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Abstract

Nonlinear Model Predictive Control (NMPC) algorithms are based on various
nonlinear models. A number of on-line optimization approaches for output-
feedback NMPC based on various black-box models can be found in the
literature. However, NMPC involving on-line optimization is computation-
ally very demanding. On the other hand, an explicit solution to the NMPC
problem would allow efficient on-line computations as well as verifiability
of the implementation. This paper applies an approximate multi-parametric
Nonlinear Programming approach to explicitly solve output-feedback NMPC
problems for constrained nonlinear systems described by black-box models.
In particular, neural network models are used and the optimal regulation
problem is considered. A dual-mode control strategy is employed in order to
achieve an offset-free closed-loop response in the presence of bounded distur-
bances and/or model errors. The approach is applied to design an explicit
NMPC for regulation of a pH maintaining system. The verification of the
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NMPC controller performance is based on simulation experiments.

Keywords: Model predictive control, Black-box models, Multi-parametric
nonlinear programming.

1. Introduction

Nonlinear Model Predictive Control (NMPC) involves the solution at each
sampling instant of a finite horizon optimal control problem subject to non-
linear system dynamics and state and input constraints [1, 2, 3]. A survey
of the numerical methods for on-line solution of NMPC problems is given
in [4]. Most recently, an advanced-step NMPC controller with reduced on-
line computational costs has been proposed in [5]. The NMPC algorithms
are based on various nonlinear models. Often these models are developed
as first-principles models, but other approaches, like black-box identification
approaches are also popular. In this paper we focus on explicit solution of
output-feedback NMPC problems based on black-box models.

There exists a number of NMPC approaches based on various black-box
models e.g. based on neural network models (e.g. [6]), fuzzy models (e.g.
[7]), local model networks (e.g. [8]), Gaussian Process models (e.g. [9]).
The common feature of these NMPC approaches is that an on-line optimiza-
tion needs to be performed in order to compute the optimal control input.
Consequently, the computation is time consuming and the real-time NMPC
implementation is limited to processes where the sampling time is sufficient
to support the computational needs. However, the on-line computational
complexity can be circumvented with an explicit approach to NMPC, where
the only computation performed on-line would be a simple function evalua-
tion.

It has been shown that the explicit solution to linear constrained MPC
problems has an explicit representation as a piece-wise linear (PWL) state
feedback law defined on a polyhedral partition of the state space [10]. The
benefits of an explicit solution, in addition to the efficient on-line computa-
tions, include also verifiability of the implementation, which is an essential
issue in safety-critical applications. In [11], the main contributions on ex-
plicit MPC, which have appeared in the scientific literature, are reviewed.
For nonlinear MPC, the prospects of explicit solutions are even higher than
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for linear MPC, since the benefits of computational efficiency and verifiability
are even more important. Recently, several approaches to explicit solution of
NMPC problems have been suggested. An approach for efficient on-line com-
putation of NMPC for constrained input-affine nonlinear systems has been
suggested in [12]. In [13, 14, 15], approaches for off-line computation of ex-
plicit sub-optimal PWL predictive controllers for general nonlinear systems
with state and input constraints have been developed, based on the multi-
parametric Nonlinear Programming (mp-NLP) ideas [16]. It has been shown
that for convex mp-NLP problems, it is straightforward to impose tolerances
on the level of approximation such that theoretical properties like asymptotic
stability of the sub-optimal feedback controller can be ensured [14, 17]. In
[15], practical computational methods to handle non-convex mp-NLP prob-
lems have been suggested that not necessarily lead to guaranteed properties,
but when combined with verification and analysis methods give a practi-
cal tool for development and implementation of explicit NMPC. Algorithms
for solving mp-NLP problems, including the non-convex case, are described
also in [18]. It should be noted that the mentioned methods for explicit
NMPC are based on first-principles models of the systems and they assume
that the state variables can be measured. Further, in [19], an approach for
off-line computation of explicit stochastic NMPC controller for constrained
nonlinear systems based on a stochastic black-box model (Gaussian process
model) has been proposed. In addition to the mentioned methods, there
exists another group of approaches for off-line computation of sub-optimal
controllers, where the optimal solution is approximated by means of neural
networks [20, 21, 22, 23].

This paper suggests an approximate mp-NLP approach to explicit so-
lution of deterministic NMPC problems for constrained nonlinear systems
described by black-box models (NARX models [24]). In particular, neural
network NARX models are considered [25]. The approach builds an orthog-
onal search tree structure of the regressor space partition and consists in
constructing a PWL approximation to the optimal control sequence by ap-
plying the approximate mp-NLP algorithm in [15]. A dual-mode control
strategy is proposed in order to achieve an offset-free closed-loop response
in the presence of bounded disturbances and/or model errors. It is similar
to the dual-mode receding horizon control concept developed in [26] (based
on state space models), however here black-box models are considered and
an explicit solution of the NMPC problem is sought. Thus, the suggested
strategy consists in using the explicit NMPC (based on NARX model) when
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the output variable is far from the origin and applying an LQR in a neighbor-
hood of the origin. The LQR design is based on an augmented linear ARX
model which takes into account the integral regulation error. The main mo-
tivations behind the dual-mode control strategy are the following. First, it
may be beneficial to use a separate linear model in a neighborhood of the
equilibrium, since the nonlinear black-box model may not have accurate lin-
earizations unlike a first-principles model, and the requirement for accurate
control is highest at the equilibrium. Second, it leads to a reduced complex-
ity of the explicit NMPC compared to augmenting the nonlinear model with
an integrator to achieve an integral action directly in the NMPC.

