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Abstract: This study describes an application of hybrid modelling for an atmospheric variable in the Krško basin. The
hybrid model is a combination of a physics-based and data-driven model and has some properties of both modelling
approaches. In the authors’ case, it is used for the modelling of an atmospheric variable, namely relative humidity in a
particular location for the purpose of using the predictions of the model as an input to the air-pollution-dispersion
model for radiation exposure. The presented hybrid model is a combination of a physics-based atmospherical model
and a Gaussian-process (GP) regression model. The GP model is a probabilistic kernel method that also enables
evaluation of prediction confidence. The problem of poor scalability of GP modelling was solved using sparse GP
modelling; in particular, the fully independent training conditional method was used. Two different approaches to
dataset selection for empirical model training were used and multiple-step-ahead predictions for different horizons
were assessed. It is shown in this study that the accuracy of the predicted relative humidity in the Krško basin
improved when using hybrid models over using the physics-based model alone and that predictions for a considerable
length of horizon can be used.
1 Introduction

Hybrid models combine properties of different kinds of models. In
this investigation, the combination of a physics-based model and
data-driven model is applied for the modelling of relative humidity
in a pre-defined geographical location.

The problem motivating our investigation originates from the
need to model and predict the dispersion of radioactive pollutants
that could be hypothetically emitted from Krsǩo nuclear power
plant (NPP) in Slovenia. Predictions of radiation exposure produced
by the air-pollution-dispersion model are necessary for directing
the evacuation of inhabitants in the vicinity of the NPP in case
of a hazardous event. The air-pollution-dispersion model, which
is not the topic of our investigation, relies on information from
weather-variables forecasts, which act as the dispersion model
inputs. The accuracy of weather-variables forecasts in the range of
up to a few hours have a direct effect on the accuracy of the pre-
dicted pollutant dispersion [1]. Physics-based numerical weather
prediction (NWP) models [2] that are used for weather-variables
forecasts refined from global prognostic models and prone to some
limitations. When the terrain of interest is complex, standard
physics-based models do not provide accurate information enough
for further processing with the air-pollution-dispersion model for
radiation exposure.

Data-driven or statistical models provide a viable alternative
to physics-based models in atmospheric sciences, e.g. [3]. Data-
driven modelling of relative humidity in particular can be found
in, e.g. [4–7], where a single method or combination of methods
are used for relative-humidity modelling. However, the need
for the transparency of the physical and chemical background
that comes with the physics-based model is apparent. This is
the reason that in our study we do not replace the insufficient
physics-based model, but rather upgrade it to a hybrid model by
combining it with a data-driven model.

Improving the accuracy of weather-variables prediction with
statistical modelling and machine-learning methods is the prime
motivation of the investigation. Weather is a complex system and
each variable can be treated in a slightly different way. Among
the many variables with a higher or lower impact on pollution
dispersion, our investigation focuses on relative humidity near
ground level or more precisely 2 m above ground at the location
of Krsǩo NPP.

It is necessary to stress that the investigation described hereafter is
not confined to relative humidity only, but can be used for modelling
other variables. Furthermore, it is not confined to air-pollution
dispersion for radiation exposure only, but can be implemented for
improvement of any kind of other point-source emission dispersion
that depends on weather and atmospheric variables. Moreover, the
investigation method is, in general, not confined to the geographical
region of investigation, but can be applied to any other complex
terrain.

The aim of this paper is to use the obtained observations from the
physics-based model and to process them further with a statistical
method to improve the multi-step-ahead predictions of relative
humidity. We call this combination of a physics-based and a data-
driven model a hybrid model, which will be used for the prediction
of relative humidity. Two different approaches of using observations
in the multi-step-ahead prediction are investigated. The first
approach trains statistical model parameters using measurements
as inputs, and then the inputs are changed with physics-based-model
forecasts for multi-step-ahead predictions when future measurements
are not available. The second approach trains statistical model para-
meters using physics-based-model predictions from scratch. The
obtained results are compared with results of alternative prediction
possibilities.

