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Abstract: Identification of nonlinear dynamic systems from experimental data can
be difficult when, as often happens, more data are available around equilibrium
points and only sparse data are available far from those points. The probabilistic
Gaussian Process model has already proved to model such systems efficiently. The
purpose of this paper is to show how one can relatively easily combine measured
data and linear local models in this model. Also, using previous results, we show
how uncertainty can be propagated through such models when predicting ahead in
time in an iterative manner. The approach is illustrated with a simple numerical
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1. INTRODUCTION

One of the problems frequently met in practice
when modelling dynamic systems is the difficulty
of constructing a nonlinear model on a reliable and
consistent basis from available data. In this paper,
we focus on experimental rather than first prin-
ciples modelling. Owing to operating and safety
constraints, the available measured data from
which we are required to construct an empirical
model is often concentrated mainly around equi-
librium points, with only relatively sparse data
measured far from equilibrium. A common ap-
proach in this situation is to build local models
using the data in vicinity of equilibrium points
and then blend these models so as to obtain a
nonlinear model covering the operating envelope,
refer to e.g. (Murray-Smith et al., 1999).
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The purpose of this paper is to show how lin-
ear local models can be incorporated in Gaussian
processes (GPs) models of dynamic systems. The
use of Gaussian processes for modelling dynamic
systems has recently been studied, e.g. (Kocijan
et al., 2003a; Girard et al., 2002; Gregor¢i¢ and
Lightbody, 2003). A key issue when modelling
with this probabilistic model is that, in its sim-
plest form, the computational burden associated
with it is cubic in the number of data points used,
as it requires the inversion of an N x N matrix
with dimension, where N is the number of data
points. Although this computational burden can
be reduced by employing approximate inverses, we
suggest an alternative approach that summarizes
measured data in the vicinity of an equilibrium
point by a derivative observation, i.e. a local lin-
ear model. Therefore, this approach is not only
in accord with engineering practice but it can
also directly reduce the computational burden.
Also, following (Girard et al., 2002), we show how
one can propagate the uncertainty ahead in time,



when predicting multiple steps ahead with such
models.

The paper is organized as follows. Gaussian pro-
cess models are briefly reviewed and the incorpo-
ration of derivative observations is then discussed.
The modelling of dynamic systems with such mod-
els is described in Section 3. An example in Sec-
tion 4 illustrates the modelling and forecasting
of a simulated dynamic system. Conclusions are
summarized at the end of the paper.

2. GAUSSIAN PROCESS MODEL

A detailed presentation of Gaussian processes can
be found in (O’Hagan, 1978; Williams, 1998).
A Gaussian process is a random function fully
characterized by its mean and covariance func-
tions. For simplicity, we assume a zero-mean
process. Given {xi,...,X,}, the corresponding
f(x1),..., f(x,) can be viewed as a collection
of random variables which have a joint multi-
variate Gaussian distribution: f(x1),..., f(xn) ~
N(0,3), where X, gives the covariance between
f(xp) and f(x4) and is a function of the corre-
sponding x, and x,: ¥,,, = C(xp,X4). The covari-
ance function C(.,.) can be of any kind, provided
that it generates a positive definite covariance
matrix ¥. The Gaussian Process model fits nat-
urally in the Bayesian modelling framework, as
it places a prior directly over functions, instead
of parameterizing f(x). In the following, we as-
sume a stationary process, where the stationarity
assumption implies that the covariance between
two points depends only on the distance between
them and is invariant by translation in the input
space. A common choice of covariance function is
the squared exponential or Gaussian one:

Cov[f(xp) , f(xq)] = Clxp,xq) =

D
1 d_,d\2
= v; exp l—2 de(xp —xg) ] ,
d=1
(1)
d

where zj, denotes the d" component of the D-
dimensional input vector x,, and vi,ws,...,wp
are free parameters. This covariance function is
such that points close together in the input space
lead to more correlated outputs than points fur-
ther apart (a smoothness assumption). The pa-
rameter v; controls the vertical scale of variation
and the wy’s are inversely proportional to the hor-
izontal length-scale in dimension d (Ag = 1/y/w,).

Let the input/target relationship be y = f(x) +e.
We assume an additive white noise with variance
vg, € ~ N(0,vp), and put a GP prior on f(.), with
covariance function (1) and unknown parameters.
Within this probabilistic framework, we can write

Y1y Yn ~ N(0,K,), with Ky, = Bpg + v00pq,
where §,, = 1 if p = ¢ and 0 otherwise. If we split

Y1, -, Yn into two parts, y = [y1,...,yn] and y*,
we can write
Y,y ~N(0,Ky) (2)
with
K k(x*)
K, = : (3)

[k(x)"] [r(x)]
where K is an N x [NV matrix giving the covariances
between y, and y,, for p,¢g =1... N, k(x*) is an
N x 1 vector giving the covariances between y*
and y, (kp(x*) = C(x,,x*), forp=1...N), and
k(x*) = C(x*,x*) is the covariance between the
test output and itself.

