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Abstract End-quality assessment of finished products plays
an important role in manufacturing systems. In this paper,
we address the end-quality of electronically commutated
(EC) motors by subjecting each finished product to a short
measurement session. Based on the features calculated from
these measurements, the end-quality is assessed by introduc-
ing a novel copula-based decision support system (DSS).
The proposed DSS provides a full ranking of EC motors
by integrating expert’s preferences and company’s quality
standards. This approach overcomes the shortcomings of the
traditional regression models, such as partial ranking and
inconsistent evaluations with the expert’s expectations. We
demonstrate the effectiveness of the proposed DSS on a test
batch of 840 EC motors.

Keywords decision support system · copula-based
regression · EC motors · end-quality assessment

1 Introduction

Quality assessment of finished products is usually the final
step in a manufacturing line. The end-quality is assessed by
aggregating information contained in the extracted feature
set according to a set of pre-defined preferences and rules.
Such a task can be implemented by applying concepts of de-
cision support systems (DSS). In this paper we propose a so-
lution for an end-quality assessment of electronically com-
mutated (EC) motors using a copula-based DSS method.

A typical structure of an end-quality assessment system
is shown in Figure 1. Such a system has two inputs: features,
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extracted from the performed measurements, and expert’s
preferences regarding the final quality evaluation. These in-
puts are then processed through the two main stages: inte-
gration of system’s features and expert’s preferences, and
definition of a copula-based DSS for assessment of overall
quality and ranking of finished products. Implementation of
these steps has to ensure high sensitivity to the variations in
the quality of the finished product. Consequently, each seg-
ment of the system has to be custom-made for the problem
in hand.

The extracted feature set should contain the most use-
ful features for determining the fault condition of the moni-
tored system (Vachtsevanos et al, 2006). In absence of faults,
feature values should belong to the set of nominal (admis-
sible) values. Any discrepancy in one or several features is
regarded as a presence of fault, hence indicating decrease
in the overall quality. In order to meet such requirements,
two steps should be performed: the most informative fea-
tures should be selected based on existing fault models, and
extraction of their values should be performed using fast and
accurate signal processing techniques.

The problem of specifying the most informative feature
set in the case of electrical motors has been addressed by
many authors (Didier et al, 2007; Juričić et al, 2001; Röpke
and Filbert, 1994; Sasi et al, 2001; Boškoski et al, 2011).
Generally features are extracted from vibration and/or elec-
trical signals. In our particular case, the features were ex-
tracted using solely vibration signals. From a plethora of
available signal processing methods, we opted for the well
established approach using envelope analysis (Peng and
Chu, 2004; Jardine et al, 2006; Sawalhi et al, 2007; Ran-
dall and Antoni, 2011). As a pre-processing step we used
spectral kurtosis (Antoni, 2006) and cyclostationary analy-
sis (Boškoski et al, 2010), due to their capabilities of select-
ing the most appropriate frequency band for envelope anal-
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Fig. 1: Structure of the end-quality assessment system

ysis, hence significantly improving the sensitivity of the ap-
proach.

The construction of the copula-based DSS starts with
integration of features with expert’s preferences. The inte-
gration addresses the issues of fusing information from the
extracted features into an abstract quality rank based on a
set of pre-defined expert’s preferences. Usually these pref-
erences are expressed using qualitative grades. For this pur-
pose, qualitative aggregation functions are suitable candi-
dates, such as the ones proposed in the Decision Expert
(DEX) methodology (Bohanec and Rajkovič, 1990). Within
DEX, the expert’s preferences are structured into tabular
forms and the goal is to determine an aggregation function
which most accurately describes the link between the in-
put attributes and the aggregated output. Such an approach
has been used in many fields such as environment (Bohanec
et al, 2008), agriculture (Pavlovič et al, 2011), agronomy
(Žnidaršič et al, 2008), education (Gasar et al, 2003), and
health care (Bohanec et al, 2000).