The problems envisaged in the investigation originate from the
need to keep the physical transparency of the relative-humidity
model in addition to the fact that we are dealing with large
amounts of data, and consequently, need a scalable statistical
model. The desire for physical transparency prevents the direct use
of advanced machine-learning methods and the development of a
statistical model only. The problem of relatively large amounts of
data will be tackled with the use of sparse methods and high
performance computing facilities.
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Hybrid modelling is a known method for improving the results of
physics-based modelling. It is called statistical post-processing, e.g.
[8] in atmospheric sciences, integrated modelling, e.g. [9] or hybrid
modelling, e.g. [10, 11] in system theory and mathematical
modelling. In our case, the NWP model is upgraded with a
Gaussian-process (GP) model as the data-driven model.

GP modelling is a probabilistic, non-parametric and kernel
modelling method for regression analysis, but can also be used for
classification. It has properties of kernel methods, and due to its
Bayesian principles to include prior knowledge the GP models
provide predictive distribution, which can be used to quantify the
model fidelity in a systematic way [12].

This paper is structured as follows. The modelling method for the
data-driven model, the physics-based model and the hybrid model
are introduced in Section 2. Section 3 describes the details of the
case study of interest. The modelling results are presented and
discussed in Section 4. The conclusions are gathered at the end of
this paper.
2 Methods

2.1 GP models

When GP modelling [12–14] is used for regression, the following
system is considered:

y = f (z)+ n, (1)

where n is the white Gaussian noise and z is the vector of regressors
from the operating space RD. The noise is of the form n � N (0, s2

n),
where s2

n is the variance. Elements of the vector z [ RD, i.e.
zi:i = 1, . . . , D are called regressors and the vector z is called the
regression vector.

We look for a non-parametric Bayesian model, which has a GP
prior over the function f of

f (z) � GP(m(f (z)), cov(f (zi), f (zj))), (2)

where m(f (z)) is a mean of function and is frequently set to zero
because the mean values can be removed from the function and
added later if necessary. Moreover, cov( f (zi), f (zj)) is the
covariance of f.

Mean and covariance define the properties of the process we
model. They incorporate the prior knowledge of the process to the
system training. For the sake of simplicity, we assume the mean
function is selected as 0. The covariance matrix is calculated using
covariance functions, i.e. kernel functions, which are characterised
with hyperparameters. Some of the possible covariance functions
are described in the Appendix. A covariance matrix K is calculated
by evaluating the covariance function given all the pairs of
measured data. The elements K ij of the covariance matrix K are
covariances between the values of the functions f (zi) and f (zj)
corresponding to the arguments zi and zj

Kij = cov( f (zi), f (zj)) = C(zi, zj). (3)

This means that the covariance between the random variables that
represent the outputs, i.e. the functions of the arguments numbers i
and j, equals the covariance function C between the arguments
numbers i and j.

The data for the training of the model is described as
D = {(zi, yi)|i = 1, . . . , N} = {(Z, y)}. Following the Bayesian
modelling framework, we are looking for the posterior distribution
over f, which for the given data {(Z, y)} and hyperparameters u is:

p(f |Z, y, u) = p(y| f , Z, u)p( f |u)
p(y|Z, u) , (4)

where p(y| f , Z, u) is the likelihood, p( f |u) is the function f prior for
the given hyperparameters u, p(y|Z, u) is the evidence and
p( f |Z, y, u) is the posterior distribution over f.
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The Bayesian inference of most systems can only be implemented
with analytical or numerical approximation. One possible
approximation method is the estimation of hyperparameters with
the maximisation of the evidence. See [12, 13] for details.

The objective of the modelling is to determine predictive
distribution of the latent function values f ∗ = f (Z∗) at test inputs Z∗.