The following abbreviation and notation will be used in the paper. The
nonlinear model predictive control problem based on black-box model will
be referred to as BB-NMPC problem. A ≻ 0 means that the square ma-
trix A is positive definite. For x ∈ R

n, the Euclidean norm is ‖x‖ =
√

xT x
and the weighted norm is defined for some symmetric matrix A ≻ 0 as
‖x‖A =

√
xT Ax.

2. Formulation of the BB-NMPC problem as an mp-NLP problem

2.1. Modelling of dynamic systems with NARX models

The black-box identification of nonlinear systems is an area which is quite
diverse. It covers topics from mathematical approximation theory, estimation
theory, non-parametric regression and concepts like neural networks, fuzzy
models, wavelets etc. A unified overview of this topic is given in [27].

Consider a nonlinear dynamical system with input u ∈ R
m and output

y ∈ R
p and let U = [u(1), u(2), ... , u(M)] and Y = [y(1), y(2), ... , y(M)]

be sets of observed values of u and y to the number of M . Based on these
data, the dynamics of the system can be described with a NARX model,
where the future predicted output y(i + 1) depends on previous estimated
outputs, as well as on previous control inputs:

y(i + 1) = f(z(i), θ) (1)

z(i) = [y(i), y(i− 1), ... , y(i− L), u(i), u(i− 1), ... , u(i− L)] (2)

Here, L is a given lag, i denotes the consecutive index of data samples (i ≥ L),
z(i) is the so called regressor vector, f is the function realized by the black-
box model, and θ is a finite-dimensional vector of parameters. Thus, the
function f is a concatenation of two mappings: one that takes the increasing
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number of the past values of the observed inputs and outputs and maps them
into the finite dimensional regressor vector and one that takes this vector to
the space of the outputs. The nonlinear mapping from the regressor space
to the output space can be of various kinds. In our case we will use neural
network with sigmoid basis functions in the hidden layer and linear basis
functions in the output layer. This form of neural network is called Multi-
layer Perceptron (MLP), which is probably the most frequently considered
member of the neural network family (e.g. Norgaard et al. (2000)) and can
be used as an universal approximator. This particular choice was subjec-
tive. Any other choice of regressor vector composition or any other choice of
mapping is possible until it enables satisfactory description of the modelled
dynamic system. The results given in the continuation of the paper are not
limited to MLP approach only.

The parameters of the MLP are the weights of its units. After the struc-
ture (number of layers and units) is determined, the model parameters are ob-
tained with optimization, based on a chosen cost function. This cost function
is most frequently a least squares combination of errors between estimated
and measured output signals:

E =
1

2M

M∑

i=1

‖y(i)− ŷ(i|θ)‖2 (3)

where ŷ(i|θ) is estimated output signal, θ is a vector containing the weights,
and M is the number of measured output signals y(i). The quality of predic-
tion can be assessed with evaluation of residuals, estimation of the average
prediction error or visualization of the network model’s ability to predict.
The reader is referred to [6] for more details.

2.2. Formulation of the BB-NMPC problem

Consider the discrete-time nonlinear system:

x(t + 1) = h(x(t), u(t)) (4)

y(t) = g(x(t), u(t)) (5)

where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are the state, input and output

vectors, and h : R
n × R

m → R
n and g : R

n × R
m → R

p are nonlinear
functions. The following input and output constraints are imposed on the
system (4)–(5):

umin ≤ u(t) ≤ umax , ymin ≤ y(t) ≤ ymax (6)

5



Assume that the dynamics of the nonlinear system (4)–(5) is approximated
with an MLP neural network with NARX structure of the form (1)–(2). Then
for t ≥ L, define a modified regressor vector:

z̃(t) =






[y(t), y(t− 1), ... , y(t− L),
u(t− 1), ... , u(t− L)] , if L > 0

y(t) , if L = 0
, (7)

where u(t− 1), ... , u(t−L) and y(t), y(t− 1), ... , y(t−L) are the measured
values of the input u and the output y. Thus, z̃(t) ∈ R

q with q = (L + 1)p +
Lm if L > 0 and q = p if L = 0. Then, the NARX model, used to obtain
one-step ahead prediction of the output for t ≥ L, is represented:

ŷ(t + 1|θ) = fNN(z̃(t), u(t), θ) , (8)

where fNN is the function realized by the neural network (NN) and θ contains
the network weights. Suppose the initial regressor vector z̃(t) = z̃t|t is known
and the control inputs u(t + k) = ut+k , k = 0, 1, ... , N − 1 are given.
Then, the model (8) can be used to obtain the predicted output yt+k+1|t,
k = 0, 1, ... , N − 1 through iterative one-step ahead predictions, where at
each step the predicted output value is fed back to the regressor vector:

yt+k+1|t = fNN(z̃t+k|t, ut+k, θ) (9)

z̃t+k|t =






[yt+k|t, yt+k−1|t, ... , yt+k−L|t,
ut+k−1, ... , ut+k−L], if L > 0

yt+k|t, if L = 0
(10)

The following assumptions are made:

A1. There exists uNN
st ∈ R

m satisfying umin ≤ uNN
st ≤ umax, and such that

fNN(z̃0, u
NN
st , θ) = 0, where z̃0 is obtained from (10) with yt+k|t =

yt+k−1|t = ... = yt+k−L|t = 0, ut+k−1 = ... = ut+k−L = uNN
st .

A2. ymin < 0 < ymax.

Assumption A1 means that the point y = 0, u = uNN
st , is an equilibrium point

for the NARX model (8), and Assumption A2 means that it is feasible for
(6).

