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Abstract
This paper presents a framework for the development of a computationally-efficient surrogate model for air pollution

dispersion. Numerical simulation of air pollution dispersion is of fundamental importance for the mitigation of pollution in

Seveso-type accidents, and, in extreme cases, for the design of evacuation scenarios for which long-range forecasting is

necessary. Due to the high computational load, sophisticated simulation programs are not always useful for prompt

computational studies and experimentation in real time. Surrogate models are data-driven models that mimic the behaviour

of more accurate and more complex models in limited conditions. These models are computationally fast and enable

efficient computer experimentation with them. We propose two methods. The first method develops a grid of independent

dynamic models of the air pollution dispersion. The second method develops a reduced grid with interpolation of outputs.

Both are demonstrated in an example of a realistic, controlled experiment with limited complexity based on an approx-

imately 7 km radius around the thermal power plant in Šoštanj, Slovenia. The results show acceptable matching of

behaviour between the surrogate and original model and noticeable improvement in the computational load. This makes the

obtained surrogate models appropriate for further experimentation and confirms the feasibility of the proposed method.

Keywords Air pollution � Seveso-type accident � Pollution dispersion � Surrogate modelling � Dynamic systems �
Data-driven modelling

1 Introduction

A framework for the development of a computationally-

efficient surrogate model for air pollution dispersion is

studied in this paper.

Surrogate modelling (Keane et al. 2008; Koziel and

Leifsson 2013; Jiang et al. 2020) is an engineering method

that is used when we cannot compute the response of the

model of the system of interest easily enough. It is a

method that helps to alleviate computationally demanding

computations necessary for tasks like design optimisation,

design-space exploration, and various computationally

intensive analyses. Speeding up computations can be done

by constructing an approximation model known as a sur-

rogate model, meta model, emulation model, or emulator.

The surrogate model is usually developed by selecting a

suitable data-driven black-box model. Such a model is

obtained from the input-output response of the original

mathematical model. It is constructed based on appropri-

ately selected input values that excite the original mathe-

matical model in the region of interest as illustrated in

Fig. 1.

Surrogate models have been used in different scientific

fields for different tasks, see (Alizadeh et al. 2020) for a

review. The methodology is used also in atmospheric sci-

ences for dispersion modelling, e.g. (Carnevale et al. 2012;

Bowman and Woods 2016; Gunawardena et al. 2021; Le

et al. 2019; Francom et al. 2019; Girard et al. 2020). The

relevance of dispersion modelling is non-disputable and
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addressed in numerous studies dealing with different

environments, situations and methods, e.g. (Ravina et al.

2021).

The purposes of developing surrogate models range

from uncertainty quantification (Francom et al. 2019) to

spatial-deposition prediction (Gunawardena et al. 2021).

The core of all applications is to replace a computationally

demanding model with a faster surrogate one. Details of

some recent investigations are as follows.

To investigate the relative impact of a collection of

uncertain model inputs and their interactions on the outputs

of the atmospheric dispersion for the Fukushima nuclear

catastrophe, Girard et al. (2016) applied Sobol’s global

sensitivity analysis using Gaussian-process emulation. At

64 measurement locations, the emulators’ ability to fore-

cast time- and space-aggregated gamma dose rates, as well

as time-integrated gamma radiation rates, were assessed.

Le et al. (2019) describe the use of surrogate models for

the prediction of integrated statistical measures, e.g. Root

Mean Square Error, based on inputs describing meteoro-

logical forecasts and a source term. The authors have

shown an application of surrogate modelling for replacing

an Eulerian model for the Fukushima event.

Pal et al. (2019) developed a surrogate model of phy-

sics-based radiation model using deep neural networks to

reduce the computational cost.

For 2D dose prediction in a Brazilian nuclear power

plant, Desterro et al. (2020) utilised a Deep Rectifier

Neural Network. The method was developed for immediate

prediction up-to 1 h after the accident and considered five

model inputs (wind velocity, wind direction, position x,

position y and time after the accident started). The data

samples for the investigation were generated by the simu-

lation model and, consequently, the obtained model can be

considered as a surrogate.

Gunawardena et al. (2021) proposed a data-driven sur-

rogate model to predict the spatial deposition of radioactive

materials from a nuclear power plant for a single radio-

logical release over a wide area for a particular period of

48 h. A grid of linear regression and logistic models is used

for the surrogate model with categorical variables from an

NWP system as inputs.

Carnevale et al. (2012) used a grid of neural networks

for the static mapping between precursor emissions in each

cell and its neighbouring cells and PM10 pollutant in a

domain of interest.

Bowman and Woods (2016) proposed a surrogate model

of atmospheric dispersion for a Gaussian puff model. The

surrogate model is composed of basis functions whose

coefficients are modelled with a Gaussian-process model.

They compare different modelling methods with the

uncertainty quantification of coefficients. The surrogate

model is a static model and does not take dynamics into

account. The static model means that the surrogate model

output at every time instant does not encounter the past or

derivations of input and/or output variables.