To get the predictive distribution, f = f (Z) is marginalised out.
The resulting predicted distribution is Gaussian and defined with
equation

p(f ∗|y) = N (K∗(K + s2
nI)

−1y, (5)

K∗∗ − K∗(K + s2
nI)

−1K∗). (6)

Therefore

E(f ∗) = K∗(K + s2
nI)

−1y (7)

var(f ∗) = K∗∗ − K∗(K + s2
nI)

−1K∗, (8)

where f ∗ is prediction at Z∗, K∗ = [C(z1, Z
∗), . . . , C(zN , Z

∗)]T is
the N × 1 vector of covariances between the training input data and
the test input data and K∗∗ = C(Z∗, Z∗) is the autocovariance of the
test input data.

The computational demand of the direct implementation of GP
regression increases with the third power of the size of training set
– O(N3), due to the calculation of the covariance matrix inverse.
This becomes an issue when we work on problems that involve
large quantities of training data. The methods that reduce the
computational demand of GP modelling are [12] fast matrix–
vector multiplication methods, sparse-matrix methods and direct
implementations using parallel processing. In our case, we use
sparse-matrix methods, which approximate the covariance matrix.
The idea of using the sparse-matrix methods is to reduce the rank
of the covariance matrix.

Sparse methods make use of so-called inducing input points and a
corresponding set of latent variables u to reduce the computational
complexity. The latent or so-called inducing variables are
presumed to be drawn from the same GP as f and f ∗

p(u) = N (0, Kuu). (9)

The joint prior distribution is recovered with marginalising out u

p(f , f ∗) =
∫
p(f , f ∗|u)p(u)du. (10)

It is assumed that f and f ∗ are conditionally independent given u.
The approximation of joint prior is then

p(f , f ∗) ≃ q(f , f ∗) =
∫
p(f |u)p(f ∗|u)p(u)du. (11)

The conditionals are

p(f |u) = N (K fuK
−1
uu u, K ff − Qff ) (12)

p(f ∗|u) = N (K∗uK
−1
uu u, K∗∗ − Q∗∗), (13)

where Q is determined using Nyström approximation

Qab = KauK
−1
uu K

T
ub. (14)

The predictive distribution is recovered with

p(f ∗|y) = 1

p(y)

∫
p(y|f )q(f , f ∗)df . (15)

To apply sparse GP regression, we first find the posterior distribution
of the inducing outputs u at the corresponding inducing input
points zu.
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The method called fully independent training conditional (FITC)
was proposed in [15], where it was named the Sparse Gaussian
process (SPGP) method. The name FITC comes from the fact that
the training set function observations are presumed to be
completely independent. The covariances on a diagonal of the
covariance matrix are exact. This means that instead of
approximated prior variances, the exact prior variances are on the
covariance matrix diagonal.

L is a diagonal matrix of Knn − Qnn. Then, the effective prior is
given with

qFITC(f , f
∗) � N 0,

Qff +L Qf∗
Q∗f K∗∗

[ ]( )
. (16)

The predictive distribution is calculated as

p(f ∗|y) = N (Q∗f (Qff +L+ s2
nI)

−1y, (17)

K∗∗ − Q∗f (Qff +L+ s2
nI)

−1Qf∗). (18)
2.2 NWP model – Weather Research and Forecast

Different NWP models exist based on first-principles modelling.
One of them that is considered in this investigation is the Weather
Research and Forecast (WRF) model – Advanced Research WRF
version 3.4.1. This is a fully compressible model that supports
real-time NWP, a wide selection of physics models enabling
experimentation, real-data and idealised simulations and various
lateral boundary condition options [16].

In our case, the physics-based model is used for fine resolution pre-
diction of relative humidity in the geographical domain of interest.
The model covers the domain with cells 4 km in size and temporal
resolution of 0.5 h. More details can be found in [17]. Hereafter,
this model is referred to as theWRFmodel. Nevertheless, the provided
spatial resolution is not high enough to encompass all the local
weather effects due to the complex terrain of interest.

2.3 Hybrid model

We investigate if there is an improvement in the predictions obtained
using the existing physics-based model combined with a statistical
(or data-driven) model compared with the physics-based model
alone. Fig. 1 shows the structure used for humidity modelling. As
this structure is the combination of a physics-based model with a
concatenated statistical model obtained using different modelling
methods, it can be referred to as a hybrid model.