We consider the optimal regulation problem where the goal is to steer the
output variable y to the origin by minimizing certain performance criterion.
Suppose that a full measurement of the modified regressor vector z̃(t) is
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available at the current time t ≥ L. Then, for the current z̃(t), the regulation
BB-NMPC solves the following optimization problem:
Problem P1:

V ∗(z̃(t)) = min
U

J(U, z̃(t)) (11)

subject to z̃t|t = z̃(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ..., N (12)

umin ≤ ut+k ≤ umax, k = 0, 1, ..., N − 1 (13)

yt+N |t ∈ Ω (14)

yt+k+1|t = fNN(z̃t+k|t, ut+k, θ), k = 0, 1, ..., N − 1 (15)

z̃t+k|t =

{
[yt+k|t, yt+k−1|t, ... , yt+k−L|t, ut+k−1, ... , ut+k−L], if L > 0
yt+k|t, if L = 0 ,

(16)

k = 0, 1, ..., N − 1

with U = [ut, ut+1, ... , ut+N−1] and the cost function given by:

J(U, z̃(t)) =
N−1∑

k=0

[∥∥yt+k|t

∥∥2

Q
+

∥∥ut+k − uNN
st

∥∥2

R

]
+

∥∥yt+N |t

∥∥2

P
(17)

Here, N is a finite horizon and P, Q, R ≻ 0. In (14), Ω is the terminal set
defined by Ω = {y ∈ R

p | ‖y‖2 ≤ δ} with δ > 0. From a stability point of
view it is desirable to choose δ as small as possible [28]. If the system is
asymptotically stable (or pre-stabilized) and N is large, then it is more likely
that the choice of a small δ will be possible.

Let z̃ be the value of the modified regressor vector at the current time t.
Then, the optimization problem P1 can be formulated in a compact form as
follows:
Problem P2:

V ∗(z̃) = min
U

J(U, z̃) subject to G(U, z̃) ≤ 0 (18)

The BB-NMPC problem defines an mp-NLP, since it is NLP in U param-
eterized by z̃. We remark that the constraints function G(U, z̃) in (18) is
implicitly defined by (12)–(16). An optimal solution to this problem is de-
noted U∗ = [u∗

t , u∗
t+1, ... , u∗

t+N−1] and the control input is chosen according
to the receding horizon policy u(t) = u∗

t . Define the set of N -step feasible
initial regressor vectors as follows:

Zf = {z̃ ∈ R
q |G(U, z̃) ≤ 0 for some U ∈ R

Nm} (19)
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In parametric programming problems one seeks the solution U∗(z̃) as an
explicit function of the parameters z̃ in some set Z ⊆ Zf ⊆ R

q [16]. The
explicit solution allows us to replace the computationally expensive real-time
optimization with a simple function evaluation.

3. Approximate mp-NLP approach to explicit BB-NMPC

Definition 1 (Feasibility on a discrete set). Let Z ⊂ R
q be a hyper-

rectangle and VZ = {v1, v2, ... , vQ} ⊂ Z be a discrete set. A function U(z̃)
is feasible on VZ if G(U(vi), vi) ≤ 0, i ∈ {1, 2, ... , Q}.

In general, the exact solution of problem P2 can not be found. In [15], a
computational method for constructing an explicit piecewise linear (PWL)
approximate solution of state-space NMPC problems has been suggested.
Here, the approximate mp-NLP approach is applied to explicitly solve the
output-feedback NMPC problem formulated in the previous section and it
is given only in brief. Let Z ⊂ R

q be a hyper-rectangle where we seek to
approximate the optimal solution U∗(z̃) to problem P2. It is required that
the regressor space partition is orthogonal and can be represented as a k− d
tree. The main idea of the approximate mp-NLP approach is to construct a
feasible on a discrete set PWL approximation Û(z̃) to U∗(z̃) on Z, where the
constituent affine functions are defined on hyper-rectangles covering Z. The
computation of an affine regressor feedback associated to a given region Z0

includes the following steps. First, a close-to-global solution of problem P2
is computed at a set of points in Z0. Then, based on the solutions at these
points, a local linear approximation Û0(z̃) = K0z̃ + g0 to the close-to-global
solution U∗(z̃), feasible at these points and valid in the whole hyper-rectangle
Z0, is determined by applying the following procedure [15]:

Procedure 1. (Computation of explicit approximate solution).
Consider any hyper-rectangle Z0 ⊆ Z with a set of points V0 = {v0, v1, v2, ... ,
vN1
} ⊂ Z0. Compute K0 and g0 by solving the following NLP:

Problem P3:

min
K0, g0

N1∑

i=0

(
J(K0vi + g0, vi)− V ∗(vi) + α ‖K0vi + g0 − U∗(vi)‖2

)
(20)

subject to G (K0vi + g0, vi) ≤ 0 , ∀vi ∈ V0 (21)
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In (20), J(K0vi + g0, vi) is the sub-optimal cost, V ∗(vi) denotes the cost cor-
responding to the close-to-global solution U∗(vi), i.e. V ∗(vi) = J(U∗(vi), vi),
and the parameter α is a weighting coefficient. The details about the gener-
ation of a set of points V0 = {v0, v1, v2, ... , vN1

} associated to a given region
Z0 and the computation of a close-to-global solution of problem P2 at these
points can be found in [15].