As DEX uses qualitatively described aggregation func-
tions, it leads to partial ranking of the options at hand. To
achieve a full ranking of options, we propose an extension
of the DEX methodology based on copula functions. Cop-
ulas are functions that define the connection between the
marginal distributions of the random variables and their joint
distribution (Nelsen, 2006). Copulas were successfully ap-
plied in petroleum industry (Al-Harthy et al, 2007), finance
(Fischer et al, 2009; Bouyé et al, 2000), hydrology (Genest
and Favre, 2007), biology (Kim et al, 2008), change detec-
tion in images (Mercier et al, 2008) and machine learning
(Jaimungal and Ng, 2009). Within the DEX methodology,
copula-based regression is employed in order to describe
the connection between the input and output attributes. Un-
like linear regression functions, which tend to provide partial
ranking when two or more attributes receive the same weight
value (Mileva-Boshkoska and Bohanec, 2011) or evidential
reasoning method which sometimes leads to evaluations that
are not in line with the expert’s expectations (Boškoski et al,
2011), the usage of DEX and copula-based regression leads
to high sensitivity to small variations of the input values.

This process produces twofold output information. Firstly,
the constructed copula-based DSS yields a grade (also called
class) to which the examined EC motor belongs. Secondly,
it produces a rank value that can be employed for ordering
the EC motors within each grade. Therefore, one can easily
specify the position of each finished EC motor within the
population of produced units based on its quality rank.

Due to the diverse background of the problem, each
segment of the proposed copula-based end-quality assess-
ment system is throughly described. Details about the phys-
ical background of the system along with concepts for fea-
ture extraction are presented in section 2. The design of the
copula-based DSS is presented in section 3. Section 4 de-
scribes the actual implementation and section 5 presents the
results of the evaluation of the proposed assessment system.

2 Feature extraction

Proper selection of the feature set is crucial for the overall
effectiveness of the end-quality assessment. When analysing
vibration signals generated under constant operating condi-
tions, feature values are usually the amplitudes of particu-
lar spectral components. In the context of EC motors the
most frequent mechanical faults are rotor and bearing faults.
Therefore, the proposed feature set contains features capable
of describing these two groups of faults.

2.1 Rotor faults

Due to improper manufacturing or improper assembly, rotor
faults include:

– mass unbalance, and
– misalignment faults.

The presence of either of the faults influences the mass dis-
placement on the rotor, hence changing its moment of in-
ertia. Under constant rotational speed, such a change can
be detected by analysing the generated vibrations and it
is generally expressed as an increase of the amplitudes
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of the spectral components at the rotational frequency frot
and its higher harmonics n× frot , n ∈ {2,3, · · ·} (Xu and
Marangoni, 1994).

2.2 Bearing faults

Bearings in EC motors are the most susceptible element
to mechanical faults. During the manufacturing process the
most common causes for introducing bearing faults are im-
proper bearing lubrication, improper mounting and align-
ment, as well as improper handling during the assembly pro-
cess.

The detection of these faults is a challenging task. Vi-
brations, caused by a bearing fault, originate from impacts
produced by the rolling elements hitting a damaged place.
Each time a hit occurs, an excitation of system eigenmodes
occurs in terms of an impulse response s(t). The frequency
of occurrence of these impulse responses can be estimated
using the rotational speed frot of the rotating ring and the
physical characteristics of the bearing, i.e. the pitch diame-
ter D, the rolling element diameter d, the number of rolling
elements Z, and the contact angle α (see Figure 2). Using
these parameters the bearing fault frequencies can be calcu-
lated according to the relations shown in Table 1 (Tandon
and Choudhury, 1999).

D

d

Pitch
Diameter

Ball Diameter

Contact angle

Outer race
fault

Inner race
fault

Rolling element
fault

Fig. 2: Bearing dimensions used for the calculation of the
bearing’s characteristic frequencies

2.3 Complete feature extraction process

The EC motors, used in this research, are all equipped with
bearings FAG 6205. The characteristic bearing frequencies
listed in Table 1, read as follows:

– fBPFI = 5.415 frot

– fBPFO = 3.585 frot

– fFT F = 0.398 frot

– fBSF = 2.375 frot

Having defined the required feature set, the feature extrac-
tion module was built according to the structure shown in
Figure 3. The procedure for rotor faults starts by low-pass
filtering of the acquired vibration signal. Based on that,
three features are extracted: spectral components at frot and
2× frot , and the signal variance. Amplitudes of both spectral
components are extracted by calculating the RMS value of
vibration signal filtered by band-pass filters centred at frot
and 2× frot respectively.

Similar procedure was applied for bearing faults. First
the vibration signal is band-pass filtered with central fre-
quency fc located near the excited eigenfrequency. The fea-
tures, describing bearing faults, are extracted by filtering the
envelope signal by means of a set of narrow band-pass fil-
ters. Each filter is centred at the corresponding bearing fault
frequency.

