At each equilibrium point, we apply a small-scale pseudo-
random binary signal with mean 0 and magnitude 0.04 and the corresponding output 
signal is contaminated with normally distributed measurement noise in the magnitude 
range [-0.001,0.001]. A linear, first order approximation to the local dynamics at the 
equilibrium point is identified using the Matlab algorithm IV4. In addition to this equilibrium 
information, a small sparse set of off-equilibrium input-output data, consisting of only eight 
points, is selected. A GP model with zero-mean and Gaussian covariance function is then 
trained using 

• six input-output values at equilibrium, spanning the operating region of interest; 
• The set of coefficients of the identified first order linear models representing the 

partial derivatives of the output - 6 times 2 coefficients ; 
• The 8 input-output values that were sampled out of equilibrium points. 

Figure 1 shows a plot of the output predictive variance. A region with low variance 
indicates a region where the model is confident about its prediction. 

The results of the simulation of the system (that is the n-step-ahead prediction, 
where n is the length of the validation signal) in the region with pronounced uncertainty is 
shown in Figure 2.  

When simulating GP model with propagation of uncertainty, the MCMC sampling 
with S=10000 samples was used. It can be seen that propagating the uncertainty causes 
the standard deviations to become larger in some areas, compared to the naive approach. 
Also, the means are affected. 
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Figure 1: Variance of the GP model together with equilibrium locus represented 

  with solid line and training points represented with dots 
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Figure 2: Simulation of GP model with and without 

  propagation of uncertainty 
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CONCLUSIONS AND FUTURE WORK 
This paper describes how linear local models can be incorporated in the Gaussian 

Process model of dynamic system. Also, we show how one can propagate the uncertainty 
when making iterative multiple-step-ahead predictions with such a model. Accounting for 
derivative observations, obtained as coefficients of local linear models in equilibrium points 
with regular linear regression method, means joining local linear models and GP models. 
Joining these two sorts of models results in global models containing global and local 
information, of acceptable dimensions and suited to the kind of data usually available in 
practice when carrying out experimental modelling (a lot of data in vicinity of equilibrium 
points and few data far from equilibria). 

 
The main conclusions are as follows: 
• The data used to obtain the grey-box model is well suited to the kind of data usually 

available in practice when carrying out experimental modelling.  
• The model obtained is relatively small in comparison with a GP model that does not 

make use of derivative observations, while the model quality is comparable. This makes it 
very suitable for applications. 
Our simulated example is encouraging and these results offer new possibilities for 
dynamic system analysis and control, whenever uncertainty information is necessary. 
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