The hybrid model combines WRF predictions of humidity with
delayed humidity predictions of the model itself, as depicted in
Fig. 1, and with measurements of weather variables from the inves-
tigated site. While such a model is directly realisable for
one-step-ahead predictions only, a solution for a longer horizon of pre-
dictions is envisaged. For the multiple-step-ahead predictions, when
Fig. 1 Hybrid model of the WRF model and statistical model, where the
statistical part of the model uses WRF predictions to replace measurements
from measurement stations in each time step. The statistical part of this
hybrid model is trained with relative-humidity measurements and WRF
predictions of all relevant meteorological variables or with WRF
predictions to replace measurements
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measurements of weather variables are not available, they are replaced
with long-term WRF predictions for the same weather variables.

Two options for statistical model training are investigated in this
paper:

(i) The statistical model is trained using measurements of
available historical values of weather variables and WRF
predictions of relative humidity. The measurements of relative
humidity are the training target. When the model is used for
multiple-step-ahead predictions, long-term WRF predictions are
used instead of measurements. This is an approach often used in
fine weather prediction using hybrid models, e.g. [18]. In [18],
Hoolohan et al. focus on the wind speed modelling and prediction
and use only the mentioned approach while our study investigates
also the following alternative for comparison.
(ii) The statistical model is trained using WRF predictions, except
for the measurements of relative humidity, which are the training
target. This approach provides optimal values of optimised
parameters also for long-range predictions.

In both cases, the locally conditioned geographical information is
contained only within the relative-humidity variable because the
model itself is trained with relative-humidity measurements.
3 Case study

3.1 Overview

The purpose of the investigation is to provide predictions of relative
humidity for several steps ahead at the Krsǩo NPP. These predictions
shall be better than the available predictions from the physics-based
model, namely the WRF model. The Krsǩo NPP is located in the
eastern part of Slovenia close to the Croatian border. The terrain is
considered to be complex as the NPP is surrounded by hills,
valleys, a river and other features. The geographical features are
shown schematically in Fig. 2.

Relative humidity is one of the weather variables that is required
as an input to the air-pollution-dispersion model for radiation
exposure, which is being developed in case of an accident at the
NPP. However, this investigation can also be used for modelling
or improving a physics-based model in the case of any other
kind of pollution from a point source. The investigation of relative
humidity is just one in a series of investigations of different weather
variables that share a common purpose – to be an input to the
air-pollution-dispersion model for radiation exposure. Each variable
and investigation has special features that are worthwhile to be con-
sidered separately. As already mentioned, the WRF model in our
case covers weather conditions with a 4 km× 4 km resolution,
which is, in our case, not enough to provide a satisfactory weather-
variable input for the air-pollution-dispersion model for radiation
exposure at the exact location of the Krsǩo NPP.
Fig. 2 Grid showing the available observations from the physics-based
model, measurement locations and the location of the plant and its
measurement station, which is marked as ‘Stolp postaja’
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Table 2 Performance measures for validation data of models using a
different number of inducing points for Matérn covariance function with
hyperparameter d = (3/2) and the ARD option with the best measure
values in bold

Number of
inducing points

Random
NRMSE

Random
MSLL

Uniform
NRMSE

Uniform
MSLL

50 0.8500 −1.8931 0.8519 −0.9483
100 0.8501 −0.2073 0.8525 0.0764
150 0.0195 2.3922 0.8534 0.2885
185 0.0153 0.0731 0.8535 −1.8713
200 −0.0781 0.2315 0.8534 0.0042

Table 1 Covariance-function-selection table for validation data with the
best measure values in bold

Covariance function NRMSE MSLL

squared exponential +ARD 0.8534 −1.9143
squared exponential + linear +ARD 0.8433 −2.1598
neural network 0.6217 855.73
Matérn d = 1.5+ARD 0.8535 −1.8713
linear +ARD 0.8343 497.10
Matérn d = 1.5+ linear +ARD 0.8421 −1.9142
Matérn d = 2.5+ linear +ARD 0.8414 −1.9102
Matérn d = 1.5+ linear 0.8416 −1.9104
3.2 Dataset description