3 Copula-based decision support system

DEX is a qualitative multi-criteria decision making method
that aggregates qualitative multi-attribute options into sev-
eral qualitative classes. In DEX, the complex decision prob-
lem at hand is decomposed into smaller and easily under-
standable decision components, which are assembled into
a hierarchical model. There are two types of attributes in
DEX: basic attributes and aggregated ones. The former are
the directly measurable attributes. The latter are obtained by
aggregating the basic and/or other aggregated attributes. The
aggregation process in DEX results into a partial ranking of
options, i.e. options that belong to the same class are indis-
tinguishable. However, our goal is to obtain a full ranking of
options, i.e. to distinguish among all options in a class.

To obtain a full ranking of options, three steps should
be performed, as shown in Figure 4. First, the values of the
qualitative attributes QA1, . . . ,QAn are mapped into discrete
quantitative ones A1, . . . ,An ∈ Z (step 1a in Figure 4). The
mapping function must preserve the preference order, i.e. the
higher the preference of QAi the greater the value of Ai. In
the second step, we estimate regression function1 g :Rn→R
such that

Aagg = g(A1, . . . ,An), (1)

that defines the relation between the aggregated (dependent)
attribute Aagg and input attributes Ai. The final step ensures
consistency between the qualitative and quantitative mod-
els. It means that if an option belongs to a quantitative class
c, then the output regression value must be in the interval
c± 0.5. To achieve this, for the regression function (1), we

1 Desppite Ai ∈ Z, the function g(A1, . . . ,An) is defined in Rn
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Table 1: Bearing frequencies (Tandon and Choudhury, 1999)

Name Relation to the rotational frequency frot

Bearing pass frequency inner race (BPFI) fBPFI =
Z frot

2

(
1+ d

D cosα
)

Bearing pass frequency outer race (BPFO) fBPFO = Z frot
2

(
1− d

D cosα
)

Fundamental train frequency (FTF) fFT F = frot
2

(
1− d

D cosα
)

Ball spin frequency (BSF) fBSF = D frot
2d

(
1−
( d

D cosα
)2
)
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Fig. 3: Structure of the feature extraction module

Fig. 4: From qualitative attributes and quantitative featrues to final quantitative evaluation

define set of functions rc that ensures compliance with the
original class c as:

rc(A1, . . . ,An) = kcg(A1, . . . ,An)+nc, (2)

where kc and nc are calculated as:

kc =
1

maxc−minc
(3)

nc = c+0.5− kcminc, (4)

and maxc and minc are the maximum and minimum value
of the function g(A1, . . . ,An) for a class c. As soon as the
model is built, the features may be evaluated. For evaluation,
feature values f1, .. fn are mapped into interval values c±
0.5 (step 1 in Figure 4) which are then propagated to the
regression functions (1) and (2) for final evaluation.
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Table 2: Different Archimedian copulas

Cθ (u,v) ϕθ (t) Solve( ∂Cθ (u,v)
∂u = q,v)

Clayton
[
max

(
u−θ + v−θ −1,0

)]−1/θ 1
θ

(
t−θ −1

)
(1−u−θ +(qu1+θ )−

θ

1+θ )−
1
θ

Frank − 1
θ

ln
(

1+
(e−θu−1)(e−θv−1)

e−θ −1

)
− ln

e−θ t −1
e−θ −1

1
θ

log −eθ (1−q+qeθu)

−eθ+q−eθ−q−eθ u

Gumbel-Hougaard exp
(
−
[
(lnu)θ +(− lnv)θ

]1/θ
)

ln
1−θ(1− t)

t
only numerical solution

3.1 Copula functions

To define the regression function (1), we use a copula-based
approach. When using copulas, attributes Ai are regarded
as a random variables, for which we can estimate their
marginal distributions Fi(Ai). For determining the depen-
dences among the random variables, we need to find their
joint distribution F(A1, . . . ,An,Aagg). In order to estimate
the multivariate joint densities with a constant estimation
accuracy, the required sample size rapidly increases with the
number of dimensions (Silverman, 1986). As we deal with
small sample sizes, we adopt the copula approach for esti-
mation of the joint density and distribution.