For our modelling purposes, we can then divide
this joint probability into a marginal and a con-
ditional part. Given a set of N training data
pairs, {x,, yp}évzl, the marginal term gives us the
likelihood of the observed data: y|X ~ N(0,K),
where y is the N x 1 vector of training targets and
X the N x D matrix of the corresponding train-
ing inputs. We can then estimate the unknown
parameters of the covariance function, as well as
the noise variance vg, via maximization of the log-
likelihood. The conditional part of (2) provides us
with the predictive distribution of y* correspond-
ing to a new given input x*. We only need to con-
dition the joint distribution on the training data
and the new input x*, p(y*|y, X, x*) = %. It
can be shown that this distribution is Gaussian
with mean and variance

px") = k()" Ky (4)
o2(x*) = r(x*) — k(x*)T K71 k(x*) 4+ v .
()

This way, we can use the predictive mean u(x*)
as an estimate for y* and the predictive variance,
or standard deviation o(x*), as the uncertainty
attached to it.

2.1 Incorporating derivative observations

The Gaussian process modelling framework is
readily extended to include situations where
derivatives of the function are observed, as well
as (or instead of) the values of the function itself.
More on this topic can be found in (Leith et
al., 2002; Solak et al., 2002; Kocijan et al., 2003d).
Since differentiation is a linear operation, the
derivative of a GP remains a GP. Assuming a zero-
mean GP for y = f(x), with Gaussian covariance
function, the mean and covariance functions of



the derivative process (in a given dimension) are
readily obtained. The output (target) vector y,
which before consisted solely of output measure-
ments, now also contains derivative observations.
Similarly, the corresponding inputs are the values
of the regressor associated with each function and
derivative observation, and the covariance matrix
is changed accordingly. In the case of the Gaussian
covariance function (1) using relation y, = f(x,),
the covariance between two functional observa-
tions is

D
1
Covlyp, yq] = viexp [2 de(xg - xZ)2] ,
d=1

that between two different derivative observations
is

Cov[gzg, gig] = V1 We(0g,e — wd(xg - xg)
(), — 27)
1 2
exp [—2 de(xg - w;l)ﬂ ’
d=1
(6)
where g—zg denotes the first derivative of y, in

direction of d** component of the D-dimensional
input vector x,,.

The covariance between a derivative and func-
tional observation is

COV[%

axg ) yq] = _’Ulwd('xg - x;i)

s | LN (g2
Xp 2de(xp z)” |-
d=1
(7)

The GP model acts to integrate and smooth the
noisy derivative observations. Derivative obser-
vations around an equilibrium point can be in-
terpreted as observations of a local linear model
about this equilibrium point. This means that the
derivative observations can be synthesized using
standard linear regression. Such synthetic deriva-
tive observations can then be used to summa-
rize training points in the vicinity of equilibrium
points, thereby effectively reducing the number
of data points in the model for computational
purposes. It is important to note that a local linear
input-output model such as a transfer function
model only specifies a derivative observation up
to a co-ordinate transformation. For simplicity,
in this paper, we use lagged input signal samples
and lagged output signal samples as our state co-
ordinates, although other choices are possible.

The data may or may not contain information
about the noise. For function observations, assum-
ing a white noise, the noise information is added

to the diagonal elements of the covariance matrix,
corresponding to these points. If no information
is available, the noise variance vg is learned as in
Section 2. For the derivative observations, noise
information for each local model is also obtained
when standard identification methods are used.
The covariance matrices of each linear local model
obtained at identification are added to the overall
covariance matrix for the corresponding derivative
component (see (Solak et al., 2002)).

Given that derivative and function observations
are available, the predictive distribution of a func-
tion output corresponding to a new x has mean
and variance given by equations (4) and (5), with
the matrix K and the vector k* changed ade-
quately. In fact, these moments can be written
so as to reflect the mixed nature of the training
data (see (Kocijan et al., 2003d) for details).

3. GAUSSIAN PROCESS MODELLING OF
DYNAMIC SYSTEMS

The above modelling procedure can be readily
applied to dynamic systems, within an auto-
regressive (AR) representation of the system
(Girard et al., 2002; Kocijan et al., 2003a).