Uncertainty quantification of spline coefficients is also

the purpose of (Francom et al. 2019), which efficiently uses

Bayesian adaptive splines for surrogate modelling to which

they use categorical inputs, i.e. discrete values from a finite

set of choices from a numerical weather prediction (NWP)

system. The purpose of the developed surrogate model is

the characterisation of atmospheric release. In particular,

the authors model the weights of empirical orthogonal

functions in space and time for plume emulation using the

adaptive splines.

Mallet et al. (2018) built a meta-model that replicates

the key aspects of the air quality model ADMS-Urban to

simulate NO2 and PM10 emissions on an urban scale with

street resolution and continuous emissions from emission

Fig. 1 The principle of surrogate modelling
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sources. The original model lacks a temporal dimension in

inputs and outputs and is static with low-dimensional

inputs and high-dimensional outputs. The principal com-

ponent analysis is used to condense the model’s outputs

before multiple linear regression and Kriging interpolate

them.

For anticipating atmospheric dispersion of methane

(CH4) in 2D over complicated terrain, Lauret et al. (2016)

developed cellular automata paired with an artificial-neu-

ral-network model. A dynamic model based on wind field

data processed with Computational-Fluid-Dynamics simu-

lation is utilised to supply input data for the artificial neural

network.

A surrogate model for the Computational-Fluid-

Dynamics wind model is developed by Moonen and

Allegrini (2015). The surrogate model was a Gaussian-

process model applied in a case study representing an

urban area.

A surrogate model of a Computational-Fluid-Dynamics

model of pollution dispersion (Mendil et al. 2021) and

recently (Mendil et al. 2022) is a deep-neural-network

model that mimics the accidental release of a radioactive

pollutant from multiple sources for up to 2 h ahead in an

urban area.

There are other uses of surrogate modelling that prove

the utility of the methodology. Each of the described cases

is a bit different in the model’s purpose or different in the

methods used, but with a common goal of reducing com-

putational burden with the use of some approximation.

Nevertheless, the listed surrogate models only utilise the

information about the present and not about the past. In this

sense, they are not dynamic models. One possible reason is

that using information from previous time instants con-

siderably increases the dimension of input space.

1.1 Problem statement

The problem at stake, different from those published, deals

with modelling a dispersion of a pollutant with a single

source of pollution over complex terrain. In Europe, major

accidents involving dangerous chemicals are prevented and

controlled through the Seveso Directive (European Com-

mission 2020). Seveso-type industrial facilities and nuclear

power plants have the potential for accidents with serious

consequences, especially when the release occurs over

complex terrain. When such an accident occurs, the con-

sequences for the environment and the human population

must be quickly forecasted. Air pollution dispersion in a

complex environment is commonly modelled and simu-

lated with the Lagrangian particle dispersion model (Girard

et al. 2020), where the cost for its forecast accuracy is a

heavy computational burden. The dispersion model is a

dynamic model, which adds to its complexity.

The problem we tackle is to develop a surrogate model

that will provide reliable forecasts of air pollution disper-

sion relatively quickly so that authorities will have enough

time and information to act upon it. The surrogate model

also should take into account the dynamics of the air pol-

lution dispersion. The primary goal is to improve the

computational speed of prediction to use the model for

potential experimentation and long-range forecasting, i.e.

forecasting for an extensive period of time, as long as

information on weather variables or average weather

variables is available. If the surrogate model is available

for potentially important Seveso objects in advance, then in

the event of a disaster, emergency services could use

meteorological forecasts and calculate the dispersion

forecasts quickly. The investigation is intended for the

ground layer because that is where most people are

exposed. The investigation can be done also for higher

layers with the same methods and corresponding data. The

ground layer is usually also the most complex layer due to

the influence of terrain and land use.

1.2 Contribution

We propose two methods for modelling an input-output

dynamic surrogate model of continuous point-source

originating pollution over complex terrain based on mete-

orological variables obtained from an NWP system or other

sources of weather information.

The contribution of the investigation is as follows:

• A method for the modelling of a surrogate model of air

pollution dispersion based on meteorological variables

as inputs and 2D representation of relative pollution

concentration at the output as a grid of independent

dynamic models (GIM) for each output cell.

• A method for the modelling of a surrogate model of air

pollution dispersion based on meteorological variables

as inputs and 2D representation of relative pollution

concentration at the output as a reduced grid of dynamic

models with interpolation of outputs (RGI).

• A fast and applicable case-study demonstration of the

listed methods on a simulated Seveso-type point release

of a pollutant over complex terrain.

In addition to developing the surrogate model, the con-

tributed methods also can be used for modelling a data-

driven dispersion model if the necessary training data is

available. Nevertheless, this is not the emphasis of the

paper.

The emphasis of the paper is on developing a surrogate

model that reduces the computational burden of model

prediction and forecasting with acceptable accuracy. Note

that this paper is not about the particular data-driven

machine learning method nor is its focus exclusively on the
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point-accuracy of dispersion predictions. Different meth-

ods can be used in the proposed framework and the speed

of computation is the focus of the study. The proposed

framework can be used effectively for developing surro-

gate models for computationally demanding

experimentations.