Let the two random variables X1 and X2 have marginal
distributions F1(X1) and F2(X2) respectively and joint dis-
tribution F(X1,X2). According to Sklar’s Theorem (Sklar,
1996; Nelsen, 2006), there exists a multivariate distribution
function Cθ (u,v), where θ is a parameter that has to be es-
timated, and u and v are uniformly distributed random vari-
ables on the unit interval [0,1], such that:

F(X1,X2) =Cθ (F1(X1),F2(X2)) =Cθ (u,v), (5)

where

u = F1(X1), u∼U (0,1),

v = F2(X2), v∼U (0,1).
(6)

From (5) it follows that copula Cθ (u,v) is a function that
couples the marginal distributions F1(X1), F2(X2) of the
random variable X = (X1,X2) with its joint distribution
F(X1,X2).

From the available methods for copula construction we
selected the Archimedean family, where copulas are con-
structed by using the following relation (Joe, 1997):

Cθ (u,v) = ϕ
[−1]
θ

(ϕθ (u)+ϕθ (v)) (7)

where ϕθ (·) is called a generator function and ϕ
[−1]
θ

(·) is

ϕ
[−1]
θ

(t) =

{
ϕ
−1
θ

(t), if 0≤ t ≤ ϕθ (0);

0, if ϕθ (0)≤ t ≤ ∞.
(8)

The generator function ϕθ (t) : [0,1]→ [0,∞] must be contin-
uous and strictly decreasing. Table 2 shows different types
of Archimedean copulas constructed with the different gen-
erators ϕθ (t) (Nelsen, 2006).

3.2 Fully nested Archimedean copulas

Equation (5) couples only two marginal distributions. In or-
der to deal with multivariate random variables, we need to
extend the bivariate copula into a multivariate one. In this
paper we use the bivariate copula as a building block for ob-
taining a fully nested Archimedean copula (FNAC) (Hofert,
2010; Berg and Aas, 2009), such as the one given in Fig-
ure 5. FNAC is a tree like structure which is obtained using
an iterative procedure that starts with coupling two random
variables. For example, in Figure 5 we couple u1 and u2 into
copula Cθ1(u1,u2) with parameter θ1. In all subsequent iter-
ations, the obtained copula is coupled with a new random
variable, for example copula Cθ1 is coupled with u3 into
Cθ2(Cθ1 ,u2) with parameter θ2, and so on. The final output
of the topmost copula reads:

Cθ4(u1,u2,u3,u4,u5) =

Cθ4

(
u5,Cθ3

(
u4,Cθ2

(
u3,Cθ1 (u1,u2)

)))
.

(9)

Fig. 5: Fully nested Archimedean copula

In general case, FNAC structure with n input variables
has n− 1 parameters θ . The final function (9) represents
a valid copula only if the following condition is fulfilled
(Rachev, 2003):

θ1 > θ2 > ... > θn−1 (10)
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where θ1 is the parameter of the most nested copula, θ2
is the parameter of the second most nested copula and so
on. The estimations of the values of θi, i = 1, . . . ,n−1, are
obtained using the maximum likelihood algorithm (Brent,
1993; Forsythe et al, 1976).

Sometimes, it is not possible to build a FNAC that sat-
isfies condition (10) for the desired order of variables in the
FNAC. In these cases we look for a valid FNAC in the set of
all FNACs obtained by permuting the order of the variables
entering the FNAC.

3.3 Regression using FNAC

For bivariate copula, a suitable regression function linking
the two variables can be found by Algorithm 1 (Nelsen,
2006).

Algorithm 1 Regression using Frank bivariate copula

1: ∂Cθ (u,v)
∂u = q . calculate median regression for q = 1

2

2: v← Solve( ∂Cθ (u,v)
∂u = q,v) . see Table 2 for different copulas

3: u← F1(x1) . replace u by F1(x1)
4: v← F2(x2) . replace v by F2(x2)

In Algorithm 1, we first differentiate the copula function
over the input variable to get the quantile regression func-
tion. Then we set the obtained expression equal to a quantile
value q. In case when q = 0.5, we perform median regres-
sion. The advantage of using median regression as a mea-
sure of centre is due to its ability to resist the strong effect of
outliers (Walters et al, 2006). The median regression curve
v based on the different Archimedean copulas is given in
Table 2. Here we work with Frank copula, for which the
median regression curve v is:

v =
1
θ

log
−eθ (1−q+qeθu)

−eθ +q− eθ −q− eθ u
. (11)

Finally, by replacing u with F1(X1) and v with F2(X2) in (11),
the final copula-based regression function reads:

g = F−1
2 (x2). (12)

To use Algorithm 1, the dependent variable should be
placed in the right most position in the FNAC, such as the
variable u5 in Figure 5. Algorithm 2, on the other hand, gives
a general solution for copula-based regression with FNAC
for n random variables where the regression variable seats
in an arbitrary position p (Boshkoska and Bohanec, 2012).