After a linear regressor feedback Û0(z̃) = K0z̃ + g0 that is feasible on
the set V0 ⊂ Z0 has been determined, an estimate ε̂0 of the maximal cost
function approximation error in Z0 is computed as follows:

ε̂0 = max
i∈{0, 1, 2, ... , N1}

(J(K0vi + g0, vi)− V ∗(vi)) (22)

Assume the tolerance ε̄ > 0 of the cost function approximation error
is given. Denote with SZ0

the volume of a given hyper-rectangular region

Z0 ⊂ Z ⊂ R
q, i.e. SZ0

=
q∏

i=1

∆zi, where ∆zi is the size of Z0 along the

dimension zi. Let Smin be the minimal allowed volume of the regions in
the partition of Z. The following algorithm is used to compute the explicit
approximate output-feedback NMPC controller on the regressor space Z [15]:

Algorithm 1 (Explicit approximate BB-NMPC)
1. Initialize the partition to the whole hyper-rectangle, i.e. Π = {Z}.

Mark the hyper-rectangle Z as unexplored.
2. Select any unexplored hyper-rectangle Z0 ∈ Π. If no such hyper-

rectangle exists, terminate.
3. Compute a close-to-global solution to problem P2 at the center point

v0 of Z0. If problem P2 has a feasible solution, go to step 4. Otherwise, go
to step 7.

4. Define a set of points V0 = {v0, v1, v2, ... , vN1
} associated to the region

Z0. Compute a close-to-global solution to problem P2 for z̃ fixed to each of
the points vi, i = 1, ... , N1. If problem P2 has a feasible solution at all these
points, go to step 5. Otherwise, go to step 7.

5. Compute an affine feedback Û0(z̃) using Procedure 1, as an approxi-
mation to be used in Z0. If a feasible solution of problem P3 was found, go
to step 6. Otherwise, go to step 7.

6. Compute an estimate ε̂0 of the error bound in Z0 according to (22).
If ε̂0 ≤ ε̄, mark Z0 as explored and feasible and go to step 2. Otherwise,
split Z0 into two hyper-rectangles Z1 and Z2. Mark Z1 and Z2 unexplored,
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remove Z0 from Π, add Z1 and Z2 to Π, and go to step 2.
7. Compute the volume SZ0

of the hyper-rectangle Z0. If SZ0
< Smin,

mark Z0 as explored and infeasible and go to step 2. Otherwise, split Z0 into
hyper-rectangles Z1, ... , ZNs

. Mark Z1, ... , ZNs
unexplored, remove Z0

from Π, add Z1, ... , ZNs
to Π, and go to step 2.

The heuristic rules used to split a region in steps 6 and 7 of the algorithm
can be found in [15]. This algorithm will terminate with a PWL function

Û(z̃) = [û0(z̃), û1(z̃), ... , ûN−1(z̃)] that is defined on an inner approximation
ZΠ of the set Z ∩ Zf .

4. Design of feedback control law in a neighborhood of the equi-
librium

Generally, it will be difficult to guarantee that the local linearization at a
nominal equilibrium point of an NN ARX model is accurate (see the example
in section 5). The inaccuracies of the model may result in a steady-state off-
set of the explicit BB-NMPC controller. Here, a dual-mode control strategy
is proposed which aims at achieving an offset-free closed-loop response in the
presence of bounded disturbances and/or model errors. With this strategy,
the control is performed by the explicit BB-NMPC controller when the sys-
tem is far from equilibrium, and by a Linear Quadratic Regulator (LQR) with
integral action when it is close to equilibrium. In order to design the LQR,
a linear ARX model of the system needs to be obtained in a neighborhood
of the equilibrium.

4.1. Modelling of dynamic systems with linear ARX models

The purpose is to obtain a linear ARX model [29]:

y(t + 1) = A1y(t) + A2y(t− 1) + ... + Al+1y(t− l) + B1(u(t)− u∗
st)

+B2(u(t− 1)− u∗
st) + ... + Bl+1(u(t− l)− u∗

st) , (23)

that will be valid in a neighborhood of the equilibrium y = 0, u = u∗
st of

the considered nonlinear dynamical system (4)–(5). In (23), the matrices
Ai ∈ R

p×p and Bi ∈ R
p×m, i = 1, 2, ... , l + 1 contain the coefficients of the

model, and l is a given lag. To estimate the parameters of the model (23),
the least squares estimation method or the four-stage instrumental variable
method can be applied [29].
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4.2. Design of Linear Quadratic Regulator with integral action

The purpose is to design an LQR that will regulate the system (23) to
the origin. In order to achieve an offset-free performance, the model (23) is
augmented with the following output yint ∈ R

p, which takes into account the
integral regulation error:

yint(t + 1) = yint(t) + Tsy(t) (24)

where Ts is the sampling time. Let ue(t) ≡ u(t) − u∗
st. Then, the extended

system with input ue and output ye = [y, yint] is described by the linear ARX
model:

ye(t + 1) = Ae
1ye(t) + Ae

2ye(t− 1) + ... + Ae
l+1ye(t− l) +

Be
1ue(t) + Be

2ue(t− 1) + ... + Be
l+1ue(t− l) , (25)

where Ae
1 =

[
A1 0p

TsIp Ip

]
, Ae

i =

[
Ai 0p

0p 0p

]
, i = 2, 3, ... , l + 1, Be

i =

[
Bi

0p,m

]
,

i = 1, 2, ... , l + 1. Here, Ip is the p-dimensional identity matrix, 0p is the
p-dimensional square zero matrix, and 0p,m is the p × m-dimensional zero
matrix. The following regressor vector is introduced:

z̃e(t) =






[ye(t), ye(t− 1), ..., ye(t− l),
ue(t− 1), ue(t− 2), ..., ue(t− l)], if l > 0
ye(t) , if l = 0

, (26)