The structure of the paper is as follows. The following

section describes the air pollution Lagrangian particle

dispersion model at the selected location with complex

terrain. Section 3 describes decision-tree models and the

Gaussian-process-grid model that are used for solving the

fast-dispersion prediction problem. Results are discussed in

Sect. 4, and conclusions are gathered in Sect. 5.

2 Mathematical model and numerical
simulation

The case study for demonstrating the development of a

surrogate model for pollution dispersion is the Šoštanj

thermal power plant. The pollution dispersion of this power

plant frequently attracts attention and was also used for

early modelling with artificial neural networks (Božnar

et al. 1993).

A constant and continuous sulphur-dioxide (SO2) pol-

lution source emission of unit value was presumed, and

which can be, when necessary, proportionally sized for

real-life situations. The location of the Šoštanj power plant

is at the edge of the Velenje Basin in Slovenia (Fig. 2). It is

surrounded by the Alps to the north and north-west. The

basin consists of narrow valleys with rivers flowing along

them and, as such, represents highly complex terrain.

Winds are stronger on elevated levels and weaker in the

basin. A temperature inversion in winter and other cir-

cumstances additionally complicate the situation.

Pollution dispersion in such a complex terrain was

successfully modelled by an air pollution Lagrangian par-

ticle dispersion model (Mlakar et al. 2015), which repre-

sents a suitable method to deal with the complexity of the

terrain. The Lagrangian particle dispersion model was

combined with a corresponding meteorological preproces-

sor able to reconstruct a three-dimensional diagnostic

nondivergent wind field. In particular, the SPRAY

Lagrangian particle dispersion model (Castelli et al. 2018),

the MINERVE diagnostic mass consistent wind field model

(Finardi et al. 1998) and the SURFPRO meteorological

preprocessor (Finardi et al. 1997) were used for the dis-

persion modelling (Mlakar et al. 2015). Inputs in the

Lagrangian particle dispersion model were weather vari-

ables that can be collected at different weather stations or

weather-forecast variables, the digital model of the terrain

heights, and land cover data of the region. Realistic

information regarding land use was used in the Lagrangian

particle dispersion model. The weather-forecast variables

are valuable, especially in the case of major accidents

Fig. 2 Relief view of the

position of Šoštanj power plant

(46�22026.5600 N, 15�305.1500 E)
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involving dangerous chemicals, where we would like to

forecast the direction and values of pollution dispersion.

For our demonstration, we did not use all the weather

variables as described in (Mlakar et al. 2015), but have

made a study for the simplified weather situation as fol-

lows. The temperature profile, wind velocity and direction

were provided only at two altitudes, 10 m and 500 m, at the

location of the thermal power plant in Šoštanj. The weather

was presumed sunny with a clear sky. The output variable

was the relative concentration of SO2, but any other

chemical of interest could be used in the study. The relative

concentration (s/m3) is a ratio between absolute pollutant

concentration in lg/m3 and the rate of emission (kg/s)

(Mlakar et al. 2019). The relative concentration enables

rescaling the results to any other form of pollutant emis-

sion. The region of interest was 15� 15 km described with

100� 100 square cells of 150� 150 m each. Conse-

quently, we dealt with the situation in 10,000 cells.

What we were striving for was the computational aspect

of the described model. Nevertheless, the matching

between the Lagrangian particle air pollution dispersion

model output and the real situation in the field played a

noticeable role in our study, but we were aware that it can

be improved a bit further with additional training data and

modelling effort. The software was run on an i9 desktop

computer with MS Windows operating system. The model

at the designated computer calculated every half-hour

response at approximately a few tens of seconds. While this

was an expected and acceptable computational perfor-

mance, it was too slow to serve for numerical experimen-

tation, which would be necessary for the real-time

forecasting of accidents and especially not for long-range

forecast studies because the time of calculation increases

linearly with the length of the forecast horizon.

We took the developed Lagrangian particle dispersion

model combined with the corresponding meteorological

preprocessor as a benchmark and tried to improve the

computational performance at an acceptable loss of accu-

racy with a surrogate model.

3 Methods

3.1 Surrogate modelling

3.1.1 The modelling procedure

The brief procedure for developing a surrogate model in

our case is as follows (Fig. 3).

1. The development of a Lagrangian particle dispersion

model with the accuracy suitable for the model’s

purpose.

2. Dataset generation with the Lagrangian particle dis-

persion model for surrogate modelling.

3. The selection of a model-development method for the

surrogate model.

4. The selection of a surrogate-model structure (regres-

sors, regression method, etc.).

5. Data-driven modelling of a large number of indepen-

dent models, each for a cell of interest, or modelling of

a smaller number of independent models and interpo-

lation of their responses to the field of cells.

6. The prediction of the obtained surrogate model with

data not used for modelling.