Algorithm 2 performs regression in iterations. It starts
with regression at the topmost copula. The obtained regres-
sion values are propagated downwards in the hierarchical
structure, where the value of q is replaced with the regres-
sion values of v. The iterations continue until the dependent

Algorithm 2 Regression algorithm for FNAC structure and
dependent variable in the p position
1: i← n+1 . n is the number of random variables/attributes
2: q← 0.5 . calculate median regression for q = 1

2

3: v← Solve( ∂Cθ (u,v)
∂u = q,v) . calculate v; see Table 2 for different

copulas
4: repeat:
5: q← v . replace q with the value v
6: v← Solve( ∂Cθ (u,v)

∂u = q,v) . recalculate the new value of v
7: i← i−1
8: until i = p . p is the regression variable position in input level in

Figure 5
9: call Algorithm 1, for q = v

variable p in FNAC is reached. Finally, the regression func-
tion is obtained as in Algorithm 1, for q = v from the last
iteration. The same analysis can be used for other two types
of copulas given in Table 2.

4 Implementation within the quality assessment system

The implementation of the copula-based quality assessment
system follows the steps shown in Figure 4. Firstly, one has
to transform the decision maker’s preferences into a qualita-
tive tabular functions. Then, a mapping from qualitative at-
tributes into quantitative ones has to be performed. Finally,
for each quantitative table function, a copula function is de-
fined. After the completion of these steps, one can apply the
algorithms 1 and 2 for copula-based regression described in
the previous section.

4.1 DEX hierarchical model

Assessing the overall motor quality rank directly from the
measured features is a rather difficult task. Therefore, the
problem is transformed into a hierarchical decision making
model in which the overall mechanical quality rank is ob-
tained by aggregating two simpler attributes: rotor quality
and bearings quality. The former attribute can be directly as-
sessed from the measured features described in section 2.1.
The latter attribute is still complex as it can be further de-
composed into four simpler attributes: inner ring quality,
outer ring quality, quality of the rolling elements and qual-
ity of the bearing cage. These four attributes can be assessed
from the measured features describing bearing condition, as
shown in section 2.2. Based on this logical structure we built
a DEX hierarchical model, which is shown in the first col-
umn of Table 3, where the aggregated attributes are given in
bold upper cases.

Following the expert’s preferences and knowledge, each
attribute in the proposed hierarchical structure was de-
scribed or aggregated using the expert’s defined scale with
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Table 3: DEX model tree and qualitative and quantitative evaluations of EC motors 744 and 9

Attribute Evaluation of motor 744 Evaluation of motor 9
Qualitative Quantitative Qualitative Quantitative

MECHANICAL QUALITY

ROTOR QUALITY

frot

2× frot

Variance

BEARINGS QUALITY

INNER RING

BPFI

2×BPFI
OUTER RING

BPFO

2×BPFO
ROLL ELEMENTS

BSF

2×BSF
FTF

not satisfactory

top

top

top

top

not satisfactory

good

good

very good

good

good

very good

not satisfactory

not satisfactory

very good

good

1.3389

4.9702

4.7851

5

5

0.7592

1.9583

1.7096

2.6319

1.8009

1.9043

2.1660

0.8810

1.2396

2.6100

2.6279

very good

top

top

top

top

good

very good

very good

excellent

good

very good

good

very good

very good

excellent

very good

3.3056

5.0302

5

5

5

1.7899

2.8051

2.8227

2.8830

2.1889

3.0203

2.0238

2.8454

2.9361

2.9288

3.0974

five qualitative values:

QC = {not satis f actory,good,very good,excellent, top}.

For instance, the aggregation of the basic attributes BPFI
and 2×BPFI into attribute Inner ring is given in the first
three columns of Table 4. These aggregations may be inter-
preted as a set of if-then rules, for instance, the last row in
Table 4 can be interpreted as follows:

if BPFI is Top
and 2×BPFI is Top
then Inner ring is Top.

