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Abstract

The Gaussian-process (GP) model is an example of a probabilistic, non-
parametric model with uncertainty predictions. It can be used for the modelling
of complex nonlinear systems and also for dynamic systems identification. The
output of the GP model is a normal distribution, expressed in terms of the
mean and variance. At present it is applied mostly for the modelling of dy-
namic systems with one output. A possible channel structure for multiple-input
multiple-output model and a case study for the modelling of a system with more
than one output, namely a gas-liquid separator, is given in this paper.

Key words: dynamic systems modelling, systems identification, Gaussian
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1. Introduction. Nonlinear dynamic systems are more difficult for the iden-
tification than linear dynamic systems, especially systems with more than one
output. Usual approaches for the identification of nonlinear black-box models are
artificial neural networks, fuzzy models and others.

Gaussian process (GP) models form new, emerging complementary method
for nonlinear system identification. GP model is a probabilistic non-parametric
black-box model. It differs from most of the other black-box identification ap-
proaches as it does not try to approximate the modelled system by fitting the
parameters of the selected basis functions but rather searches for the relation-
ship among measured data. Gaussian processes models are closely related to
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approaches such as Support Vector Machines and specially Relevance Vector
Machines [1]. The output of Gaussian process model is a normal distribution,
expressed in terms of mean and variance. Mean value represents the most likely
output and the variance can be viewed as the measure of its confidence. Obtained
variance, which depends on amount of available identification data, is important
information distinguishing the GP models from other methods. Another poten-
tially useful attribute of GP model is the possibility to include various kinds of
prior knowledge into the model, e.g. local models, static characteristic, etc. Dis-
advantage of the method is potential computational burden for optimization that
increases with number of data and number of regressors.

Applications of the GP model for the identification of dynamic systems are
presented in e.g. [2–4]. While the published research results considered only iden-
tification of dynamic systems with one output, the purpose of this contribution
is the identification of nonlinear dynamic system with more than one output,
namely identification of nonlinear multivariable dynamic system.

2. Modelling of dynamic systems with Gaussian processes. A Gaus-
sian process is an example of the use of a flexible, probabilistic, non-parametric
model with uncertainty predictions. Its use and properties for modelling are re-
viewed in [1,5].

A Gaussian process is a collection of random variables which have a joint
multivariate Gaussian distribution. The mean µ(x) and the covariance function
C(xp,xq) fully specify the Gaussian process. Covariance function C(xp,xq) can
be interpreted as a measure of distance between input points xp and xq. For
systems modelling it is usually composed from two main parts:

(1) C(xp,xq) = Cf (xp,xq) + Cn(xp,xq),

where Cf represents a functional part and describes the unknown system we are
modelling and Cn represents a noise part and describes the model of noise.

Some possible choices for Cf are: square exponential or Gaussian covariance
function, which is most frequently used in functional part

(2) Cf (xp,xq) = v1 exp
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constant covariance function, which is frequently used in the noise part, when it
is considered to be a white noise

(5) Cn(xp,xq) = v0,

ΘΘΘ = [w1 . . . wD α v1 v0]
T are the ‘hyperparameters’ of the covariance functions,

xdp and xdq are dth components of input vectors xp,xq and D is the input dimen-
sion. For a given problem, the parameters are identified (learned) using the data
at hand. After the learning, one can use the w parameters as relevance indicators
of the corresponding input regressors: if wd is zero or near zero it means that the
inputs in dimension d contain little information and could possibly be removed.

For a new test input x∗, the predictive distribution of the corresponding
output is y∗|(X,y),x∗ and is Gaussian, with mean and variance

µ(x∗) = k(x∗)T K−1 y,(6)

σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗),(7)

where K is the N × N training covariance matrix, k(x∗) = [C(x1,x∗), . . . ,
C(xN ,x∗)]T is the N × 1 vector of covariances between the test and training
cases, and k(x∗) = C(x∗,x∗) is the covariance between the test input and itself.

Gaussian processes can, like neural networks, be used to model static nonlin-
earities and can therefore be used for modelling of dynamic systems[2–4] if lagged
samples of input and output signals are fed back and used as regressors. In such
cases an autoregressive model is considered, such that the current output depends
on previous outputs, as well as on previous control inputs.

x(k) = [y(k − 1), y(k − 2), . . . , y(k − L), u(k − 1),

u(k − 2), . . . , u(k − L)]T ,

ŷ(k) = f(x(k)) + ǫ,(8)

where k denotes the consecutive number of data sample. Let x denote the state
vector composed of the previous outputs y and inputs u up to a given lag L, and
ǫ is white noise.