This regressor vector can be also represented as z̃e(t) = [z1(t), z2(t), ..., zl+l+1(t)],
where z1(t), ..., zl+1(t) are the shifted values of ye and zl+2(t), ..., zl+l+1(t) are
the shifted values of ue. The relations between these elements are:

ye(t + 1) = z1(t + 1)

z1(t) = ye(t) = z2(t + 1)

z2(t) = ye(t− 1) = z3(t + 1)
... (27)

zl(t) = ye(t− l + 1) = zl+1(t + 1)

zl+1(t) = ye(t− l)
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ue(t) = zl+2(t + 1)

zl+2(t) = ue(t− 1) = zl+3(t + 1)

zl+3(t) = ue(t− 2) = zl+4(t + 1)
... (28)

zl+l(t) = ue(t− l + 1) = zl+l+1(t + 1)

zl+l+1(t) = ue(t− l)

Then, the system (25) can be represented:

z̃e(t + 1) = Ãez̃e(t) + B̃eue(t) (29)

For l > 0, the matrices Ãe and B̃e in (29) are given by:

Ãe =





Ae
1 Ae

2 ... Ae
l Ae

l+1 Be
2 ... Be

l Be
l+1

I2p 02p ... 02p 02p 02p,m ... 02p,m 02p,m

02p I2p ... 02p 02p 02p,m ... 02p,m 02p,m

...
02p 02p ... I2p 02p 02p,m ... 02p,m 02p,m

0m,2p 0m,2p ... 0m,2p 0m,2p 0m ... 0m 0m

0m,2p 0m,2p ... 0m,2p 0m,2p Im ... 0m 0m

...
0m,2p 0m,2p ... 0m,2p 0m,2p 0m ... Im 0m





(30)

B̃e = [Be
1 02p,m 02p,m ... 02p,m Im 0m ... 0m]T (31)

In (30), (31), I2p and Im are identity matrices, 02p and 0m are square zero
matrices, and 02p,m and 0m,2p are zero matrices with dimensions 2p×m and
m× 2p respectively. If l = 0, then Ãe = Ae

1 and B̃e = Be
1.

The unconstrained LQR problem for system (29) solves the following
optimization problem:

min
{ue(t), ue(t+1), ...}

∞∑

k=0

[
‖z̃e(t + k)‖2Qe

+ ‖ue(t + k)‖2Re

]
(32)

where Qe, Re ≻ 0. The solution to (32) is the linear feedback control law:

ue(t + k) = −Kz̃e(t + k) , k ≥ 0 , (33)
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where the controller gain matrix K is given by [30]:

K =
(
B̃eT PB̃e + Re

)−1

B̃eT PÃe (34)

In (34), P is the solution of the discrete-time algebraic Riccati equation [30]:

P = ÃeT PÃe + Qe − ÃeT PB̃e
(
B̃eT PB̃e + Re

)−1 (
ÃeT PB̃e

)T

(35)

By taking into account that ue(t) ≡ u(t)− u∗
st, it follows from (33) that the

control input applied to the system is:

u(t + k) = −Kz̃e(t + k) + u∗
st , k ≥ 0 (36)

4.3. Explicit dual-mode controller

Consider the closed-loop system:

z̃e(t + k) = (Ãe − B̃eK)z̃e(t + k − 1), k ≥ 0 , (37)

where z̃e(t + k) is defined by (26) if t is replaced by t + k. Further, note that
the regressor vectors z̃(t) and z̃e(t) (defined by (7) and (26)) are related by:

z̃(t) =





Ψp,2p ... 0p,2p 0m ... 0m

...
0p,2p ... Ψp,2p 0m ... 0m

0p,2p ... 0p,2p Im ... 0m

...
0p,2p ... 0p,2p 0m ... Im





z̃e(t) (38)

where Ψp,2p = [Ip 0p], 0p,2p is zero matrix with dimensions p × 2p, and Ip,
0p, Im, 0m are defined above. Let Γ1 = {z̃ ∈ R

q | − γ1 ≤ z̃ ≤ γ1} with
γ1 ∈ R

q, γ1 > 0 and Γ2 = {z̃ ∈ R
q | − γ2 ≤ z̃ ≤ γ2} with γ2 ∈ R

q, γ2 > 0,
be two sets such that Γ2 ⊆ Γ1 ⊂ ZΠ (recall that the explicit approximate
BB-NMPC controller is defined on the set ZΠ). Suppose that ∀z̃(t) ∈ Γ2,
z̃(t + k) (associated to the closed-loop system (37) by the relation (38)) is
a sufficiently accurate prediction of the dynamics of the nonlinear system
(4)–(5) and the following conditions are satisfied:

z̃(t + k) ∈ Γ1, k > 0 (39)

ymin < [Ip 0p ... 0p 0m ... 0m]z̃(t + k) < ymax, k ≥ 0 (40)

umin < −Kz̃e(t + k) + u∗
st < umax, k ≥ 0 (41)
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Let z̃ and z̃e be the values of the regressor vectors (7) and (26) at the current
time t. Also, let is be a switch index indicating if z̃ has entered the set Γ2.
Then, the explicit dual-mode controller is defined as follows:

ud ,






û0(z̃) , is = 0 , if z̃ /∈ Γ1

−Kz̃e + u∗
st , is = 1 , if z̃ ∈ Γ2

−Kz̃e + u∗
st , if is = 1

(42)

The expression in the first row of (42) means that the control is performed by
the explicit BB-NMPC controller when the system is far from equilibrium,
while the expressions in the second and third rows imply that the control will
be switched to the LQR when z̃ enters the set Γ2 and the LQR will continue
controlling the system afterwords. It should be noted that the integrator
output yint is used only when z̃ ∈ Γ1. In the case when z̃ /∈ Γ1, yint is set to
zero and not used. From (40) and (41), it is also observed that the output
and input constraints never become active for the closed-loop system (37).