3.1.2 Constraints and assumptions

One of the most important steps in surrogate modelling is

the generation of input samples that are intelligently dis-

tributed within the entire input space. This is usually done

with optimal experimental design or with active learning

(Breiman et al. 2017). In the case of atmospheric phe-

nomena, the input variables utilised for modelling are

commonly weather variables. This was also in our case.

Values at the inputs were not obtained with a designed

experiment and its implementation, but we used weather

forecasts from a numerical weather simulator. The reason

for this choice is that realistic combinations of values of

Fig. 3 Flow chart for the development of a surrogate model
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input variables cannot fill all the subspaces in the input-

variables space because all possible combinations are not

natural. Therefore, lots of combinations never occur.

Consequently, we use data from available weather sources

and not optimal experimental design or active learning.

This particular selection of input data means that the

number of data is not optimal and a large amount of data is

necessary to encompass the relevant information.

The dispersion provided by the Lagrangian particle

dispersion module has a resolution of 10,000 cells, with

each cell measuring 150� 150 m. This means that we deal

with a system of 10,000 outputs, which introduces an

identification problem with the excessive number of out-

puts. Such a problem can be tackled with dimension-re-

duction methods, e.g. (Girard et al. 2020). We decided to

approach the problem differently and offer an alternative

solution. The idea is to divide the model into a large

number of submodels, as it was utilised in (Gunawardena

et al. 2021; Carnevale et al. 2012), under the assumption

that outputs do not influence each other. Nevertheless, the

results described in the continuation showed that this

working assumption provides some applicable results.

Further research on alternative models and some output

reduction methods applicable to this problem is envisaged

for the future.

3.1.3 Performance metrics

Modelling performance was evaluated with two cost

functions. The first is selected to evaluate time-dependent

predictions of every submodel in the entire system in

comparison with the original system. This evaluation is

done with the standardised mean-squared error—SMSE

(Le et al. 2019; Rasmussen and Williams 2006):

SMSE ¼ 1

N

y� EðŷÞk k2

r2y
; ð1Þ

where

y–the vector of observations,

EðŷÞ–the mean value of estimations ŷ,

r2y–the variance of observations,

N–the number of observations.

SMSE is a frequently used standardised measure for the

accuracy of predictions’ mean values with values between

0 and 1, where the value 0 is the result of a perfect model.

Pearson correlation coefficient R and the coefficient of

determination R2 are also given for comparison. Pearson

correlation coefficient is defined as

R ¼ covðy;EðŷÞÞ
ryrŷ

; ð2Þ

where cov is covariance, and rŷ is the standard deviation

of the mean values of estimations. The value is between

- 1 and 1, and the more positive value is better.

The coefficient of determination is defined as

R2 ¼ 1� y� EðŷÞk k2

Nr2y
¼ 1� SMSE: ð3Þ

The value is between 0 and 1, and a bigger value is better.

The presentation of pollution dispersion at ground level

in our case is a two-dimensional field—an image of the

dispersion. Consequently, the second selected cost func-

tion, the statistical coefficient of the space analysis, is the

figure of merit in space—FMS (Mosca et al. 1998) also

known as the Jaccard similarity coefficient

FMS ¼ A1

T
A2

A1

S
A2

; ð4Þ

where A1 and A2 represent the measured and predicted

areas respectively. The FMS is calculated at each time

instant, with a fixed-threshold concentration level that

distinguishes two categories of concentration values.

Therefore it does not validate concentration levels, but the

coverage of pollution. Values of the FMS close to 1 cor-

respond to good model performance. Low FMS does not

necessarily correspond to a bad model performance due to

the shift of pollution plumes. Therefore, the FMS value

should be evaluated together with a graphical representa-

tion of the measured A1 and modelled areas A2.

Ensembles of decision trees and a Gaussian-process grid

were used for the development of surrogate models for the

selected case study.

3.2 Decision trees

The literature provides many different algorithms for

learning decision trees, which can be classification or

regression trees (Breiman et al. 2017). While classification

trees have a categorical output that indicates belonging to a

finite set of outputs, regression trees provide numeric

responses. A binary model tree, whether it is of a classi-

fication or regression type, consists of a split node with a

threshold test of a particular variable xi 2 X , where X is a

set of regressors. Given identification data

D ¼ ðx; yÞ j x 2 Rp; y 2 Rr , where x is the vector of

regressors (inputs) and y is the output, a model tree parti-

tions the input space Rr into several partitions, called

leaves. The split node creates a binary partition of the input

space and has left and right offspring nodes. Such tree-like

structures are frequently used for surrogate modelling

(Alizadeh et al. 2020). They are robust, have the internal

regressors’ selection mechanism, are computationally

efficient, are interpretable to a certain extent, etc. The
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disadvantage is that piece-wise continuous estimates, as in

the case of regression trees, may create certain inaccuracy,

particularly for small trees.

The accuracy of regression trees can be improved with

the use of tree ensembles (Mendes-Moreira et al. 2012;

Aleksovski et al. 2016). Tree ensembles are created from

several uncorrelated regression-tree models. A combina-

tion of the imperfect predictions obtained from each model

tree should improve the prediction accuracy over a single

tree and thus provide a more accurate model. Different

principles exist to create ensembles. One of them is the

bagging principle (Breiman 1996; Breiman et al. 2017). In

bagging, bootstrap replicates are created, i.e. random

samples with replacement of the training dataset D that

have an equal number of data points as the training set.