4.2 Qualitative to quantitative value mapping

To obtain the quantitative model, we map each of the qual-
itatively defined expert rules and preference values into a
quantitative one. The preferences of the qualitative values
are given as:

not satis f .≺ good ≺ very good ≺ excellent ≺ top (13)

where the sign ≺ stands for “is strictly less preferred than”.
Consequently, these values are mapped into {1, 2, 3, 4, 5}
respectively. The sign ≺ is mapped into <, where < stands
for ‘is greater than’. The mapping ensures that the more pre-
ferred values are mapped into greater numbers. An example
of the mapping is given in the last three columns of Table 4,
where the qualitative values of attributes BPFI, 2× BPFI
and Inner ring are mapped into quantitative values of X1, X2
and Y respectively.

Table 4: Expert defined rules for aggregation of the attribute
Inner ring and mapping from the qualitative attribute values
into quantitative ones.

BPFI 2xBPFI Inner ring X1 X2 Y

‘not satisf.’ ‘not satisf.’ ‘not satisf.’ 1 1 1
‘not satisf.’ ‘good’ ‘not satisf.’ 2 1 1
‘not satisf.’ ‘very good’ ‘not satisf.’ 1 3 1
‘not satisf.’ ‘excellent’ ‘not satisf.’ 1 4 1
‘not satisf.’ ‘top’ ‘not satisf.’ 1 5 1

‘good’ ‘not satisf.’ ‘not satisf.’ 2 1 1
‘good’ ‘good’ ‘good’ 2 2 2
‘good’ ‘very good’ ‘good’ 2 3 2
‘good’ ‘excellent’ ‘very good’ 2 4 3
‘good’ ‘top’ ‘very good’ 2 5 3

‘very good’ ‘not satisf.’ ‘not satisf.’ 3 1 1
‘very good’ ‘good’ ‘good’ 3 2 2
‘very good’ ‘very good’ ‘very good’ 3 3 3
‘very good’ ‘excellent’ ‘very good’ 3 4 3
‘very good’ ‘top’ ‘excellent’ 3 5 4
‘excellent’ ‘not satisf.’ ‘not satisf.’ 4 1 1
‘excellent’ ‘good’ ‘very good’ 4 2 3
‘excellent’ ‘very good’ ‘very good’ 4 3 3
‘excellent’ ‘excellent’ ‘excellent’ 4 4 4
‘excellent’ ‘top’ ‘excellent’ 4 5 4

‘top’ ‘not satisf.’ ‘not satisf.’ 5 1 1
‘top’ ‘good’ ‘very good’ 5 2 3
‘top’ ‘very good’ ‘excellent’ 5 3 4
‘top’ ‘excellent’ ‘excellent’ 5 4 4
‘top’ ‘top’ ‘top’ 5 5 5

4.3 Integration of the feature values and the expert’s
preferences

The integration between the measured feature values and the
expert’s preferences is performed using fuzzification.
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Fig. 6: Intervals for mapping feature values to quantitative
ones

The expert’s preference is towards motors with lower
vibrations, hence lower feature values are more preferred.
The maximum allowed value for each feature determines
the limit for the not satisfactory grade. This limit was de-
termined either by governing standard rules or by the com-
pany’s quality requirements. The remaining interval below
the limit for the not satisfactory grade was divided dyad-
ically, as shown in Figure 6. Such mapping ensures more
sensitivity at lower feature values. The feature values fi are
fuzzified and mapped accordingly into the expert’s defined
interval [1,5], employing the relation:

Ãi( fi) = ∑
n

µn( fi)Qn. (14)

Here µn( fi) is the membership function of the nth rule as
given in Figure 6, and Qn ∈ {1,2,3,4,5} is the class value.

4.4 Constructing the copula-based regression functions

According to the model shown in Table 3 there are six aggre-
gation tables. For each table, a FNAC based on the Frank bi-
variate copula was built. Hence six copula-based regression
functions were derived. The obtained values from (14) enter
the appropriate copula-based regression functions, and for
each of them a copula-based regression value is calculated.
Afterwards, the calculated value is normalised in order to
retain consistency with the qualitative model as defined in
(2)-(4) (Stage 3 in Figure 4). The obtained values are prop-
agated in the higher hierarchical level, where they are used
as inputs in the next regression function. The procedure is
recursively repeated up to the topmost table. The result of
the topmost table is regarded as the overall quality rank for
each motor.