5. Design of an explicit output-feedback NMPC for regulation of
a pH maintaining system

The dual-mode approach to explicit output-feedback NMPC, described in
the previous two sections, is applied to design an explicit NMPC for regula-
tion of a pH maintaining system. The motivation for this particular example
is not to suggest that the mp-NLP approach is particularly suitable for this
kind of process, but rather to demonstrate a potential engineering applica-
tions of the mp-NLP approach to processes which are modelled with higher
order black-box models. Particularly attractive for suggested control method
from engineering applications aspect is a benefit to be able to execute the
NMPC code in a low-cost PLC type of hardware.

5.1. The pH maintaining system

A simplified schematic diagram of the pH maintaining system taken from
[31] is given in Figure B.1. The process consists of an acid stream (Q1),
buffer stream (Q2) and base stream (Q3) that are mixed in a tank T1. Prior
to mixing, the acid stream enters the tank T2. The acid and buffer flow rates
are assumed to be constant. The effluent pH is the measured variable, which
is controlled by manipulating the base flow rate.

In [31], a dynamic model of the pH maintaining system is derived, which
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is given in details in Appendix A. The following state, input and output
variables are defined [31]:

x = [Wa4 Wb4 h1]
T , u = Q3 , y = pH , (43)

where Wa4 and Wb4 are the effluent reaction invariants, and h1 is the liquid
level in tank T1. The obtained state space model has the form [31]:

ẋ = f̃(x) + g̃(x)u (44)

c(x, y) = 0 , (45)

where f̃(x), g̃(x) and c(x, y) are given in Appendix A.

5.2. ARX model identification

5.2.1. Neural network ARX model identification

The identification and the validation of the NN model of the pH maintain-
ing system is based on simulation data, generated with the model (44)–(45),
where the liquid level h1 in tank T1 is assumed to be constant. Thus, it is
presumed that a controller has been already designed to keep the level h1

on the nominal value h∗
1 = 14 [cm] by manipulating the exit flow rate Q4.

To get an idea about the system dynamics, necessary for sampling time and
regressor vector selection, some preliminary tests were pursued. The process
model (44)–(45) was excited with a combination of step-like signals for es-
timation of the dominant time constant and settling time. The dominant
time constant was estimated in range between 65 [s] and 185 [s] and settling
time between 135 [s] and 325 [s]. This ’provisional’ dynamics is necessary
for the estimation of appropriate sampling time. Based on responses and
iterative cut-and-try procedure, a sampling time of 25 [s] was selected for
these tests. Based on these preliminary tests, the chosen identification signal
(400 samples) was generated from a uniform random distribution and a rate
of change of the signal of 50 [s]. The validation signal was obtained using
a generator of random noise with uniform distribution and a rate of change
of the signal of 500 [s], so it has lower magnitude and frequency components
than the identification signal. The rationale behind this is that if the model
was identified using a rich signal, then it should respond well to a signal with
less components.

The NN model represents a NARX model of the form (7)–(8). The hidden
layer has sigmoid activation functions and the output layer has linear activa-
tion function. The choice of regressors is a difficult one and is common to all
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black-box modelling approaches. The number of regressors (delayed inputs
and outputs) was determined by the method described in [32]. A trade-off
between modelling error and complexity was taken into the account. The
final selection was that the system model has the form:

y(t + 1) = fNN(z̃(t), u(t), θ) (46)

z̃(t) = [y(t), y(t− 1), y(t− 2), u(t− 1), u(t− 2)] (47)

It should be noted that in difference to the state space model (44)–(45) where
y = pH, in the NN model (46)–(47) the variable y represents the deviation
of the pH from the desired set point pHsp = 4.8, i.e. y = pH − pHsp. In
general, any other value for pHsp can be pursued if the developed black-box
model describes the specified operating range. Also, while in [31] the goal is
to keep the pH at value 7 (a pH neutralization system), here the task is to
maintain the pH at value 4.8 (a pH maintaining system). The data used for
identification of the NN model (46)–(47) and for validation of its performance
were scaled to zero mean and variance 1. This means that u(t) and y(t) can
take both positive and negative values.

The optimal number of neurons in the hidden layer was determined sys-
tematically by optimization in parallel. The network was optimized for
each possible number of hidden neurons in a certain range. The Levenberg-
Marquardt method was used for minimization of the mean-square error cri-
teria (3), due to its rapid convergence properties and robustness. At the end
of this lengthy procedure and after removing the unimportant weights, the
optimal parameters of the model (46)–(47) were obtained, with thirteen neu-
rons in the hidden layer. More about systematic network structure selection,
pruning and other issues regarding neural networks modelling can be found
in various literature describing this topic and its applications (e.g. [6], [25],
[32], [33], [34], [35]).

Figure B.2 depicts a comparison between the simulated NN response and
the process response to the identification and the validation input signals.
From the validation, it can be concluded that the black-box model captures
the dynamics of the pH maintaining system relatively well. The resulting
black-box model is not too large to be handled and was relatively routinely
obtained with the selected software tool.

5.2.2. Linear ARX model identification

The equilibrium point of the pH maintaining system (the model (44)–
(45)) is y = 0, u∗

st = 0.1732. A validation of the obtained NN ARX model
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near this point clearly shows that it is not accurate (see Figure B.3).
In order to obtain accurate predictions when the output variable is close

to zero, the following 1-st order linear ARX model is identified:

y(t + 1) = 0.7704y(t) + 0.0539(u(t)− u∗
st) (48)

Higher order linear ARX models have been also obtained, however simula-
tions have shown that the dynamics of the pH maintaining system around
the equilibrium is captured best by the 1-st order model (48). The simulated
response of the ARX model (48) is depicted in Figure B.3.