Data used in the investigation are composed of measurements of
weather variables and WRF predictions. The measurements of
various variables are collected by automatic measurement stations
at five different locations: Brežice measurement station, Cerklje
measurement station, Cerklje airport measurement station, Krsǩo
measurement station and ‘Stolp postaja’ measurement station at
Krsǩo NPP, all distributed as shown in Fig. 2. The same weather
variables are provided also as WRF predictions. Measurements
used in this paper are from the years 2015 to 2017 and are
sampled with a 30 min interval.

The data from year 2015 and the first half of 2016 are used as
training data, the data from the second half of 2016 as validation
data and the data from year 2017 as the test data. The datasets
have some data gaps omitted in training, but this has a negligible
influence on the results. The data periods are sufficiently long that
the datasets contain a large amount of data from different seasons
with different weather patterns.

3.3 Statistical model structure

The GP model used for improving the WRF-model results is
developed using a Gaussian likelihood function, exact inference and
constant mean function [19]. The regressors, covariance function
and number of inducing points are selected based on one or both of
the statistical measures for the assessment. These are as follows:

† The normalised root-mean-square error (NRMSE) is

NRMSE = 1− ‖y− m‖2
‖y− E(y)‖2 , (19)

where y is the vector of validation values, m is the vector of mean
predicted values, E(y) is the mean value of y.

NRMSE is 1 for a perfect match and −1 for a very bad match of
the validation and mean predicted values.

† The mean standardised log loss (MSLL) [13] is

MSLL = 1

2N

∑N
i=1

ln (s2
i )+

(E(ŷi)− yi)
2

s2
i

[ ]

− 1

2N

∑N
i=1

ln (s2
y )+

(yi − E(y))2

s2
y

[ ]
,

(20)

where s2
i is the prediction variance in the ith step, E(y) is the

expectation, i.e. the mean value, of the vector of the observations.

MSLL is a standardised measure suited to predictions in the form
of random variables. It weighs the prediction error more heavily
when it is accompanied by a smaller prediction variance. The
MSLL is approximately zero for the not very good models and
negative for the better ones.

The systematic selection of the covariance function, regressors and
the number of inducing points was done using a training and valid-
ation dataset. However, it has to be kept in mind that for the selection
of each of these elements, other structure elements had to be fixed. The
exhaustive selection of various combinations, but not all possible
ones, was at least in part done using high-performance computing,
a part of the Slovenian national supercomputing network [20]. The in-
vestigation was done using Octave open source software [21], except
for regressor selection, which was done with MATLAB software [22].
In this way, the relatively large amount of data and relatively high
computational load were handled.

What follows are some of the results from which the final structure
was selected.

3.3.1 Covariance-function selection: The results given in
Table 1 are for various covariance functions at regressors that are
shown in the next section and with 185 uniformly selected inducing
CAAI Trans. Intell. Technol., 2020, Vol. 5, Iss. 1, pp. 42–48
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points of the FITC model. A more detailed description of each co-
variance function is given in the Appendix. The results of perform-
ance measures for validation data show that squared exponential
covariance function with automatic relevance determination (ARD)
[12, 13] (21), sum of squared exponential (21) and linear covariance
function (24) with ARD option, Matérn covariance with hyper-
parameter d = (3/2) and ARD option (22) and sum of Matérn and
linear covariance function with ARD options have comparably
good performance results for validation data. It is difficult to argue
which of them is best in our case, especially because these results
vary slightly with the selected hyperparameters’ initial conditions,
number of inducing points and other modelling parameters. We
finally selected Matérn covariance function with hyperparameter
d = (3/2) and ARD option (22) as our choice for covariance func-
tion. Our covariance-function final selection is based on performance
measures on validation data that were not used for training, and
because Matérn covariance function is known for modelling, less
smooth mapping between regression inputs and better outputs
[13]. Once the covariance function was fixed, we did not challenge
the selection with possible variations of covariance functions on
test data. Other covariance functions and their combinations are
possible, but we have arbitrarily limited our selection to the ones
that are listed.