Each of the replicates Di is used to build one model tree.

The learning procedure starts by creating n bootstrap

replicates of the training data D. Using each of the n data

samples, a collection of model trees is built: m1;m2; . . .;mn.

Denoting the predictions of the n single-output model trees

of the ensemble with f̂iðxÞ, the overall prediction from the

model tree ensemble is the average of the base model

predictions for one output variable:

ŷðxÞ ¼ 1

n

Xn

i¼1

f̂iðxÞ: ð5Þ

The rationale for selecting ensembles of bagged regression

trees for modelling surrogate models was twofold: (1)

learning of regression trees is faster than for other tested

models and (2) ensembles improved the accuracy of pre-

dictions. Other selections might be viable as well.

3.3 Gaussian-process grid

Gaussian process modelling, also known as kriging, is a

further method used in surrogate modelling (Alizadeh et al.

2020). Gaussian process models (Rasmussen and Williams

2006; Kocijan 2016) describe the input-output mapping of

data f ðxÞ from regression vector x with a Gaussian process

(GP). GP is a stochastic process containing random vari-

ables f ðxiÞ with a normal probability distribution,

pðf ðx1Þ; . . .; f ðxNÞ j x1; . . .; xNÞÞ ¼ N ðm;KÞ: ð6Þ

The vectors xi are regressor vectors, f is the GP, m is the

mean vector and K is the covariance matrix of the Gaussian

distribution N . In GP modelling, we describe the GP with

a mean function and a covariance function,

mi ¼ mðxiÞ; Kij ¼ Cðxi; xjÞ; ð7Þ

where mðxiÞ is the mean function and Cðxi; xjÞ is the

covariance function. GP models are flexible function

approximators, which can be used to represent complex

structures with covariance kernels (Kocijan 2016).

When dealing with the grid structure of output data,

grid-based covariance approximations can be utilised

(Wilson and Nickisch 2015). This is the way to decrease

computational costs in training and prediction. In the case

of multidimensional inputs on a Cartesian grid,

x 2 X 1 � � � � � X p, and a product kernel across the grid

dimensions, Cðxi; xjÞ ¼
Qp

k¼1 Cðxik; xjkÞ, then the n� n

covariance matrix K can be expressed as a Kronecker

product K ¼ K1 � � � � �Kp. The product of grid sizes in

all the dimensions N ¼
Qp

i¼1 np is a product of the number

of points np per grid dimension. The method takes

advantage of the computational properties of a grid-based

covariance matrix via the structured kernel interpolation.

The reader is referred to (Wilson and Nickisch 2015) for

more details.

4 Results and discussion

4.1 Grid of independent models—GIM

4.1.1 Data

Data for training, validation and testing were obtained with

the simulation of air pollution Lagrangian particle disper-

sion model for the Šoštanj thermal power plant. The data

sequence contained three years of data (July 2018–July

2021) with a 30-min sampling time. The data sequence

contained SO2 concentration as a system’s output signal

and 7 meteorological variables as a system’s input signals,

which were temperature, wind velocity and wind direction

at heights 10 m and 500 m, the global solar IR radiation

and the ground projection of the dispersion forecast for

each time instant.

This set of more than 52,500 data pieces was divided

into training, validation and test sets. Since we need as

much data as possible for training to get as much infor-

mation as possible, we ended dividing data into 51 subsets

where one was immediately set aside as the test dataset

(June 2021–July 2021), while the rest of the data was used

for training and validation (July 2018–May 2021). The test

data incorporated samples at the end of the completed

dataset.

The data that was not used for the test was normalised,

namely centred to have a mean of 0 and scaled to have a

standard deviation of 1. The obtained mean values and

variances were then also used for the normalisation of the

test data.
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4.1.2 Structure

Dispersion of air pollution is a dynamic system. It non-

linearly depends on meteorological and other environ-

mental variables and not just on their present time values,

but also the variable’s history. Therefore the surrogate

models have to be dynamic models as well. A static model

would be just an approximation of a dynamic one in one

time instant. The purpose of the entire system of models is

forecasting for extended time horizons, therefore long-

range forecasting and the entire system of models has a

large number of outputs. The scheme of GIM is shown in

Fig. 4.

Dynamics is incorporated in a model with regressors,

which are the delayed values of outputs and inputs in the

form of infinite-impulse-response or finite-impulse-re-

sponse models (Nelles 2002).

We selected a finite-impulse-response (FIR) model

structure for our submodels because an excessive number

of outputs would make their feedback very inconvenient.

These models have delayed values of inputs only (no

delayed outputs) for regressors and the number of delays

corresponds to the time in which impulse-excited response

fades out. Since air pollution dispersion is a nonlinear

process, we used a nonlinear-FIR (NFIR) model, in par-

ticular an ensemble model of bagged regression trees.