5.3. Design of explicit dual-mode controller

The approach described in sections 3 and 4 is applied to design an ex-
plicit dual-mode controller for the pH maintaining system based on its NN
model (46)–(47) and linear ARX model (48). Recall that due to scaling, the
variables u and y can take both positive and negative values.

First, Algorithm 1 is applied to design an explicit approximate BB-NMPC
controller. The following control input constraint is imposed on the system:

−0.4 ≤ u ≤ 0.4 (49)

The horizon is N = 8 and the terminal constraint in problem P1 is:

yt+N |t ∈ Ω , (50)

where Ω = {y ∈ R | y2 ≤ 0.001}. The weighting matrices in the cost function
(17) are Q = 10, R = 1, P = 10. The BB-NMPC minimizes the cost function
(17) subject to the model (46)–(47) and the constraints (49), (50). In (20),
it is chosen α = 10. The regressor space to be partitioned is defined by Z =
([−1.2; 1.2]× [−1.2; 1.2]× [−1.2; 1.2]× [−0.4; 0.4]× [−0.4; 0.4]). The cost
function approximation tolerance is chosen as ε̄(Z0) = max(ε̄a, ε̄r min

z̃∈Z0

V ∗(z̃)),

where ε̄a = 0.005 and ε̄r = 0.1 are the absolute and the relative tolerances,
respectively. The partition has 5512 regions and 23 levels of search. Totally,
33 arithmetic operations are needed in real-time to compute the control in-
put (23 comparisons, 5 multiplications and 5 additions).

Further, an unconstrained LQR is designed, which is used in a neighbor-
hood of the origin. For this purpose, consider the extended linear system,
where an integral error is added to the linear ARX model (48):

y(t + 1) = 0.7704y(t) + 0.0539ue(t) (51)

yint(t + 1) = yint(t) + Tsy(t) (52)
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Here, ue(t) ≡ u(t)− u∗
st. Thus, we obtain the following system:

z̃e(t + 1) = Ãez̃e(t) + B̃eue(t) , (53)

which is characterized with regressor vector z̃e(t) = ye(t) = [y(t), yint(t)] and
matrices Ãe = [ 0.7704 0

Ts 1 ] and B̃e = [ 0.0539
0 ]. The computed LQR law for the

system (53) is:

ue = −Kz̃e = −k1y − k2yint , where K = [0.7994, 0.0069] (54)

This control law solves the optimization problem (32) with weighting matrices
Qe = diag{10, 0.0005}, Re = 10.

Then, the explicit dual-mode controller for the pH maintaining system
is defined according to (42) with Γ2 ≡ Γ1 = {z̃ ∈ R

q | − γ1 ≤ z̃ ≤ γ1},
γ1 = [0.2 0.6 0.7 0.4 0.4].

Table B.1 shows statistics about the performance decrease εV as well as
the error εu in the control input with the approximate explicit BB-NMPC
controller, based on simulations for a set of initial regressor vectors z̃i =
[y(t), y(t− 1), y(t− 2), u(t− 1), u(t− 2)], i = 1, 2, ... , 7776. The errors εV

and εu are computed as the relative deviations (measured in percentage) of

the sub-optimal cost function and control input value (respectively, V̂ (z̃) and
û(z̃)) from the optimal ones (respectively, V ∗(z̃) and u∗(z̃)):

εV =
V̂ (z̃)− V ∗(z̃)

Vmax

× 100% , εu =
|û(z̃)− u∗(z̃)|
umax − umin

× 100% (55)

In (55), Vmax = max
i∈{1,2, ... ,7776}

V ∗(z̃i).

In order to study the robustness of the explicit dual-mode controller
against model inaccuracies, its performance is simulated in closed-loop with
the first-principles model (44)–(45). Further, it is assumed that there are
persistent disturbances in the acid and the buffer flow rates, which have the
following values Q̃1 = 16.8 [ml/s], Q̃2 = 0.53 [ml/s] (different from the nom-
inal values Q∗

1 = 16.6 [ml/s], Q∗
2 = 0.55 [ml/s]). In addition to the explicit

dual-mode controller which maintains the pH on the required set point, a
second controller (an LQR) is applied, which keeps the liquid level h1 on
the nominal value h∗

1 = 14 [cm] by manipulating the exit flow rate Q4. The
obtained trajectories of the control input u and the output variable y are
shown in Figure B.4, while the trajectories of the exit flow rate Q4 and the
liquid level h1 are depicted in Figure B.5.
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It can be seen from Figure B.4 that the output variable is steered to the
origin despite of the presence of persistent disturbances and the control input
achieves a new equilibrium value ũst = 0.2380 (recall that the equilibrium
value corresponding to the nominal model parameters is u∗

st = 0.1732). It
would be necessary to distinguish how the exact NMPC and the approximate
explicit NMPC trajectories in Figures B.4 and B.5 are obtained. The exact
NMPC response is computed by solving at each time instant of an open-
loop NMPC problem formulated for the first-principles model (44)–(45). In
contrast, the approximate explicit NMPC solution is first computed off-line
as an approximation to problem P1, in which the NN ARX model by itself
represents another approximation. Then, its performance is simulated in
closed-loop with the first-principles model (44)–(45). Thus, the performance
degradation far from the origin is due to the approximations in the model
and in the NMPC solution, while near the origin it is related to the use of
LQR (pursuing an offset-free response) which differs from the exact NMPC
(where no integral action is taken). It also should be noted that the re-
sponse depicted in Figures B.4 and B.5 has a typical amount of performance
degradation being representative for other initial conditions and scenarios.

