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Abstract

Gaussian process (GP) models form an emerging methodology for modelling
nonlinear dynamic systems which tries to overcome certain limitations inherent
to traditional methods such as e.g. neural networks (ANN) or local model
networks (LMN).

The GP model seems promising for three reasons. First, less training param-
eters are needed to parameterize the model. Second, the variance of the model’s
output depending on data positioning is obtained. Third, prior knowledge e.g.
in the form of linear local models can be included into the model. In this paper
the focus is on GP with incorporated local models as the approach which could
replace local models network.

Much of the effort up to now has been spent on the development of the
methodology of the GP model with included local models, while no application
and practical validation has yet been carried out. The aim of this paper is
therefore twofold. The first aim is to present the methodology of the GP model
identification with emphasis on the inclusion of the prior knowledge in the form
of linear local models. The second aim is to demonstrate practically the use of
the method on two higher order dynamical systems, one based on simulation
and one based on measurement data.

1. Introduction

Identification of nonlinear dynamical systems from measured data has re-
ceived significant attention in the last two decades. Artificial neural networks
(ANN) and fuzzy logic models can be viewed as universal approximators. The
main practical disadvantages of these methods are (Johansen et al. (2000)):

• the lack of transparency (model structure does not reflect the physical
properties of the system) and
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• the curse of dimensionality.

Rather than struggling with a global model of the system one can employ
a network of (simple) local models wherein each model describes some partic-
ular operating region. Such an approach is referred to as the Local Models
Network (LMN, Murray-Smith and Johansen (1997)). The global description
of the process is then obtained by blending the responses of the local models.†

The relative importance of each local model is expressed through the values
of validity functions and depends on the current system’s state in the form of
scheduling variables – usually a subset of model’s regressors.

The number of unknown parameters in such an LMN is typically smaller than
in an ANN with comparable quality of fit. However, some of the inconveniences
still related to LMN are (Gregorčič and Lightbody (2003b); Murray-Smith et al.
(1999); Johansen et al. (2000)):

• the problem of describing off-equilibrium dynamics,

• global/local optimization issue and

• scheduling vector selection.

The problem of modelling off-equilibrium dynamics (Johansen et al. (2000);
Murray-Smith et al. (1999); Gregorčič and Lightbody (2003b)) with local models
originates in a system’s “tendency” towards equilibrium. As a consequence there
is usually a lack of measured data in the regions away from equilibrium, which
makes the construction of valid local models for those regions rather difficult.
This problem can be highlighted e.g. in process industries, where a lot of data
can be taken only in particular operating regions of the system so that only
those regions can be satisfactorily modelled with local models. For the rest of
the tentative operating regions the lack of data prevents the construction of
valid local models.

Two approaches to LMN parameters optimisation are possible (Gregorčič
and Lightbody (2003b)):

• global learning approach, where all the LMN parameters are optimised
using all identification data in a single regression operation and

• local learning approach, where the parameters for each local model rep-
resenting corresponding subspace are estimated separately using corre-
sponding data.

LMN optimisation with global learning approach usually provides globally bet-
ter fit as the local model parameters in off-equilibrium regions are used to in-
crease the level of validity of associated local models, but these parameters no
longer represent the system’s local dynamics (Murray-Smith et al. (1999)).

†Another possible approach is to blend the parameters of the local models instead, see e.g
Gregorčič and Lightbody (2003b), but here we will resort to LMN with blended outputs.
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When in contrast a local learning approach is used, the local models’ param-
eters do represent local dynamical behaviour which results in more transparent
local models. Such models are more applicable to use in analysis and control
design. Their drawback is that they are valid in smaller operating regions, which
results in non-modelled regions of the system, leading again to the problem of
describing off-equilibrium dynamics.

The problem of smaller validity regions can be eluded using a parsimonious
scheduling vector, see e.g. Johansen et al. (2000). This extends the validity of
the local models but the result of blending two local models far away from equi-
librium can be non-smooth or even discontinuous (Gregorčič and Lightbody
(2003b)), possibly leading to stability problems in control applications (Gre-
gorčič and Lightbody (2003b)). Also, transparency of individual local models
is lost. More on the LMN approaches to system identification can be found e.g.
in Murray-Smith and Johansen (1997) and more on the problems accompany-
ing this approach in Johansen et al. (2000), Murray-Smith et al. (1999) and
Gregorčič and Lightbody (2003b).

