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Tržaška cesta 25, Ljubljana, Slovenia

∗∗∗ Department of Systems and Control, Jožef Stefan Institute,
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Abstract: In this paper, we address the task of discrete-time modeling of nonlinear dynamic
systems. We use Takagi-Sugeno fuzzy models built by LOLIMOT and SUHICLUST, as well
as ensembles of LOLIMOT fuzzy models to accurately model nonlinear dynamic systems
from input-output data. We evaluate these approaches on benchmark datasets for three
laboratory processes. The measured data for the case studies are publicly available and are used
for development, testing and benchmarking of system identification algorithms for nonlinear
dynamic systems. Our experimental results show that SUHICLUST produces smaller models
than LOLIMOT for two of the three datasets. In terms of error, ensembles of LOLIMOT models
improve the predictive performance over that of a single LOLIMOT or SUHICLUST model.
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1. INTRODUCTION

This paper considers the task of discrete-time modeling of
nonlinear dynamic systems from input-output data. Using
the external dynamics approach (Nelles, 2001), the task of
empirical modeling of a dynamic system can be formulated
as a regression problem of finding a difference equation
that fits an observed behavior of the system.

One possible approach to the regression (i.e., nonlinear
function approximation) problem is the multimodel ap-
proach (Murray-Smith and Johansen, 1997). Its idea is
to combine several simple submodels and use them to
describe the global behavior of the dynamic system. The
operating region of the dynamic system is split into several
subregions (partitions) and a simple local model is built for
each subregion. The local models are combined by smooth
interpolation into a complete global model.

Two fuzzy identification methods are considered, which
are based on the multimodel approach. These methods
determine the subregions by utilizing an automatic pro-
cedure which uses input-output data. In the literature,
the problem of automatic defining of operating regions is
solved using grid-based (Jang et al., 1997), fuzzy clustering
(Jang et al., 1997), or tree partitioning methods (Nelles,
2001; Jang, 1994). The fuzzy methods evaluated here fol-
low the last two principles.

Also, a local model is built for each identified region.
Common approaches to parameter estimation in the lo-
cal models are local or global optimization, frequently

used with the least-squares cost function (Johansen and
Babuška, 2003). The first estimates the parameters in each
local model separately, while the second estimates the pa-
rameters in all local models jointly. The local optimization,
which is faster and can handle noisy data, is employed in
the fuzzy methods considered here.

This paper compares neuro-fuzzy identification methods,
based on, or derived from the Lolimot method. In par-
ticular, it is concerned with building Takagi-Sugeno (TS)
models (Takagi and Sugeno, 1985), by using LOLIMOT
(Nelles, 2001) and SUHICLUST (Hartmann et al., 2013).
Additionally, it considers the more accurate ensembles of
fuzzy models (Aleksovski et al., 2015). The ensembles are
built by using the bagging procedure and use LOLIMOT
fuzzy models as base models. However, this paper does
not include a comparison to adaptive or evolving methods
because they are not of the same sort. Adaptive and
evolving methods change their parameters with time and
in the case of evolving methods also structure, while the
models evaluated here are invariant to changes.

The LOLIMOT method (Nelles, 2001) uses an incremental
construction scheme, and builds TS fuzzy models. It uses
a tree partitioning method for defining the operating
regions, i.e. for model structure identification. For the
local models it uses local least squares estimation. The
method is fast and noise-tolerant, due to the use of local
estimation. The tree partitioning allows it to handle large
dimensional problems efficiently: partitions have different
sizes and are located in regions where the data allow
for a finer partitioning. However, the partitioning is axis-



parallel: the partitions are hyperrectangles whose sides are
parallel with the axes of the input space.