Regression trees were selected due to the speed of training

and their accuracy was improved using ensembles. Other

data-driven modelling methods were tested, but all have

performed worse than the selected one regarding the speed

of training.

The next step in the structure selection is the selection of

regressors. All seven available input signals were used as

inputs, while outputs were values of SO2 at each cell. The

number of input delays was selected with 4-fold cross-

validation on the dataset of about 21,000 data points. The

reason for not taking a larger amount of data is that we

wanted to keep a reasonable computational time. The

training and validation sets were large enough to make the

obtained results instrumental also for larger datasets even

though the values of cost functions for cross-validation are

worse than in the case when a larger dataset is used.

The results of 4-fold cross-validation for delay-selection

are given in ‘‘Appendix A’’. Note that we have validated

the same amount of delays on all inputs, without elimi-

nating particular uninformative regressors due to simplic-

ity. Therefore, if the maximal delay is, e.g. 3, this means

that we have 21 regressors, 7 with delay 1, 7 with delay 2,

and 7 with delay 3 for the prediction of the value at the

moment of delay 0, i.e. at present moment. The cross-

validation study was pursued for the delay interval between

2 and 6, where the minimum was located.

The best SMSE and FMS results were obtained with the

delay of 4 samples, which corresponds to delays up to 2 h.

This can be interpreted that a transient of 2 h encompasses

the most information about the pollution dispersion.

The number of observations per tree leaf(or partition)

was selected next. Using the already selected model

parameters, a 4-fold cross-validation study was done to

determine the optimal number of observations. The

obtained results are given in ‘‘Appendix A’’. Averages of

the SMSE measure are shown in Fig. 5. SMSE was used

for the evaluation because we are evaluating the prediction

ability of each independent submodel in the GIM model.

It is clear from Fig. 5 that the prediction-quality index is

the lowest when 10 observations per tree leaf are used.

The next selection concerns the structure of ensembles,

in particular the number of regression models within the

ensemble. Using the already selected model parameters, a

4-fold cross-validation study was done to determine the

Fig. 4 The scheme of GIM
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optimal number of models. The obtained results are given

in ‘‘Appendix A’’ and the average SMSE measure is shown

in Fig. 6. SMSE was used for the evaluation because we

are again evaluating the prediction ability of each inde-

pendent submodel in the GIM model.

It is clear from Fig. 6 that the quality of the model

increases with the increasing number of models in

ensembles. However, the computation burden also increa-

ses with the number of models. Consequently, we selected

the corresponding number of models, where the change of

SMSE is the biggest. This can be seen in Fig. 6 as a ‘knee’

of depicted function. Having in mind the computational

burden, 60 models were selected as an acceptable number

of models in ensembles.

The final structure was therefore as follows:

• NFIR model structure,

• 7 signals as inputs, each delayed up to 4 time steps, i.e.

2 h, which results in 28 regressors,

• ensembles of regression trees composed of 60 models

with 10 observations per leaf.

4.1.3 Test results

The complete set of data excluding the test data was used

for training. The Statistics and Machine Learning Toolbox

of Matlab was used for the training and testing of the

obtained models.

Two examples of the obtained images for two different

weather situations contained in the test data are given in

Figs. 7 and 8. The complete set of test-data responses can

be seen in the video (Online Resources 1 and 2—(Kocijan

et al. 2022)). The visual matching of the predictions of the

grid of independent submodels and the original Lagrangian

particle dispersion model is relatively good. However, it

depends on the purpose of the surrogate model which level

of accuracy and details are important.

While the direct comparison of the computation time

was not possible because the Lagrangian particle disper-

sion model was run on a designated computer (Intel Core i9

10900 @ 5.60 GHz, 32 GB RAM) and the surrogate model

was run on another computer (Intel Core i7 8700HQ CPU

@ 3.70GHz, 32 GB RAM), the comparison can be done

only qualitatively. The purpose of the surrogate model was

to make long-range predictions. For the prediction of

approximately 1000 data samples, the original dispersion

model at the designated computer took about 35,000 s,

while the surrogate model took about 300 s. The comput-

ing load increased with the number of predictions linearly.

This very rough comparison provides an indicator that the

prediction with the surrogate model is much faster than

with the Lagrangian particle dispersion model.

Regarding the accuracy of the model, we can compare

the SMSE of the predictions on the test set for each of the

submodels, that is for each of the 10,000 cells. These are

graphically shown in Fig. 9 as an image. Differences in the

quality of predictions can be observed in the figure, which

is mainly an indicator of the different information content

of inputs and outputs concerning cells of the two-dimen-

sional representation. The average SMSE over the inde-

pendent models is 0.5167, while R2 = 0.4833 and R =

0.6952.

How the predictions of dispersion in each time instant

cover the original model’s predictions of dispersion is

given with FMS values at each time instant of the test data

sequence. The FMS values are graphically shown in

Fig. 10. The average FMS over time is 0.595.