3.3.2 Regressor selection: Regressors were selected with a
sequential forward selection method as an example of a wrapping
method [23] with four-fold cross-validation on the training dataset.
The performance measure used was the logarithm of likelihood.
The covariance function for this selection was Matérn covariance
with hyperparameter d = (3/2) and an automatic relevance
detection option and 185 inducing points of the FITC model.

The final selection of regressors is given as follows:

† relative humidity at ‘Stolp postaja’, delayed for one sample
interval,
† global solar radiation at ‘Stolp postaja’, delayed for one sample
interval and
† relative humidity from WRF model, prediction for present time.

Relative-humidity values delayed for one sample interval mean
that the model output also depends on delayed values, which
indicate that we are dealing with a dynamic model [12].

3.3.3 Inducing points selection: The selection of the number
of inducing points for the FITC algorithm is shown in Table 2 for
45n for Artificial Intelligence and
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Fig. 4 Forecasts of the hybrid model for the test dataset. Train 1 option
(test inputs are measurements for one-step-ahead predictions and WRF
observations for multi-step-ahead predictions) is in the left figure and
Train 2 option (test inputs are WRF observations only) is in the right figure

Table 3 Performance measures

NRMSE MSLL
the Matérn covariance function with hyperparameter d = (3/2) and
the ARD [12] option (22). Moreover, options when the inducing
points were selected randomly or uniformly among the training
dataset are presented. In both cases, regressors as listed in the
previous paragraph are used.

Results from Table 2 show that 185 inducing points selected
uniformly from the training set with Matérn covariance with
hyperparameter d = (3/2) and the automatic relevance detection
option result in relatively good results.

Throughout the structure selection, we obtained results that are
comparable when Matérn covariance function with hyperparameter
d = (3/2) (22) or when squared exponential covariance function
(21) with or without linear covariance function (24) are used.
Finally, we decided on the following structure: FITC GP model
with Matérn covariance with hyperparameter d = (3/2) and ARD
option, 185 inducing points uniformly sampled from the training
dataset and regressors listed in the paragraph entitled ‘Regressor
selection’. It can be claimed that a slightly different choice might
be better regarding this or other performance measures, but the
one selected provides satisfactory results.
train 1 0.8576 −1.965
train 2 0.8521 −1.8097
WRF on test −0.0211 /
test 1 0.5588 −0.8054
test 2 0.8528 /
persistence 0.8259 —
4 Results

The primary goal of this investigation is to obtain better prediction
results with a hybrid model than are available with a physics-
based model. Since relative humidity is one of the influential
input variables to the air-pollution-dispersion model for radiation
exposure, it is important to consider improved shorter- and longer-
term predictions and to determine which model performs better
for different horizons.

As has been already mentioned, two training options are inves-
tigated. The first one is to train the statistical part of our hybrid
model with measurement data and the measurements of relative
humidity as the training target, which is hereafter denoted as the
Train 1 option. Moreover, the second one is to train it with forecasts
from the WRF model acting as replacements and the measurements
of relative humidity as the training target, which is hereafter denoted
as the Train 2 option. In particular, this means that global solar
radiation measurements were replaced with global solar radiation
observations from the WRF model. The two scenarios investigated
are necessary because measurements of variables in the future are
not available for more than one-step-ahead predictions.

Fig. 3 shows the scatter diagram for the WRF model. It can be seen
from Fig. 3 that the predictions of the physics-based model are not
optimal. Fig. 4 shows the scatter diagram for the hybrid model with
the Train 1 and Train 2 options. It is clear that one-step-ahead predic-
tions are significantly better than those of the WRFmodel only. This is
also confirmed with the performance measures collected in Table 3.
The performance of the WRF model can be compared only with the
NRMSE measure in our case because we have no information on un-
certainties from the WRF-model predictions. The obtained model is
Fig. 3 Physics-based-model forecasts for the test dataset
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also compared with predictions of the so-called persistence model.
The persistence model predicts the value in the next time step to be
equal to the current value. This kind of model is useful for comparing
the one-step-ahead prediction, while assuming that the values staying
the same over a larger horizon is not realistic.