The SUHICLUST method was introduced by Hartmann
et al. (2013). It unifies the strengths of supervised, incre-
mental tree construction scheme of LOLIMOT with the
advantages of product space clustering. By merging these
two concepts, a fuzzy identification algorithm is obtained
that, in contrast to LOLIMOT, enables axes-oblique par-
titioning and has highly flexible validity functions. Ac-
cording to Hartmann et al. (2011), the method produces
fuzzy models with the same accuracy as LOLIMOT, but
with fewer local models. The reproducibility of results is
the same as with LOLIMOT and therefore better than
with product space clustering. In Teslič et al. (2011) the
SUHICLUST method was successfully used to model the
drug absorption spectra process. Recently, an approach
for the design of experiments based on the SUHICLUST
method was proposed by Škrjanc (2015).

Ensembles (Krogh and Vedelsby, 1995; Dietterich, 2002),
or committees of predictors, work by creating several base
models. Each base model is an imperfect predictive model
capturing a potentially different aspect of the system being
modeled. Combining the imperfect predictions obtained
from each base model should improve the predictive power
over a single model and thus increase the accuraccy.

Ensembles based on the bootstrap resampling principle
(Breiman, 1996) identify each base model from a modi-
fied version of the training data. First, several bootstrap
samples are created from the training data, after which
a model is built for each sample. The same principle is
used by Aleksovski et al. (2015) for building ensembles
of LOLIMOT models both for single-output and multi-
output nonlinear dynamical systems.

The remainder of the paper is organized as follows.
The next section describes the methodology: the use of
LOLIMOT to build (single) fuzzy models and ensembles,
and the use of SUHICLUST. Section 3 presents the exper-
imental setup and describes the case studies, while Section
4 presents the results of the experimental evaluation. Fi-
nally, Section 5 concludes and outlines some directions for
further work.

2. METHODOLOGY

This section introduces the fuzzy methods LOLIMOT and
SUHICLUST, and describes the procedure for building
ensembles of fuzzy models by using LOLIMOT. The fuzzy
models evaluated in this paper have the Takagi- Sugeno
(TS) form:

ŷ(x) =
m
∑

j=1

Φj(x)fLMj(x). (1)

Similarities between LOLIMOT and SUHICLUST.
The methods evaluated in this paper use two different (au-
tomatic) procedures for defining operating regions (parti-
tions), based on identification data. LOLIMOT uses tree
partitioning, while SUHICLUST uses fuzzy clustering. The
tree partitioning used in LOLIMOT is a computation-
ally efficient approach which can handle large dimensional
problems: it is able to create partitions of different sizes,
which are smaller in those parts of the input space where

finer partitioning is needed. Simpler grid partitioning
methods suffer from the curse of dimensionality, as they
create a complete grid over the input space. The second
method evaluated here, SUHICLUST, defines the operat-
ing regions using a combination of fuzzy clustering, with
the Gustafson-Kessel algorithm, and supervised learning
(Hartmann et al., 2011).

2.1 LOLIMOT

The local linear model trees (LOLIMOT) method (Nelles,
2001) operates iteratively, using a tree partitioning pro-
cedure. In each iteration, it selects the worst performing
partition, and splits it further. Local models are estimated
at the end of each iteration for the new partitions.

In particular, each partition obtains a multi-dimensional
Gaussian fuzzy membership function Φj(x), which is used
to estimate a local affine model fLMj

. Finally, the resulting
model is a TS model where the output is calculated as:

ŷ(x) =

m
∑

j=1

(bj,0 + bj,1x1 + bj,2x2 + ...+ bj,pxp)Φj(x), (2)

and m is the number of local models.

Selection heuristic. In each iteration, LOLIMOT con-
siders only one partition for further expansion. It selects
the worst performing one, using the criterion of largest sum
of squared errors. As LOLIMOT was designed for dynamic
system identification, it is able to use simulation to eval-
uate the intermediate model in each step. It is performed
using all available training data, and no averaging is used
on the individual squared errors. 1

After determining the worst performing partition, LOLI-
MOT considers splitting the partition in half, in every
possible dimension. Each of these alternatives is evaluated
by using a heuristic greedy evaluation function: (a) the
partition boundaries are adjusted, and a fuzzy model with
one more LM is created, (b) two new local models are
estimated, and (c) simulation is used to evaluate the fit od
the complete model to the training data.