The cross-validation response fit is usually evaluated by performance mea-
sures. Beside commonly used performance measures such as e.g. mean relative

square error, MRSE =
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system’s output and prediction error in i-th step of simulation, the performance
measures such as log predictive density error [1–3]
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where σ2(i) is the prediction variance in i-th step of simulation, can be used for
evaluating GP models. It takes into account not only mean prediction but the en-
tire predicted distribution. Another possible performance measure is the negative

log-likelihood of the training data [1] LL =
1

2
log | K | +

1

2
yT K−1y +

N

2
log(2π).

LL is the measure inherent to the hyperparameter optimisation process and gives
the likelihood that the training data is generated by given, i.e. trained model.
Therefore it is applicable for validation on identification data only. The smaller
the MRSE, LPD and LL are, the better the model is.

3. Modelling of systems with more than one output. Most of the
literature considering modelling with Gaussian process models is concentrated on
the problem of predicting a single output variable from an input. When more
than one output is to be predicted and cross correlations are not neglected, then
the correlation between multiple channels needs to be incorporated in the model.
An overview of some published works is given in [1].

In the case of dynamic systems modelling with multiple correlated channels
the work presented in [6] gives a possible solution for modelling of linear filters
with multiple outputs with Gaussian process models.

A lot of literature on dynamic systems deals with multiple-input multiple-
output systems, or so called multivariable systems, e.g. [7,8]. Following this ex-
perience and experience from identification of nonlinear dynamic systems based
on Gaussian process models a model structure, or prior on model structure, is
suggested in this paper as follows. Beside the influence of the input corresponding
to channels output also interactions of other inputs and correlations with other
channels’ outputs are to be considered. Each model output can be predicted from
a separate sub-model with inputs that consist of input signal samples and their
lagged values of all channels and lagged samples from all output signals. No non-
lagged samples from output signals are included into vector of inputs due to
causality reason.

This principle is graphically shown in Fig. 1, where arrows denote the flow
of lagged sampled values from input and output signals. This, relatively complex
structure can be simplified later in the identification procedure when the redun-
dant interactions or cross-correlations are removed via relevance detection of input
regressors as mentioned in the previous section. The procedure of identification
and validation of separate sub-models should follow the standard procedure as
described in [2].

The semi-industrial process plant used for the case study in the paper is the
unit for separating the gas from liquid [4,9] that forms part of a larger pilot plant.

The role of the separation unit is to capture flue gases under low pressure
from the effluent channels by means of water flow, to cool them down and then
supply them under high-enough pressure to other parts of the pilot plant.
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Fig. 1. Principial scheme of modelling multiple-
input multiple-output scheme with flow of data

used for modelling is indicated

The flue gases coming from the effluent channels are absorbed by the water
flow into the water circulation pipe through injector.

The water flow is generated by the water ring pump. The speed of the pump
is kept constant. The pump feeds the mixture of water and gas into the tank,
where gas is separated from water. Hence, the accumulated gas in tank forms a
sort of ‘gas cushion’ with increased internal pressure. Owing to this pressure, the
flue gas is blown out from the tank into the neutralization unit. On the other
hand, the ‘cushion’ forces water to circulate back to the reservoir. The quantity
of water in the circuit is constant. A detailed nonlinear mathematical model can
be found in [4]. The nonlinear process is of a multivariable nature (two inputs
and two outputs with dynamic interactions between the channels).