Consider the following ARX model, where the
current output depends on delayed outputs and
exogeneous control inputs:

y(k):f(y(k_ 1)7y(k_2)7"~ay(k_L),
u(k—1),u(k —2),...,u(k— L)) + ¢,

(8)

where € is a white noise and k denotes consecutive
number of data sample. Let x(k) be the state
vector at k, composed of the previous outputs
y and inputs u, up to a given lag L (x(k) =
[y(k - 1)ay(k B 2)3 ce 7y(k R L)au(k - 1)7u(k -
2),...,u(k — L)]T) and y(k) the corresponding
output. We can then model this dynamic system
using a Gaussian Process.

3.1 Multiple-step-ahead predictions

Assuming the time-series is known up to, say, k,
we wish to predict n steps ahead: That is to say, to
find the predictive distribution of y(k + n) corre-
sponding to x(k+n) = [y(k+n—1),...,y(k+n—
L)]T. Multiple-step-ahead predictions of a system
modelled by (8) can be achieved by iteratively
making repeated one-step-ahead predictions, up
to the desired horizon.

A naive way of doing so is, at each time-
step, to feed back the predictive mean (es-
timate of the output): by considering x(k +



n) = [Glk+n—-1),...,9(k+n—L)]", where
9J(k +n — i) is the point estimate of y(k + n — 7).
Although this approach is approximate (as the
variance of the lagged outputs on the right-hand
side of equation (8) is neglected), it has been
used when modelling dynamic systems with neu-
ral networks or fuzzy models. However, it has been
shown to lead to unrealistically small variances
for the multiple-step-ahead predictions (Girard et
al., 2002).

n (Girard et al., 2002), iterative multiple-step-
ahead prediction is done by feeding back the pre-
dictive mean as well as the predictive variance
at each time-step, thus taking the uncertainty
attached to each intermediate prediction into ac-
count. This means that the input at which we wish
to predict becomes a normally distributed random
variable. The illustration of such dynamical model
simulation is given in Figure 1 and we are now
going to show how this approach can be applied
to a GP with derivative observations.
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Gaussian Process Model A (m(k),v(k))
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Ry w1 N
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Fig. 1. Block scheme of dynamical system simula-
tion with iterative method where variance is
propagated through the system

3.2 Accounting for derivative observations

We consider the case where derivative observa-
tions are used in combination with function ob-
servations. If we wish to make multiple-step-ahead
predictions with such data, and also account for
the uncertainty induced by each successive pre-
diction as we predict ahead in time, we have to
account for both sorts of data when computing
the predictive mean and variance of the output.

In case of function observations only, the predic-
tive mean and variance of the output correspond-
ing to a mnoisy input x are obtained by solving
((Girard et al., 2002))

My, Bz) = Ex[p1(x)] 9)
V(ix, Ta) = Ex[0 (x)] + Bx[p(x)?]
- m(ll’xvzw)Q . (10)

Similarly, we can show that when derivative ob-
servations are also present, we need to compute

My, Ba) = Ex[p1(X)] + Ex[a

=), (11

for the mean, and

O, X )=U+E [07(%)] + 2Ex[074(x)]
Ex|og(x)] + Ex[pm (x)?]
+ 2By [p1a(x)%] + Ex[pa(x)?]
—m(py, Ba)?, (12)

for the variance, where p;(x) and o7(x) corre-
spond to the predictive mean and variance when
only function observations are available, pg4(x)
and 0%(x) the predictive mean and variance corre-
sponding to derivative observations in direction d,
and 02,(x) is the component reflecting the mixed
nature of the data. Due to space restriction, we
refer to (Kocijan et al., 2003d) for the detailed
derivations and the final expressions.

We can now apply these results to the multiple-
step-ahead prediction task of a dynamic system,
when derivative observations are available. For
simplicity, we consider the following AR model

with
7y(k - L)]T

(k) = £(x(k)) + e i~

x(k)=[y(k—=1),...
where € is a white noise with variance vg. Note
that when predicting ahead in time, and propa-
gating the uncertainty, the exogenous input w are
assumed to be known and consequently do not
need to be dealt with.