Fig. 5 The dependency of the predictions’ SMSE from the number of

observations per tree leaf

Fig. 6 The dependency of the predictions’ SMSE from the number of

models in the ensemble
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Fig. 7 An example of a weather

situation with a strong wind

from test data. Original-model

response in the left figure, GIM

surrogate-model response in the

right figure. The scale is

identical for both figures, values

over the maximum value of

scale are drawn in magenta

colour, the maximum value in

the left figure is 7:530 � 10�7 s/

m3 and in the right figure is

4:190 � 10�7 s/m3

Fig. 8 An example of a weather

situation with a weak wind from

test data. Original-model

response in the left figure, GIM

surrogate-model response in the

right figure. The scale is

identical for both figures, values

over the maximum value of

scale are drawn in magenta

colour, the maximum value in

the left figure is 4:310 � 10�7 s/

m3 and in the right figure is

3:830 � 10�7 s/m3

Fig. 9 The planar distribution of model-responses SMSE values on

the test data, where the value 0 is the result of a perfect model

Fig. 10 FMS of the surrogate model for each time instant on the test

data
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Even though the GIM accelerates the prediction in

comparison with the Lagrangian particle dispersion model,

the following section describes an alternative in which a

lower number of independent submodels is calculated and

predictions in each cell are not independent anymore. This

can be achieved with the RGI.

4.2 Reduced grid with interpolation
of outputs—RGI

RGI is intended as the structure for the acceleration of

computation in the comparison with GIM. The same data

was used for modelling and testing and with the same

division as in the case of GIM.

4.2.1 Structure

The entire model is composed of two parts: GIM, but not

for the complete grid, and the Gaussian-process grid for

filling up the gaps in the grid of predictions. The scheme of

RGI is shown in Fig. 11.

The structure of independent cell models was kept as it

was for the complete GIM. We selected every third cell to

be modelled, which reduced the number of cells to be

modelled on 34� 34 ¼ 1156 cells. This is a considerable

reduction. In our case, the cells to be modelled with

independent models are distributed uniformly, but this is

not necessary.

Predictions of available independent cell models were

inputs into the GP grid. The GP grid uses covariance

functions for the calculation of the grid-based covariance

matrix. The individual covariance functions in our case

were two squared exponential covariance functions with

isotropic distance measures, each of them as

Cðxi; xjÞ ¼ r2f exp � r2

2l2

� �

: ð8Þ

The hyperparameter r2f represents the scaling factor of the

possible variations of the function or the vertical scaling

factor and the hyperparameter l is called the horizontal

scaling factor and determines the relative weight on dis-

tance for the input variable x. The variable r is the input-

distance measure and is r ¼j xi � xj j, where x is a

regression vector for the GP grid. In RGI’s case, regressors

of the GP grid are the cell’s indices.

The Kronecker covariance matrix (Wilson and Nickisch

2015) is calculated from two covariance matrices, each for

one input dimension.

Hyperparameters r2f and l were optimised for the best

grid performance.

4.2.2 Test results

The predictions for two different weather situations are

provided in Figs. 12 and 13.

SMSEs of the predictions on the test set for all models in

the GIM model combined into an image is shown in

Fig. 14 and FMS values at each time instant of the test data

sequence are graphically shown in Fig. 15. The average

SMSE over predictions on the test data and all cells is

0.5283, while R2 = 0.4717 and R = 0.6868 and the average

FMS over time is 0.599, which are both around 1 % dif-

ference in comparison with the GIM and consequently

provides similar graphs.

It is clear from Figs. 12, 13, 14 and 15 that the accuracy

of RGI predictions is close, but not equal to those of GIM.

Especially, maximum values are not that well predicted.

However, the computation of predictions for the test data,

approximately 1000 data samples, takes about one-third of

Fig. 11 The scheme of RGI
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Fig. 12 An example of a

weather situation with a strong

wind from test data. Original-

model response in the left

figure, RGI surrogate-model

response in the right figure. The

scale is identical for both

figures, values over the

maximum value of scale are

drawn in magenta colour, the

maximum value in the left

figure is 7:530 � 10�7 s/m3 and

in the right figure is 3:070 � 10�7

s/m3

Fig. 13 An example of a

weather situation with a weak

wind from test data. Original-

model response in the left

figure, RGI surrogate-model

response in the right figure. The

scale is identical for both

figures, values over the

maximum value of scale are

drawn in magenta colour, the

maximum value in the left

figure is 4:310 � 10�7 s/m3 and

in the right figure is 2:980 � 10�7

s/m3

Fig. 14 The planar distribution of model-responses SMSE values on

the test data, where the value 0 is the result of a perfect model

Fig. 15 FMS of the surrogate model for each time instant on the test

data
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the time with the combined model. The complete set of

responses can be seen in the video (Online Resources 1 and

2—(Kocijan et al. 2022)).

4.3 Comparison of responses

A different aspect to the matching between the responses of

the original model, GIM model and RGI model is provided

with some additional processing. Figure 16 depicts the

average relative concentrations over the domain calculated

for the period of time of the test dataset. The comparison of

responses of the original dispersion system and its surro-

gate model shows a good match in regards to both location

and value. A very good match of maximum values of

averages can also be observed. The response of the GIM

surrogate model matches some of the details of the original

system better than the response of the RGI surrogate

model.