Estimation of local model parameters. In each iter-
ation of the method, the parameters of the newly added
local models are estimated. The estimation begins by cal-
culating the fuzzy membership function values. As a next
step, these values are used in the weighted least square
regression performed to obtain the parameters of the local
models.

The membership functions determine the (fuzzy) mem-
bership of each data point to each of the partitions and
the corresponding local models. LOLIMOT uses the multi-
dimensional Gaussian membership function, whose center
c is determined by the center of the partition, and standard
deviation vector σ is calculated as 1/3 of the size of the
partition (Nelles, 2001). Thus, the membership of a data
point x to the j-th partition is calculated as

µj(x) = exp(−1

2

n
∑

i=1

(
xi − ci
σi

)2). (3)

1 It is interesting to note that such a selection heuristic produces
more partitions in the regions which contain more training data.



After the membership values for a data point are calcu-
lated, they are normalized across all partitions obtaining
the validity function values Φj(x):

Φj(x) =
µj(x)

∑m

k=1
µk(x)

. (4)

The parameter estimation determines the coefficients bj,u
of the local models (cf Eq. 2). LOLIMOT uses local
estimation which estimates the parameters of each local
model in isolation. As compared to the alternative global
estimation, it has several advantages: it is faster, more
stable, with better performance in noisy situations, and
allows for interpretability of consequents (Hartmann et al.,
2013).

For a local model j, the regression matrix Xj contains the
values of the regressor variables:

Xj =









1 x1,1 x1,2 · · · x1,p

1 x2,1 x2,2 · · · x2,p

...
...

...
. . .

...
1 xn,1 xn,2 · · · xn,p









, (5)

while the weighting matrix Qj , contains the validity func-
tion values (Eq. 4):

Qj =









Φj(x1) 0 · · · 0
0 Φj(x2) · · · 0
...

...
. . .

...
0 0 · · · Φj(xn)









. (6)

Defining the vector of outputs as y = [y1, y2, · · · yn]T , the
parameter estimates for the local model j can be calculated
using the well-known weighted least squares estimation
formula

b̂j = (XT
j QjXj)

−1XT
j Qjy. (7)

2.2 Ensemble creation

The ensembles evaluated here are built by using the bag-
ging procedure. The procedure starts by creating t boot-
strap replicates, i.e., random samples with replacement,
of the training data set D. The replicates have an equal
number of data points as the training set. Each of the t
replicates Di is used to build one fuzzy model.

Thus, a collection of LOLIMOTmodels is built: f1, f2, .., ft.
Denoting the predictions of the t models of the ensemble

with f̂i(x), the overall prediction from the LOLIMOT
ensemble is the average of the base model predictions:

ŷ(x) =
1

t

t
∑

i=1

f̂i(x). (8)

It is worth noting that the bootstrap samples cannot be
used for performing simulation during the building of a
LOLIMOT model, due to the requirement of having time
contiguous data points. Hence, the complete training set
D is also made available when building each base model
(Aleksovski et al., 2015).

2.3 SUHICLUST

The supervised hierarchical clustering (SUHICLUST)
method differs from LOLIMOT in the problem space par-
titioning algorithm. Instead of iteratively checking each

dimension for splitting the worst performing fuzzy region
(local partition), SUHICLUST performs the split based
on the main eigenvector. The fuzzy regions are then op-
timized using the Gustafson-Kessel (GK) algorithm. As
in LOLIMOT, SUHICLUST selects the worst performing
fuzzy region (cluster) based on the sum of squared errors.
The local regions in SUHICLUST are defined by the fuzzy
covariance matrix and by the mean of data in that region.
The local regions are called clusters. The mean of the data
in the local region represent a cluster center. The fuzzy
covariance matrices and clusters’ centers are obtained from
the GK clustering algorithm.