5 Results

5.1 The assessment rig

Each EC motor is tested using the assessment rig shown in
Figure 7. The rig consists of a fixed pedestal on top of which

a metal disk is positioned. The metal disk holds three rubber
dampers that suspend the tested EC motor. The experiment
starts by positioning the EC motor vertically on the rubber
dampers in such a way that the drive-end bearing is on the
bottom. Afterwards, two accelerometers are positioned on
the motor housing nearest to the both bearings. The test-rig
minimises the environmental influence, hence guaranteeing
sufficiently constant experimental conditions.

The data acquisition process commences as soon as the
nominal rotational speed is reached. Firstly, both vibra-
tion signals are low-pass filtered with cut-off frequency at
22 kHz. Afterwards, both signals are sampled at 60 kHz.
During the whole data acquisition process the nominal rota-
tional speed of frot = 38 Hz is maintained. Each acquisition
process lasts 8 seconds. After finishing the acquisition the
motor is decelerated down to the stop position.

Electrical 

Motor

Power 

Supply

Vibration 

sensors
Signal 

conditioning unit

Fig. 7: The prototype assessment point

5.2 Results on a test batch of motors

During the evaluation process we analysed a test batch of
840 EC motors. The overall quality rank is shown in Fig-
ure 8. We have to note that for the purpose of testing the sys-
tem on small differences in data, during the initial start-up of
the line, we have intentionally introduced motors with vari-
ous mechanical faults. Consequently, there are many motors
with different overall quality rank.

From the results shown in Figure 8, it is clearly visible
that the quality ranks of the tested motors are spread over
the interval [0.5,5.5]. This is an indication that the proposed
copula-based DSS is highly sensitive even to minor varia-
tions in the motor quality. Unlike methods that use weighted
utility functions, where options with not satisfactory fea-
ture values are ranked highly, this approach averts such per-
formance. Such example is given in Boškoski et al (2011),
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Fig. 8: Rankings obtained with Frank FNAC

where the first 130 motors were evaluated using evidential
reasoning approach which lead to cases where final evalua-
tions were inconsistent with the expert’s preferences.

Besides the overall quantitative evaluation, the calcu-
lated rank also shows the class of each EC motor.

5.3 Detailed analysis of two characteristic examples

The effectiveness of the proposed copula-based DSS can
be best illustrated by detailed analysis of two characteristic
cases. One case refers to the dominance of the not satisfac-
tory grade and the other on ranking of motors whose quality
belongs between two adjacent grades.

The first case From the expert’s preferences (see Table 4)
it is clearly visible that in case that any of the attributes ac-
quires a value that belongs to the grade not satisfactory, the
examined motor will obtain overall qualitative rank that be-
longs to the lowest class. The 744th EC motor is the case
with the highest quality rank from the class of not satisfac-
tory motors. The measured features for this motor are given
in Table 3.

From Table 3 it is visible that the rotor quality belongs
to the highest grade, denoted as top. Namely, the values of
frot , 2× frot and Variance belong to the interval [5± 0.5],
where the first value denotes the class top. Additionally, one
may notice that bearing features mostly belong to the quali-
tative class good, for instance FT F , BPFO and BPFI which
have values in the interval [2±0.5], and very good, such as
2×BPFO, 2×BPFI and 2×BSF that have values in the
interval [3± 0.5]. Unlike them one feature describing the
condition of the rolling element BSF has a value that be-
longs to the interval [1± 0.5], which is a quantitative em-
ployment of the not satisfactory class. This qualitative value
is propagated through all levels of the hiearhical structure
of the model, hence leading to not satisfactory evaluation of
the higher level aggregated attributes Roll elements, Bear-
ing quality and final qualitative evaluation of Mechanical
quality. Consequently, the overall quality rank is just 1.333,

which clearly states that the particular EC motor is of not
satisfactory quality.

The second case The second case is the 9th EC motor,
whose overall quality rank is 3.3056, which belongs to the
qualitative class very good. The calculated features for this
EC motor are given in the last column in Table 3.