6. Conclusions

In this paper, an approximate mp-NLP approach to explicit solution of
output-feedback NMPC problems for constrained nonlinear systems, based
on black-box models, is developed. In particular, neural network ARX mod-
els are considered, but the approach can be easily applied to nonlinear sys-
tems modelled by other types of black-box models. The explicit controller
employs a dual-mode control concept in order to avoid the steady state offset.
The approach is illustrated by designing an explicit dual-mode controller for
a pH maintaining system. Simulation results show that the dual-mode con-
trol concept achieves a strict regulation of the output variable to the origin.
The off-line computational complexity with the suggested approach could be
circumvented by the application of parallel processing techniques [36].
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Appendix A. First-principles model of the pH maintaining system

The dynamic model of the pH maintaining system is derived using con-
servation equations and equilibrium relations [31]. The model also includes
hydraulic relationships for the tank outlet flows. Modeling assumptions in-
clude perfect mixing, constant density, and complete solubility of the ions
involved. The model is presented briefly below according to [31].

The chemical reactions for the system are:

H2CO3 ←→ HCO−
3 + H+ (A.1)

HCO−
3 ←→ CO=

3 + H+ (A.2)

H2O ←→ OH− + H+ (A.3)

The corresponding equilibrium constants are:

Ka1 =
[HCO−

3 ][H+]

[H2CO3]
, Ka2 =

[CO=
3 ][H+]

[HCO−
3 ]

, Kw = [H+][OH−] (A.4)

The chemical equilibria is modelled by defining two reaction invariants for
each of the streams Qi, i ∈ {1, 2, 3, 4} [31]:

Wai = [H+]i − [OH−]i − [HCO−
3 ]i − 2[CO=

3 ]i (A.5)

Wbi = [H2CO3]i + [HCO−
3 ]i + [CO=

3 ]i (A.6)

The invariant Wa is a charge related quantity, while Wb represents the con-
centration of the CO=

3 ion. The pH can be determined from Wa and Wb using
the following relations [31]:

Wb

Ka1

[H+]
+ 2Ka1Ka2

[H+]2

1 + Ka1

[H+]
+ Ka1Ka2

[H+]2

+ Wa +
Kw

[H+]
− [H+] = 0 (A.7)

pH = − log([H+]) (A.8)
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In [31], a simplified model of the pH maintaining system is developed, where
the dynamics of the pH transmitter and the flow dynamics of tank T2 are
neglected. The mass balance on tank T1 yields:

A1
dh1

dt
= Q1e + Q2 + Q3 −Q4 , (A.9)

where h1 is the liquid level and A1 is the cross-sectional area of tank T1. The
exit flow rate Q4 is modelled as:

Q4 = Cv(h1 + l)s , (A.10)

where Cv is a constant valve coefficient, s is a constant valve exponent, and l
is the vertical distance between the bottom of tank T1 and the outlet for Q4.
By combining mass balances on each of the ionic species in the system, the
following differential equations for the effluent reaction invariants Wa4 and
Wb4 are derived [31]:

A1h1
dWa4

dt
= Q1e(Wa1 −Wa4) + Q2(Wa2 −Wa4) + Q3(Wa3 −Wa4)(A.11)

A1h1
dWb4

dt
= Q1e(Wb1 −Wb4) + Q2(Wb2 −Wb4) + Q3(Wb3 −Wb4) (A.12)

Based on the above relations, a state space model of the pH maintaining
system is obtained by defining the following state, input and output variables:

x = [Wa4 Wb4 h1]
T , u = Q3 , y = pH (A.13)

The state space model has the form [31]:

ẋ = f̃(x) + g̃(x)u (A.14)

c(x, y) = 0 , (A.15)

where:

f̃(x) =





Q1(Wa1−x1)+Q2(Wa2−x1)
A1x3

Q1(Wb1−x2)+Q2(Wb2−x2)
A1x3

Q1−Cv(x3+l)s+Q2

A1



 , g̃(x) =




Wa3−x1

A1x3
Wb3−x2

A1x3
1

A1



 (A.16)

c(x, y) = x1 + 10y−14 − 10−y +
x2(1 + 2× 10y−pK2)

1 + 10pK1−y + 10y−pK2
(A.17)
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The relation between the constants Ka1, Ka2 in (A.7) and the constants K1,
K2 in (A.17) is:

Ka1 = 10−pK1 , Ka2 = 10−pK2 , p > 0 . (A.18)

The parameters of the model (A.14)–(A.18) are given in [31].
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Table B.1: The approximation errors for the approximate explicit BB-NMPC
controller.
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Figure B.1: Scheme of the pH maintaining system.

Figure B.2: Response of the NN model to the excitation signal used for
identification (top) and to the excitation signal used for validation (bottom).

Figure B.3: Validation of the NN ARX and the linear ARX models. The
dotted curve is with the NN model (46)–(47), the solid curve is with the lin-
ear ARX model (48), and the dashed curve is with the first-principles model
(44)–(45). Constant control input signal u = u∗

st is used as an excitation
signal.

Figure B.4: Control input u (top) and output variable y (bottom) obtained
with the explicit dual-mode controller in closed-loop with the first-principles
model (44)–(45). The solid curves are with the approximate explicit BB-
NMPC and the dotted curves are with the exact BB-NMPC.

Figure B.5: The exit flow rate Q4 (top) and liquid level h1 (bottom). The
solid curves are with the approximate explicit BB-NMPC and the dotted
curves are with the exact BB-NMPC.
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Table B.1:
Error in cost function Error in control input

εV , % εu, %
Average 0.068 0.991
Maximal 5.219 9.089
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