When a worst performing local model is found, the cluster
on which this model is valid is split. The cluster’s fuzzy
covariance matrix is decomposed by using singular value
decomposition. With this, the eigenvectors of data around
the cluster center are obtained. The main direction of the
data expansion is the direction with the largest eigenvalue.
Therefore the main eigenvector is used to split the cluster.
Two new clusters are created, one by adding the main
eigenvector to the cluster center and the other by sub-
tracting the main eigenvector from the cluster center.

Next, GK clustering is performed by using the two newly
created clusters and the local data. The local data are
data samples that have validity function values for the
split cluster higher than a user defined threshold (usually
0.5). Global optimization of local regions is performed by
using all generated clusters and all data. This is again done
by GK clustering. At the end of each iteration, the local
models’ parameters are identified by using Eq. 7.

The SUHICLUST method has four important parameters.
The first two are the same as with LOLIMOT. One is
the error threshold and the other is the maximal number
of clusters. These two parameters are used as stopping
criteria for the identification. Next is the validity threshold
that defines the local data and the fuzziness parameter ηm.
This parameter is used to control the smoothness of the
membership functions (cf Eq. 3). Namely, the standard
deviation σi in Eq. 3 is multiplied by a factor of ηm in
SUHICLUST. The standard deviations σ are determined
by SUHICLUST as a square roots of diagonal elements of
fuzzy covariance matrices.

Further, we have also two parameters connected to the GK
clustering. One is the fuzziness factor (usually set between
1 and 2) and the stopping threshold for clustering (usually
set to 0.01). When one uses GK clustering with improved
variance estimation, two additional parameters have to be
set as explained by Babuška et al. (2002).

3. EXPERIMENTAL EVALUATION SETUP

This section describes the setup for the evaluation of
LOLIMOT, bagging with LOLIMOT and SUHICLUST
for dynamic system identification. It starts by describing
the experimental setup (i.e. the procedure of evaluation
and evaluation measure). This is followed by descriptions
of the three case studies. Finally, it reports the datasets,
regressors and parameters of the methods used.



3.1 Experimental setup

The experimental setup uses input-output data for each
of the case studies. The data are split into two sets: a
training set and a testing set. The model is built by using
the training set and evaluated by using the testing set. The
error reported is in terms of normalized root mean squared
error (NRMSE), also known as root relative mean-squared
error (RRMSE):

e2NRMSE =

√

∑

(yi − ŷi)2
√

∑

(yi − ȳ)2
, (9)

where ȳ denotes the average of the output variable.

The models are evaluated in terms of output error, by
using simulation: The predicted values of the model at
time point k is used in the regressor vector at time point
k + 1. This presents a more control engineering oriented
and stringent type of evaluation of the model, given the
realistic possibility of error accumulation.

3.2 Case study: coupled electric drives

The coupled electric drives system (Wellstead, 1979; Wi-
gren, 1990) consists of two electric motors which are used
to drive a pulley by using a flexible belt (Fig 1 (a)). The
pulley is held by a spring, resulting in a lightly damped
dynamic mode. The electric drives can be individually con-
trolled allowing the tension and the speed of the belt to be
simultaneously controlled. The drive control is symmetric
around zero, hence both clockwise and counter clockwise
movement is possible. Here the focus is only on the speed
control system. The reason is that the angular speed of the
pulley is measured with a pulse counter and this sensor is
insensitive to the sign of the velocity. Following the sensor,
analogue low pass filtering and anti-aliasing filtering are
applied. The dynamic effects are generated by the electric
drive time constants, the spring and the analogue low pass
filtering. The latter has a quite limited effect on the output
and may be neglected.

A discrete time Wiener model of the system (Wigren and
Schoukens, 2013) is given by:

y(t) =
b1q

−1 + b2q
−2 + b3q

−3

1 + f1q−1 + f2q−2 + f3q−3
u(t) (10)

yn(t) = |y(t)|, (11)

where bi, fi; i = 1, .., 3 are parameters, u(t) is the input
signal, yn(t) is the output signal. The input signal u(t)
used was a PRBS with a clock period of 5 times the
sampling period. The signal was switching between −1 V
and +3 V , resulting in the process changing the belt
rotation direction frequently. The input-output data was
recorded with a sampling period of 20 ms. The data for
this case study are shown in Fig. 1 (b).