Figure 17 shows maximum relative concentrations over

the domain calculated for the period of time of the test

dataset. The comparison of responses of the original dis-

persion system and its surrogate model shows, like in

Fig. 16, a good match location-wise as well as value-wise.

The same is with the maximum values of maximum rela-

tive concentrations. The match of maximum values of

surrogate models is a bit worse than the match of average

relative concentrations. Nevertheless, these deviations are

expected, because the prediction of maximum values is a

difficult task also in the original system itself.

Figure 18 shows the 95th percentile of relative con-

centrations over the domain calculated for the time period

of the test dataset. The match of responses and maximums

of the 95th percentile of relative concentrations among

models are good. The match is not as good as the other two

comparisons, but still acceptable for our purpose. The

response of the GIM surrogate model again matches some

of the details of the original system better than the response

of the RGI surrogate model.

The 95th percentile of relative concentrations represents

the top 5 % response values. These are predicted well for

the Seveso-type event in space and time. The comparison

of maximum values in Fig. 17 confirms a good match

based on previous evaluation investigations (Grašič et al.

2011) in the field of pollution dispersion. This all confirms

that the developed surrogate models fulfilled the purpose of

replacing the original dispersion system in the Seveso-type

simulations at a lower computational cost.

The acceptable accuracy of a surrogate model depends

on the purpose of the model. The modeller has to put

enough effort into the modelling to achieve the accept-

able accuracy. Moreover, if more data or data with better

information content is used, a better model can be obtained.

One has to keep in mind that the training of models

takes a considerably longer time than the prediction, but

the time is still reasonable. The computational load of the

model training increases nonlinearly with the number of

training data, but the increase in computational load for

surrogate-model predictions is linear with the number of

test data and not considerable in comparison with the

prediction time of the original Lagrangian particles model.

5 Conclusion

The objective of our investigation was to develop a sur-

rogate model that will replace the air pollution Lagrangian

particle dispersion model for computationally intensive

applications like computer experimentations at a consid-

erably lower computational time. We proposed two meth-

ods, i.e. GIM and RGI, that considerably raise the potential

Fig. 16 Average relative concentrations over domain calculated for

the validation dataset period June 9, 2021–June 30, 2021; the scale is

identical for all figures; values over the maximum value of scale are

drawn in magenta colour; the maximum value in the left figure is

1:004 � 10�7 s/m3, in the middle figure is 0:8470 � 10�7 s/m3 and in

the right figure is 0:7273 � 10�7 s/m3
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for numerical experimentation. The obtained surrogate

models can be used for computer experimentation like

long-range predictions, simulations, parameter optimisa-

tion, etc., which would be very time-consuming with the

air pollution Lagrangian particle dispersion model.

The accuracy of the surrogate model depends on the

amount of training data used and its information content.

The computational load for surrogate model development

increases with the number of training data. However, the

increase in computational load for predictions is linear for

the proposed models and not considerable in comparison

with the original model.

Other studies using surrogate models have not tackled

the problem of air pollution dispersion in the same way as

the present one. Two alternative methods that represent a

solution of surrogate modelling for air-pollution dispersion

based on dynamic models were demonstrated. While the

idea of using a grid of models has been used before in

somewhat different contexts, the use of dynamic GIM and

RGI is novel for the dispersion-modelling problem of

interest. Moreover, the investigation demonstrated the

utility of surrogate modelling in the modelling of air pol-

lution dispersion over complex terrain.

Further studies exploring more complex models, using

different model structures, output-reduction methods and

different kinds of dispersion problems are envisaged in

future research.

Appendix A: Cross-validation results

Results of 4-fold cross-validation for delay-selection are

given in Table 1 for the SMSE cost function that represents

the average quality of GIM and in Table 2 for the FMS cost

function that represents the quality of the cover of fore-

casted pollution plumes.

Fig. 17 Maximal relative concentrations over domain calculated for

the validation dataset period June 9, 2021–June 30, 2021; scale is

identical for all figures; values over the maximum value of scale are

drawn in magenta colour; the maximum value in the left figure is

1:098 � 10�5 s/m3, in the middle figure is 0:4450 � 10�5 s/m3 and in

the right figure is 0:3430 � 10�5 s/m3

Fig. 18 The 95th percentile of relative concentrations over domain

calculated for the validation dataset period June 9, 2021–June 30,

2021; scale is identical for all figures; values over the maximum value

of scale are drawn in magenta colour; the maximum value in the left

figure is 4:415 � 10�7 s/m3, in the middle figure is 3:200 � 10�7 s/m3

and in the right figure is 2:560 � 10�7 s/m3
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Results of the 4-fold cross-validation study for the

determination of the optimal number of observations per

leaf are given in Table 3.

Results of the 4-fold cross-validation study for the

determination of the optimal number of models are given in

Table 4.
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