A comparison of the performance results for one-step-ahead pre-
dictions on the test signal according to the scatter plots and numerical
values is in favour of the Train 2 option, where replacements are used
for training.

As pollution dispersion, and consequently, in our case, relative-
humidity predictions are needed for horizons longer than just one
time step, i.e. half an hour, we are interested in more than
one-step-ahead predictions as well as in simulation. Simulation in
this case means that multi-step-ahead prediction is done iteratively
using the most likely predicted value from the model output on the
model input for predicting future values until the end of the time
period of interest. This is an option that is used when dynamic-
systems models are investigated, as it is in our case. More details
on options for dynamic-system simulation with GP models can be
found in [12]. Model simulation is the most severe test for the
developed dynamic model. The NRMSE performance measure for
simulation on the test data is 0.2499 and the MSLL performance
measure is 2.7715.

The simulation is a multi-step-ahead prediction with an infinite
number of prediction steps. A fragment of the simulation response
for the hybrid model with the Train 2 option is shown in Fig. 5.
The hybrid model with the Train 1 option is not performing well
in the simulation. The simulation response completely mismatch
the test data response and provides unrealistic response as shown
in Fig. 6.

The simulation result in our case serves only as an illustration
of the achievable limit in the extreme-prediction case. More
interesting is the assessment of how performance degrades with an
increasing number of steps in the prediction horizon. Degradation
of performance with increasing steps of prediction according
to NRMSE and MSLL performance measures for the Train 1
option is shown in Fig. 7. The Train 2 option is shown in Fig. 8
and the NRMSE performance measure for the persistence model
is shown in Fig. 9. The investigation is performed for horizons
up to 12 h ahead because this is the ultimate period of interest for
pollution dispersion.

It is clear that the hybrid model with the Train 2 option
performs the best even with an increasing number of prediction
steps. While the persistence model can be used for a very-
few-steps ahead prediction, it is necessary to exercise caution
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Fig. 6 Fragment of the comparison of time responses for long-term
forecasts of relative humidity on test data for the Train 1 option. Legend:
mean values of forecasts – full line in upper figure, 95% confidence
interval – grey band in upper figure, measurements – dashed line in upper
figure, the absolute value of the difference between forecasts and
measurement – full line in the bottom figure, 95% confidence interval –
grey band in the bottom figure

Fig. 7 NRMSE versus number of prediction steps and MSLL versus number
of prediction steps for the Train 1 option

Fig. 5 Fragment of the comparison of time responses for long-term
forecasts of relative humidity on test data for the Train 2 option. Legend:
mean values of forecasts – full line in upper figure, 95% confidence
interval – grey band in upper figure, measurements – dashed line in upper
figure, the absolute value of the difference between forecasts and
measurement – full line in the bottom figure, 95% confidence interval –
grey band in the bottom figure

Fig. 8 NRMSE versus number of prediction steps and MSLL versus number
of prediction steps for the Train 2 option

Fig. 9 NRMSE versus number of prediction steps for the persistence model
when using such predictions. The values of the NRMSE and MSLL
measures for the Train 2 option converge toward performance
measures of the simulation run, which are not really good
(NRMSE= 0.2499, MSLL= 2.7715). Nevertheless, it provides
predictions as depicted in Fig. 5, which clearly mimic general
daily and seasonal periodical trends and do not differ significantly
from measurements used as test data. This is important
information when using relative humidity as the input to the
air-pollution-dispersion model for radiation exposure.
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It can be concluded that, for the data at hand, the hybrid model
comprised of the physics-based WRF model enhanced with the
GP model provides acceptable results only with the Train 2
option. It has to be kept in mind that our main goal is to overperform
predictions of the WRF model and we have achieved this goal. The
persistence model, on the other hand, might be a viable alternative
only for a very small horizon, i.e. one- or two-step horizon, which
corresponds to horizons of half an hour and 1 h.
5 Conclusion

An application of the sparse hybrid modelling between
physics-based modelling and modelling from data of the Krsǩo
basin was presented in this paper. The hybrid modelling was
implemented as modelling from data based on a dataset containing
observations from a physics-based model and measurements from
the field. The main goal of the investigation was to improve the
prediction results of a dynamic physics-based model and this was
achieved for the investigated case study. The obtained data-based
model part of the hybrid system was also a dynamic-system model.