The aim of model identification in our case is a potential model for control
design or prediction of output variables based on input signals. The GP model
is composed of two parts according to structure proposed in the previous sec-
tion: one is the sub-model that predicts pressure and the other is the sub-model
that predicts liquid level. We limited the selection of possible covariance func-
tions to functions described in Section 2. A systematical iterative procedure of
comparing modelling results with measures introduced in Section 2 for various
combinations of covariance functions for the functional part and of different input
regressors for two output models was pursued. The backward approach from the
higher number of regressors towards the lower number was used. A user-friendly
experimentation with the process plant is made possible by an interface with
the Matlab/Simulink environment [10]. 727 input-output data pairs were sampled
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T a b l e 1

Comparison of models fit for pressure output (the left part of Table 1) and liquid level output
(the right part of Table 1). The upper part consists of models with rational quadratic function
with the following regressors: model Mp1 with p(k− 1), p(k− 2), u1(k− 1), u1(k− 2), u2(k− 1),
u2(k − 2), h(k − 1), h(k − 2), model Mp2 with p(k − 1), p(k − 2), u1(k − 1), u2(k − 1), h(k − 1),
model Mp3 with p(k − 1), u1(k − 1), h(k − 1), model Mh1 with h(k − 1), h(k − 2), u1(k − 1),
u1(k − 2),u2(k − 1), u2(k − 2), p(k− 1), p(k − 2), model Mh2 with h(k − 1), h(k − 2), u2(k − 1),
p(k − 1), model Mh3 with h(k − 1), u2(k − 1), p(k − 1). Lower part consists of models with
winning set (marked with ♣) of regressors Mp2 (left) and Mh2 (right) with different covariance

functions: square exponential – Gaussian, linear and rational quadratic

Regressors Ident. Valid. Valid. Regressors Ident. Valid. Valid.

LL MRSE LPD LL MRSE LPD

Mp1 −2501 0.080 8.152 Mh1 −4067 0.084 5978

M♣
p2

−2500 0.043 −1.515 M♣

h2
−4011 0.062 −0.391

Mp3 −2383 0.049 −0.926 Mh3 −3948 0.083 3880

Cov. fun. Ident. Valid. Valid. Cov. fun. Ident. Valid. Valid.

Mp2 LL MRSE LPD Mh2 LL MRSE LPD

Gaussian −2496 0.045 −1.508 Gaussian −4020 0.087 −1.95

Linear −2063 0.194 −0.91 Linear −3408 0.419 38.53

RQ♣
−2500 0.043 −1.515 RQ♣

−4011 0.062 −0.391

uniformly with sampling time of 20 s from input and identification output signal
and used as estimation data for Gaussian process models. The same number of
samples from input and output signals for validation was used as validation data
for Gaussian process models’ predictions.

Validation measures for a sample of cases at the end of systematic selection of
model structure is given in Table 1. The table gives logarithm of likelihood LL that
is used as a validation measure for optimisation of estimation data and MSRE and
LPD measures for validation of predictions on validation input signal. The small
part of backward regressor selection for models with rational quadratic covariance
function (4) is given in the upper part of Table 1, while the comparison of the
winning regressors’ selection in the model with different covariance functions for
functional parts are given in the lower part of Table 1.

Higher weight was put on measure LPD for a model selection in the validation
procedure, because LPD measure is more appropriate for Bayesian models as
it incorporates also the variance of predictions. The winning models are of the
second order with regressors as described in the caption of Table 1 and contain
rational quadratic covariance function (4) for the functional part and constant
covariance function (5) for the noise part. These two models give better validation
results with validation signals than models with other covariance functions and
other regressors. Simulation responses on the validation signal, which was different
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Fig. 2. Comparison of pressure measurement and Gaussian process model response (upper left
figures), comparison of liquid level measurement and Gaussian process model response (upper

right figures) and input signals into multi-input multi-output system (bottom figures)

from the identification one, of the finally selected models, denoted as models Mp2

and Mh2 and corresponding input signals are given in Fig. 2. Models Mp2 and
Mh2 have different input regressors, but are of the same order and they use the
same covariance function which is not surprising considering cross-interactions in
the multivariable model.

It can be seen from Fig. 2 that model responses on validation input signals
match measured process responses relatively well for most of the regions. This
proves that applied procedure and selected structure of multivariable model were
selected correctly.

4. Conclusions. The paper describes the identification of nonlinear dy-
namic systems with multiple-inputs and multiple-outputs by Gaussian process
models. Selection of model inputs, the structure of channels between input data
and predicted outputs and covariance function for calculation of covariances be-
tween estimation data are determined. A method for selecting of the possible
structure of channels in the model is proposed and illustrated on a case study
of modelling a gas-liquid separator process which has two signal inputs and two
signal outputs.

The obtained results in the case study show that the applied procedure was
selected correctly. This kind of model can be applied for control design or predic-
tion of selected output variable, based on known input signals.
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