* * * * *

In this paper the focus will be on Gaussian process models (Williams (1998);
Gibbs (1997); MacKay (2003); Rasmussen (1996)), an emerging branch of black-
box system identification aimed at alleviating the need for models with large
parametrization, e.g. ANN.

In order to avoid the problems above, GP models rely on an entirely different
approach. The GP model (Williams (1998)) smooths the information given as
the training data. The output is predicted by weighting targets with respect to
distance between training and test input.

The result of prediction for any given vector input‡ is a Gaussian probability
distribution of the output, expressed by its mean and variance. This is a result
of assuming prior knowledge on the distribution of individual model predictions.
It means that the most probable value of the output is given as the mean value
but with smaller possibilities the value of the output can be on either side of
the mean value, with variance describing this output probability distribution.
This assumption is not valid generally, but it can be applied often as an approx-
imation of the usually unknown distribution of individual model predictions. In
this context the variance is the measure of confidence in the predicted mean
value of the output. A higher variance value represents smaller confidence in
the predicted output and vice versa. In the GP model this confidence measure
depends not only on the variance of the parameters, as e.g. in ANN, but also
on the position of training data in the input space.

Optimization of the GP model’s parameters is the most time consuming part
of identification. Although the number of hyperparameters that need to be op-
timized in the GP model is small compared to ANN, the computational burden

‡Input here means the values of corresponding input regressors, i.e. data points not signals.
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associated with optimization rises fast with the number of training points (Gibbs
(1997)). Much of the computational burden can be saved with the introduction
of local models in the GP model. A local model, typically parameterized with
only few parameters, can successfully describe a subset of training points reflect-
ing the local dynamics of the system (Solak et al. (2003)). Thus introduction
of local models into the GP model can result in reduced computational burden
associated with the optimization of hyperparameters. Some other methods to
reduce computational burden are discussed in Kocijan et al. (2005).

When comparing the GP model with incorporated local models to LMN
several benefits of the GP model are noticed. Some typical LMN problems,
e.g. off-equilibrium dynamics, global/local optimization issue and scheduling
vector selection, are avoided and also confidence in the model’s prediction is
given using the GP model.

Most of the research related to dynamic systems identification with the GP
model with incorporated LM so far has been focused on algorithm synthesis.
Surprisingly no application to plant data obtained by measurements has been
reported so far. The examples used to illustrate the performance are restricted to
the simulated first order dynamic systems (Solak et al. (2003); Leith et al. (2002);
Kocijan and Leith (2004)) and there are no published results on identification
of higher order dynamic systems.

The purpose of this paper is twofold; firstly, to review the methodology of
the dynamic systems identification with the GP model with incorporated local
models in a consistent manner and to illustrate it with an example. Secondly,
the first attempt to apply the methodology on a real process is described. The
encouraging results are believed to promote further applications.

The paper is organized as follows. In the Section 2 the fundamentals of GP
modelling are presented. The problem is stated and dynamic system identifica-
tion is sketched in Section 3, where also linear local models are introduced and
the evolution of the GP model with incorporated local models is described. The
identification method is first demonstrated on a simulated second order nonlin-
ear dynamic system example in Section 4. Finally, in Section 5 the identification
method is applied on measurement data when identifying the laboratory pilot
plant. The last section emphasises the main results and concludes the paper.

2. Modelling with Gaussian processes

The Gaussian process is a Gaussian random function, fully described by its
mean and variance. Gaussian processes can be viewed as a collection of random
variables f(xi) with joint multivariate Gaussian distribution: f(x1), . . . , f(xn) ∼
N (0,ΣΣΣ). Elements Σij of covariance matrix ΣΣΣ are covariances between values of
the function f(xi) and f(xj) and are functions of corresponding arguments xi

and xj : Σij = C(xi,xj). Any function C(xi,xj) can be a covariance function,
providing it generates a nonnegative definitive covariance matrix ΣΣΣ.