According to the measured features, the bearing quality
of the 9th motor can be easily graded as very good, since
most of the features have value from the interval spanned
by this grade. Still, the qualitative value of the attribute
2×BPFO is good, and this value is propagated up in the
hiearchy leading to qualitative evaluation of Bearing Qual-
ity to good, as defined by the expert’s preferences. Rotor
features, on the other hand, undoubtedly state that this par-
ticular case has top quality of the rotor. Consequently, the
overall motor quality is very good, however, the numerical
rank suggests that the quality is very close to the next higher
class excellent.

The two examples show that the hierarchy of attributes
aids the process of integration of expert’s preferences into
the final quality evaluation of motors.

6 Conclusion

The quality ranking of EC motors was regarded as a hier-
archical decision making task, in which the final motor’s
quality is aggregated from the quality of its components.
The proposed solution is a copula-based decision support
system. The input of the system is a set of measured fea-
tures calculated from the acquired vibrations generated by
the examined EC motor. Furthermore, the system employes
available expert’s knowledge condensed in DEX qualitative
tabular form. Employing copula-based regression functions
resulted into a full quality ranking of EC motors. The system
was evaluated on a batch of 840 motors.

The merging of expert’s knowledge with DEX, and em-
ployment of copula-based regression leads to a final evalu-
ation system with four properties. First, the qualitative eval-
uation of each EC motor provides easily understandable
quality description. Second, the system has ability of dis-
tinguishing small variations of the input features. Therefore,
each EC motors is assigned with a quantitative value, lead-
ing to distinct evaluation of all EC motors in the test batch.
Third, the hierarchical decomposition of the problem gives
explanation how the qualities of each of the lower level com-
ponents lead to the final evaluation. Therefore, besides the
process of quality assessment, such a system can be seam-
lessly employed as a fault detection module that is able of
performing fault evaluation too. Finally, the proposed eval-
uation system for EC motors leads to rankings that are fully
in compliance with the decision maker’s (or expert’s) pref-
erences and the required regulations.
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K, Bohanec M (2011) Development of dex-hop multi-
attribute decision model for preliminary hop hybrids
assessment. Computers and Electronics in Agriculture
75:181–189

Peng Z, Chu F (2004) Application of the wavelet transform
in machine condition monitoring and fault diagnostics: a
review with bibliography. Mechanical Systems and Signal
Processing 18:199–211



Copula-based decision support system for quality ranking in the manufacturing of electronically commutated motors 11

Rachev ST (ed) (2003) Handbook of heavy tailed distribu-
tions in Finance. Elsevier/North Holland

Randall RB, Antoni J (2011) Rolling element bearing diag-
nostics: "a tutorial". Mechanical Systems and Signal Pro-
cessing 25(2):485 – 520

Röpke K, Filbert D (1994) Unsupervised classification of
universal motors using modern clustering algorithms. In
Proc SAFEPROCESS’94, IFAC Symp on Fault Detec-
tion, Supervision and Technical Processes II:720–725

Sasi B, Payne A, York B, Gu A, Ball F (2001) Condition
monitoring of electric motors using instantaneous angular
speed. In: paper presented at the Maintenance and Relia-
bility Conference (MARCON), Gatlinburg, TN,

Sawalhi N, Randall R, Endo H (2007) The enhancement of
fault detection and diagnosis in rolling element bearings
using minimum entropy deconvolution combined with
spectral kurtosis. Mechanical Systems and Signal Pro-
cessing 21:2616–2633

Silverman BW (1986) Densiy Estimation for Statistics and
Data Analysis. Chapman and Hall/crc

Sklar A (1996) Distributions with Fixed Marginals and Re-
lated Topics - Random Variables, Distribution functions,
and Copulas - A Personal Look Backward and Forward,
vol 28. Institute of Mathematical Statistics, Hayward, CA.

Tandon N, Choudhury A (1999) A review of vibration and
acoustic measurement methods for the detection of de-
fects in rolling element bearings. Tribology International
32:469–480

Vachtsevanos G, Lewis FL, Roemer M, Hess A, Wu B
(2006) Intelligent Fault Diagnosis and Prognosis for En-
gineering Systems. Wiley

Walters EJ, Morrell CH, Auer RE (2006) An investigation of
the median-median method of linear regression. Journal
of Statistics Education 14(2)

Xu M, Marangoni R (1994) Vibration analysis of a motor-
flexible coupling-rotor system subject to misalignment
and unbalance, part i: Theoretical model and analyses.
Journal of Sound and Vibration 176(5,6):663–679
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