The main contributions of this paper are as follows:

† an improvement in relative-humidity prediction results of the case
study, which are required for further processing with the
air-pollution-dispersion model for radiation exposure,
† systematic comparison of two training approaches for the
regression model with the purpose of multi-step-ahead prediction –
one with measurements for training and physics-based-model
observations for predictions and the other with physics-
based-model observations, except for the target variable, and
† comparison of the hybrid model’s responses with the persistence
model and evaluation of the usability of the developed models for
multi-step-ahead forecasting for the case study.

The main conclusions are as follows:

† Hybrid modelling, where the results of the physics-based model
are further processed with statistical methods are a promising
solution for the improvement of predictions in the case study.
† The hybrid model with observations from the physics-based
model of relative humidity in the Krsǩo basin apart from the target
variable that was measured performed notably better than the other
assessed models. This is in contrast to what is frequently practised
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in that models are developed based on measurements only and
replaced with other observations for predictions in the future.
† GP modelling was demonstrated as a suitable method in this case
study investigation, especially its capability to quantify the quality of
the model prediction in a systematic way, which is useful for the
obtained model assessment.
† Sparse and high performance computing (HPC) improved
realisability of the modelling from large amounts of data.
† While this paper demonstrated modelling of relative humidity
with the purpose of using the predictions for further processing
with the air-pollution-dispersion model for radiation exposure
in the basin where Krsǩo NPP is located, the method used for hybrid-
model development and assessment can be directly transferable to
the modelling of other atmospheric variables and for other pollution-
dispersion investigations.

Modelling of other atmospheric variables, e.g. wind speed
and direction and temperature profile, is envisaged as further steps
in the investigation. Large amounts of data and seasonal changes
in the data direct our future investigations toward the regular and
periodic remodelling of the hybrid model as well as to the
utilisation of an online modelling approach.
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8 Appendix

Covariance functions [12, 13]:

† Squared exponential +ARD

Cf (zi, zj) = s2
f exp − 1

2
(zi − zj)

TL−1(zi − zj)

[ ]
, (21)

where L−1 = diag([l−2
1 , . . . , l−2

D ]) represents different length
scales on different regressors and can be used to assess the relative
importance of the contributions made by each regressor through
comparison of their lengthscale hyperparameters, which is called
ARD. The hyperparameter s2

f represents the scaling factor of the
possible variations of the function or the vertical scaling factor.
† Matérn

Cf (zi, zj) = s2
f

21−d

G(d)

( ) ���
2d

√
r

l

( )d

Kd

���
2d

√
r

l

( )
, (22)

where the hyperparameter l or the horizontal scaling factor
determines the relative weight on distance for the input variable z,
r = |zi − zj|, G is the gamma function and Kd is a modified Bessel
function and the hyperparameter d can be seen to control the
differentiability of the modelled mapping function. Often, d is
fixed to be d = (3/2) or d = (5/2).
† Matérn +ARD

Same as (21), but with r =
�����������������������
(zi − zj)

TL−1(zi − zj)
√

† Linear

Cf (zi, zj) = s2
f (zi zj). (23)

† Linear +ARD

Cf (zi, zj) = zTi L
−1zj. (24)

† Neural network

Cf (zi, zj) = s2
f
2

p
sin−1 2z̃Ti L

−1 z̃j���������������
1+ 2z̃Ti L

−1z̃i

√ ���������������
1+ 2z̃Tj L

−1 z̃j

√
⎛
⎜⎝

⎞
⎟⎠, (25)

where z̃i = [1, zi] = [1, z1, . . . , zD]
T.
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