3.3 Case study: two cascaded tanks

This process is a fluid level control system consisting of two
cascaded tanks with free outlets fed by a pump (Wigren,
2006). The water is transported by the pump to the upper

Fig. 1. (a) A schematic diagram of the coupled electric
drives. (b) The training data used in this study.

Fig. 2. (a) A schematic diagram of the two cascaded tanks
laboratory process. (b) The training data used in this
study.

of the two tanks. The process is depicted in Fig. 2 (a).
The input signal to the process is the voltage applied
to the pump u(t) and the two output signals consist of
measurements of the water levels of the tanks h1 and h2.
Since the outlets are open, and since the tanks are deep
with large vertical extension, the result is a significantly
non-linear dynamics that varies with the level of water.

The equations governing the system are as follows (Wigren
and Schoukens, 2013):

[

dh1

dt
dh2

dt

]

=

[

−a1

√
2g

A1

√
h1 +

1

A1

ku(t)

−a2

√
2g

A2

√
h2 +

a1

√
2g

A2

√
h1

]

, (12)

where A1, A2, a1, a2 denote the areas of the two tanks and
the two effluent areas, respectively. The voltage to input
flow conversion constant is k, while the applied voltage to
the pump is u(t). The data available for this case study
are shown in Fig. 2 (b).

3.4 Case study: silver box

This case study concerns an electronic nonlinear feedback
laboratory system (denoted ”the silver box”) (Pintelon
and Schoukens, 2012). Analogue electrical circuitry is
used to generate data representing a nonlinear mechanical
resonating system with a moving mass m, a viscous
damping d, and a nonlinear spring k(y). The purpose of the
electrical circuit is to relate the displacement y(t) to the
force u(t) according to the following differential equation:

m
d2y(t)

dt
+ d

dy(t)

dt
+ k(y(t))y(t) = u(t) . (13)

The nonlinear spring is described by using a static
position-dependent stiffness



k(y(t)) = a+ by2(t) . (14)

We have used 10 000 data points for training and 4000 for
testing, which are shown in Fig. 3.
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Fig. 3. The first 400 training data points, used for the silver
box case study.

3.5 Datasets and Regressors

Using measured data for the three case studies, we de-
fined three datasets: coupled electric drives (CED), two
cascaded tanks (TCT), and silver box (SB). Using a trial-
and-error procedure, we selected regressors for the three
datasets. The regressors are reported in Table 1, where it
is possible to see that the maximal lag used was 9, 4, and
4 for the three datasets respectively. The same regressors
were then used for all methods that we evaluated.

Table 1. The datasets and the regressors used

Dataset #Data
points

(training /
test)

Out-
put
var.

Regressors selected

CED 374 / 126 z(k) u(k − 6), u(k − 4), u(k − 1),
z(k − 9), z(k − 8), z(k − 7),
z(k − 6), z(k − 4), z(k − 1)

TCT 1500 / 1000 h2(k) u(k − 4), u(k − 2), h1(k − 4),
h2(k − 4), h2(k − 1)

SB 10000 / 4000 y(k) u(k − 3), u(k − 2), u(k − 1),
y(k − 4), y(k − 2), y(k − 1)

3.6 Parameters of the methods

The parameter settings of the methods are described next.
The parameters of LOLIMOT are discussed first, followed
by a discussion of the parameters of the ensemble method
and the parameters of SUHICLUST.

Parameters of LOLIMOT and bagging. The single
parameter that is set for the model tree algorithm is the
number of local models. It was determined according to the
criterion of minimal NRMSE error of simulation, on the
training set. The values thus selected were 30 local models
for all three datasets, which was also used for bagging.
We vary the number of base models in the ensemble,
considering up to 64 LOLIMOT models. The results for all
of these are shown in graphical form in Figure 4. Based on
these results, we examine the minimal number of models
in the ensemble.