As done in ((Girard et al., 2002)) in the case
of function observations only, we can predict n-
steps ahead and propagate the uncertainty of
the successive predictions by considering each
y(k +n —14) as a Gaussian random variable, and
therefore, an L x 1 random state x(k+n) = [y(k+
n—1),...,y(k+n—L)]T ~ N(uy,X,) at each
time-step, with mean

m(x(k+n—1))
By = : (14)
m(x(k+n— L)

and covariance matrix



v(x(k+n—1)) 4+ v

Y= :
Cov(y(k+n—1),y(k+n—1L)) ---

Cov(y(k+n—L),y(k+n—1))

w(x(k 41 — L)) + v
(15)

where m(.) and v(.) are computed using equations
(11) and (12) and this is how derivative obser-
vations are taken into account (see (Kocijan et
al., 2003d) for details). It is the computation of
m(.) and v(.) that is different in the case of using
derivative observations in comparison with using
functional observations only.

In general, at time sample k + [, we have the ran-
dom input vector z(k+1) = [y(k+1—1),...,y(k+
I— )T ~ N (uy, ;) with mean p, formed by the
predictive mean of the lagged outputs y(k+1—7),
7=1,...,L, given by (4), or by (11), depending
on [, and the diagonal elements of the L x L input
covariance matrix ¥, contain the corresponding
predictive variances. The cross-covariance terms
Covly(k +1 —i),y(k +1— §)], for i,j = 1...L
with ¢ # j, are obtained by computing Cov[y(k +
1), x(k +1)], disregarding the last (oldest) element
of x(k +1). We have

Covly(k +1),x(k+1))=E[y(k + D)x(k + )]
—Ely(k+ D]Ex(k+1)] .
(16)

Again, we refer to (Girard et al., 2002) and
(Kocijan et al., 2003d) for more details.

4. EXAMPLE

The following example is intended to explore the
potential of achieving an accurate model of a
dynamic system, when using derivative observa-
tions at equilibrium points and a small number of
function observations at off-equilibrium points.

Consider the nonlinear dynamic system described
by

y(k) = 0.5y(k — 1) + tanh(y(k — 1) + u*(k — 1)) ,

(17)
where the sampling time is 0.5 seconds. We select
ten equilibrium points, uniformly spanning the
operating region of interest. At each equilibrium
point, we apply a small-scale pseudo-random bi-
nary signal with mean 0 and magnitude 0.03 and
the corresponding output signal is contaminated
with normally distributed measurement noise in
the range [-0.001,0.001]. A linear, first order, ap-
proximation to the local dynamics at the equi-

librium point is identified using the Matlab algo-
rithm IV4. In addition to this equilibrium infor-
mation, a small sparse set of off-equilibrium input-
output data, consisting of only 6 points, is selected
(larger numbers of off-equilibrium observations
were also studied but 6 represents a good com-
promise between predictive accuracy and number
of data points used). A GP model with zero-mean
and Gaussian covariance function is then trained
using

e 10 input-output values at equilibrium, span-
ning the operating region of interest;

e The set of coefficients of the identified first
order linear models representing the partial
derivatives of the output - 10 times 2 coeffi-
cients ;

e The 6 input-output values that were sampled
out of equilibrium points.

Figure 2 shows a plot of the output predictive
variance. A region with low variance indicates
a region where the model is confident about its
prediction.
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Fig. 2. Variance of the GP model on the same
figure together with equilibrium locus rep-
resented with solid line and training points
represented with dots

The results of the simulation of the system (that is
the n-step-ahead prediction, where n is the length
of the validation signal) is shown in Figure 3.
It can be seen that propagating the uncertainty
causes the standard deviations to become larger
in some areas, compared to the naive approach.
Also, the means are affected.

5. CONCLUSIONS

This paper describes how linear local models can
be incorporated in the Gaussian Process model.
Also, we show how one can propagate the uncer-
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Fig. 3. Response on validation data: GP model
response without propagation of uncertainty
- grey lines, GP model response with propa-
gation of uncertainty - black lines

tainty when making iterative multiple-step-ahead
predictions with such a model.

Accounting for derivative observations, obtained
as coefficients of local linear models in equilib-
rium points with regular linear regression method,
means joining local linear models and GP models.
Whereas local model networks have problems re-
taining local information when optimized to fit
the process globally, GP models prove difficult
when a lot of data is used for identification. Join-
ing these two approaches results in global models
containing global and local information, of accept-
able dimensions and suited to the kind of data
usually available in practice when carrying out
experimental modelling (a lot of data in vicinity
of equilibrium points and few data far from equi-
libria).

The main conclusions are as follows:

e The data used to obtain the grey-box model
is well suited to the kind of data usually
available in practice when carrying out ex-
perimental modelling.

e The model obtained is relatively small in
comparison with a GP model that does not
make use of derivative observations, while the
model quality is comparable. This makes it
very suitable for applications.

Our simulated example is encouraging and these
results offer new possibilities for dynamic system
analysis and control, whenever uncertainty infor-
mation is necessary.
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