Certain assumptions about the process are made implicitly with the covari-
ance function selection. The stationarity of the process results in the value
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of covariance function C(xi,xj) between inputs xi and xj depending only on
their distance and being invariant to their translation in the input space, see
e.g. MacKay (2003). Smoothness of the output reflects in outputs f(xi) and
f(xj) having higher covariance when inputs xi and xj are closer together. The
common choice (e.g. Williams (1998); Neal (1996); Kocijan et al. (2005)) for
covariance function, representing these assumptions, is:

C(xi,xj) = Cov[f(xi), f(xj)] = v exp

[
−1

2

D∑
d=1

wd(x
d
i − xd

j )
2

]
(1)

where D is a length of vector x and ΘΘΘ = [w1, . . . , wD, v]T is a vector of parame-
ters called hyperparameters.§ Hyperparameter v controls the magnitude of the
covariance and hyperparameters wd represent the relative importance of each
component xd of vector x.

The GP model fits nicely into the Bayesian modelling framework. The idea
behind GP modelling is to place the prior directly over the space of functions
instead of parameterizing the unknown function f(x) (MacKay (2003)). The
simplest type of such prior is Gaussian. Consider the system

y(k) = f(x(k)) + ϵ(k) (2)

with white Gaussian noise ϵ(k) ∼ N (0, v0) with variance v0 and the vector
of regressors x(k) from operating space RD. The GP prior with covariance
function (1) with unknown hyperparameters is put on the space of functions
f(.). Within this framework we have y1, . . . , yN ∼ N (0,K) with K = Σ+ v0I,
where I is N ×N identity matrix.¶

Our task is to find the predictive distribution of yN+1 corresponding to a
new given input xN+1 based on a set of N training data pairs {xi, yi}Ni=1. For
the collection of random variables (y1, . . . , yN , yN+1) it can be written:(

y
yN+1

)
∼ N (0,KN+1) (3)

with covariance matrix

KN+1 =


 K

 k(xN+1)


[
k(xN+1)

T
] [

k(xN+1)
]

 (4)

§The parameters of a Gaussian process are called hyperparameters due to their close rela-
tionship to the hyperparameters of a neural network (Gibbs (1997)).

¶When assuming different kind of noise the covariance function should be changed appro-
priately, e.g. Gibbs (1997).
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where y = [y1, . . . , yn]
T is an N × 1 vector of training targets. This joint

probability can be divided into a marginal and a conditional part. The marginal
term gives us the likelihood of the training data: y|X ∼ N (0,K), where X is
the N ×D matrix of training inputs.

We need to estimate the unknown hyperparameters v, w1 . . . wn of the covari-
ance function (1), as well as the noise variance v0. This is done via maximization
of the log-likelihood

L(ΘΘΘ) = log(p(y|X)) =

= −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π) (5)

with the vector of hyperparameters ΘΘΘ = [w1 . . . wD, v, v0]
T (parameter v0 is

included in the vector of hyperparameters ΘΘΘ from now on) and N × N train-
ing covariance matrix K. The optimization requires the computation of the
derivative of L with respect to each of the parameters:

∂L(ΘΘΘ)

∂Θi
= −1

2
trace

(
K−1 ∂K

∂Θi

)
+

1

2
yTK−1 ∂K

∂Θi
K−1y (6)

Here, it involves the computation of the inverse of the N ×N covariance matrix
K at every iteration, which can be computationally demanding for large N . An
alternative method for parameters optimization is to put a Gaussian prior on
the parameters and compute their posterior probability (Rasmussen (1996)).

Given that the hyperparameters are known, the prediction of the GP model
at the input xN+1 can be obtained. The conditional part of (3) provides the
predictive distribution of yN+1:

p(yN+1|y,X,xN+1) =
p(y, yN+1)

p(y|X)
(7)

It can be shown (e.g. Gibbs (1997)) that this distribution is Gaussian with
mean and variance:

µ(yN+1) = k(xN+1)
TK−1y (8)

σ2(yN+1) = k(xN+1)− k(xN+1)
TK−1k(xN+1) + v0 (9)

where k(xN+1) = [C(x1,xN+1), . . . , C(xN ,xN+1)]
T is theN×1 vector of covari-

ances between training inputs and the test input and k(xN+1) = C(xN+1,xN+1)
is the autocovariance of the test input.