Parameters of SUHICLUST. The number of local
models used in SUHICLUST was also according to the
criterion of minimal NRMSE error of simulation, on the
training set. Maximal number of local models was set to
20. The values obtained were 11, 18 and 20 for the three
datasets CED, TCT and SB respectively. In all three cases
the validity threshold was set to 0.5, the fuzziness factor
ηm to 0.5 and criterion for stopping the GK clustering to
0.1. The fuzziness factor for GK clustering was for CED
experiment set to 1.3, for TCT experiment to 1.1 and for
SB experiment to 1.2.

4. RESULTS

This section presents the results of the performance eval-
uation of LOLIMOT, bagging with LOLIMOT and SUHI-
CLUST. It first reports the results in terms of the number
of local models, and then in terms of squared error.

Number of local models. The experimental results
shown here report the number of local models of LOLIMOT
and SUHICLUST. In more detail, Table 2 gives the num-
ber of local models (#LMs) needed in order to achieve
a specific modeling goal of an error lower than e2NRMSE

on the test set. It can be seen that for CED and TCT
SUHICLUST requires less LMs then LOLIMOT, while
showing error of similar magnitude. The number of LMs
required differs by 9 and 6 LMs respectively. However, for
SB, LOLIMOT satisfies the modeling goal with 5 LMs less.

Table 2. Comparison of LOLIMOT and SUHI-
CLUST

Dataset Modeling
goal (e2)

LOLIMOT
(e2 / #LMs)

SUHICLUST
(e2 / #LMs)

CED 0.1000 0.0907 / 21 0.0997 / 12
TCT 0.0350 0.0342 / 19 0.0333 / 13
SB 0.0700 0.0628 / 6 0.0660 / 11

Squared error. The results in terms of NRMSE error on
the test sets are presented in Figure 4 presents. Note that
there are 5 dashed lines for each size of the ensemble, show-
ing the performance of 5 runs of bagging with different
random seeds. This was included in order to illustrate the
effect of randomness as used in the procedure of bagging.

We can conclude that bagging with LOLIMOT improves
the error over a single LOLIMOTmodel. The improvement
is visible for all three datasets. An exception holds only
for CED, for which one run of bagging does not clearly
improve over the error of a single LOLIMOT model (the
other 4 runs do improve).

Regarding the number of base models in the ensemble,
the results for TCT and SB show that a low number of
base models (as few as 10) in the ensemble is sufficient
for improving the performance over LOLIMOT. For the
CED dataset, however, 40 base models are needed to sta-
bilize the variance of the NRMSE error and improve over
LOLIMOT’s performance. The comparison of ensembles of
LOLIMOT models to SUHICLUST shows that ensembles
can achieve similar (with 10 models) or better performance
(with 40 models) than a SUHICLUST model.
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Fig. 4. NRMSE results for the three case studies.

5. CONCLUSIONS AND FURTHER WORK

This paper evaluated LOLIMOT, SUHICLUST and en-
sembles of LOLIMOT models, built by using measured
input-output data. The evaluation was performed on three
benchmark case studies of modeling nonlinear dynamic
systems. The case studies cover nonlinear laboratory pro-
cesses: coupled electric drives, cascaded tanks and silver
box.

In terms of size of the fuzzy models, for two datasets
SUHICLUST produced smaller models as compared to
LOLIMOT, with similar error. For the remaining dataset,
the model built by LOLIMOT was smaller. In terms of
error, ensembles of LOLIMOT models performed better
than a single LOLIMOT or SUHICLUST model. As fur-
ther work, we would like to evaluate different ensemble
approaches to learning fuzzy models, such as boosting.
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sembles of fuzzy linear model trees for the identification
of multi-output systems. IEEE Transactions on Fuzzy
Systems.
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