Vector k(xN+1)
T K−1 in (8) can be interpreted as a vector of smooth-

ing terms which weights training outputs y to make a prediction at the test
point xN+1. If the new input is far away from the data points, the term
k(xN+1)

T K−1 k(xN+1) in (9) will be small, so that the predicted variance
σ2(xN+1) will be large. Regions of the input space, where there are few data
or where the data have high complexity or are corrupted with noise, are in this
way indicated through higher variance.
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3. Dynamical system identification

3.1. Problem statement

Consider the autoregressive model of a L-th order dynamical system (2),
where the vector of regressors x(k) is composed of previous values of outputs y
and control inputs u up to a given lag L, D = 2L :

x(k) = [y(k− 1), y(k− 2), . . . , y(k−L), u(k− 1), u(k− 2), . . . , u(k−L)]T (10)

where (k − i) denotes the appropriate time sample.
The use of the GP method for dynamical systems identification can be found

in (Kocijan et al. (2005); Leith et al. (2002)), here only the main results will be
recalled.

One way to do n-step ahead prediction is to make iterative one-step ahead
predictions up to the desired step n whilst feeding back the mean of the predicted
output. This approach is similar to that used in modelling dynamic systems with
ANN and is illustrated in Figure 1. The drawback of this approach is that the
information about the uncertainty of the output is neglected. The simulation
of the GP model, where complete output distribution is fed back, is presented
in Kocijan and Girard (2005) and Girard (2004).

[Insert Figure 1 about here]

To avoid problems using the general GP dynamic models cited in the Intro-
duction, we wish to concentrate here on the modelling of dynamic system (2)
using a Gaussian process model with incorporated linear local models. With
this model we would like to be able to make n-step ahead prediction.

3.2. Local models

Let us assume that the point xi from (10) is the equilibrium point of the
stable, generally nonlinear system (2). We would like to present the system’s
dynamical behaviour in the vicinity of point xi with approximation in the form
of a linear local model Mi:

y(x) = f(xi) + θθθTi (x− xi) (11)

where

θθθTi =
[
aTi ,b

T
i

]
(12)

ai =

[
∂f

∂yk−1
, · · · , ∂f

∂yk−L

]T
i

(13)

bi =

[
∂f

∂uk−1
, · · · , ∂f

∂uk−L

]T
i

(14)
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θθθi are parameters of linear local model Mi centered in xi.
Two different types of information are used to construct linear local model

Mi:

• functional values (functional observation in Solak et al. (2003)) – values
of the system’s output f(xi) in the centre of the model xi and

• derivatives (derivative observation in Solak et al. (2003)) – vector of partial
derivatives of system’s output f(x) with respect to components xk

i of the
vector of regressor xi:

θθθi =
[

∂f
∂yk−1

, · · · , ∂f
∂yk−L

, ∂f
∂uk−1

, · · · , ∂f
∂uk−L

]T
i
.

Local models can be derived using any standard linear regression method
that gives consistent and unbiased solution, see e.g. Ljung (1999).

3.3. Incorporation of local models into the GP model

Since differentiation is a linear operation, the derivative of a GP remains a
GP (Solak et al. (2003)). Consequently, within the Gaussian process modelling
framework, the derivatives can be used together with functional values, thus
providing the way to include linear local models into the GP model. Some
results on this topic can be found in Solak et al. (2003), Leith et al. (2002),
Kocijan and Leith (2004). The GP model with incorporated local models will be
referred to as the LMGP (Local Models incorporated into Gaussian Processes)
model.

To include derivatives into the GP model only the covariance function must
be changed appropriately. When using the covariance function (1) between two
data points, one can find that the covariance function between a data point and
derivative is:

Cov[
∂f(xi)

∂xd
i

, f(xj)] = −vwd(x
d
i − xd

j ) exp

[
−1

2

D∑
d=1

wd(x
d
i − xd

j )
2

]
(15)

In the same manner the covariance function between two derivatives reads:

Cov[
∂f(xi)

∂xd
i

,
∂f(xj)

∂xe
j

] = vwe(δe,d − wd(x
e
i − xe

j)(x
d
i − xd

j )) exp

[
−1

2

D∑
d=1

wd(x
d
i − xd

j )
2

]
(16)

where δe,d is the Kronecker operator between indices d and e:

δe,d =

{
1, e = d
0, otherwise

(17)
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3.4. Composition of the LMGP model

The problem of off-equilibrium dynamics dictates the following approach
to LMGP model composition. Regions of the system, where enough data is
given for local models identification — usually in the vicinity of the equilibrium
curve — are modelled with local models. Regions of the system, lacking enough
data to construct local models, are modelled with individual samples of the
system’s response. This knowledge is together incorporated into the GP model
as illustrated in Figure 2 for the first order example. The GP model “smooths”
this information and is able to make robust prediction of the system’s response
even where the data describing the system is sparse. Another possible approach
is to partition the operational space RD into several regions and model each
region with its own GP model (Gregorčič and Lightbody (2003a)).

[Insert Figure 2 about here]

With the introduction of the local models into the GP model the derivatives
are added to the vector of targets y in equation (8), constituted only of function
observations. The values of the regressors corresponding to included derivatives
are added to the input matrix X.

Given neq local models and noeq samples of the system’s response, describing
the system’s behaviour, one of the possible ways to compose input/target data
X/y for training of hyperparameters is:

X =


Xoeq

Xeq

Xeq

...
Xeq

 y =


Yoeq1

Yeq1

θθθ1

...

θθθD

 (18)

Xoeq = [Yoeq Uoeq] (19)

Xeq = [Yeq Ueq] (20)

where

Yoeq1 is a noeq × 1 target vector of the system’s out-of-equilibria response
points;

Xoeq is a noeq ×D input matrix of appropriate regressors corresponding
to target vector Yoeq1;

Yeq1 is a neq×1 target vector of the system’s response points in the centres
of local models;

Xeq is a neq ×D input matrix of appropriate regressors corresponding to
target vector Yeq1;

θθθ1 is a neq × 1 vector of derivatives ∂f
∂yk−1

at input regressor matrix Xeq

(vector of derivatives ∂f
∂yk−1

for all neq incorporated local models);
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θθθL is a neq × 1 vector of derivatives ∂f
∂yk−L

at input regressor matrix Xeq;

θθθL+1 is a neq×1 vector of derivatives ∂f
∂uk−1

at input regressor matrix Xeq;

θθθD is a neq × 1 vector of derivatives ∂f
∂uk−L

at input regressor matrix Xeq;

Again as in (10), L is the order of the system and D = 2L is the number of re-
gressors. Subscript oeq denotes data representing out-of-equilibrium behaviour
(response) and subscript eq denotes data representing equilibrium behaviour of
the system in the form of local models.

Let n = neq + noeq be the number of functional data (input-target data
points) where neq is the number of identified local models to be incorporated
into the GP model. For the L-th order system there exist in total D vectors of
derivatives θθθk, k = 1, . . . , D with length neq – one for each input regressor xi.
Thus the size of the input matrix X is (n+D · neq)×D and the length of the
target vector y is (n+D · neq).

When training data X/y is composed as presented, the covariance matrix
K, vector of covariances between test input and training inputs k(x) and auto-
covariance of test input k(x) need to be:

K =



[
C(xi,xj)

] [
Cov[f(xi),

∂f(xj)

∂xe
j

]
]
e=1

. . .
[
Cov[f(xi),

∂f(xj)

∂xe
j

]
]
e=D[

Cov[
∂f(xi)

∂xd
i

, f(xj)]
]
d=1

[
Cov[

∂f(xi)

∂xd
i

,
∂f(xj)

∂xe
j

]
]
d=1,e=1

. . .
[
Cov[

∂f(xi)

∂xd
i

,
∂f(xj)

∂xe
j

]
]
d=1,e=D

.

..
.
..

.

..
.
..[

Cov[
∂f(xi)

∂xd
i

, f(xj)]
]
d=D

[
Cov[

∂f(xi)

∂xd
i

,
∂f(xj)

∂xe
j

]
]
d=D,e=1

. . .
[
Cov[

∂f(xi)

∂xd
i

,
∂f(xj)

∂xe
j

]
]
d=D,e=D


(21)

k(x) =



[
C(xi,x)

]
[
Cov[∂f(xi)

∂xd
i

, f(x)]
]
d=1

...[
Cov[∂f(xi)

∂xd
i

, f(x)]
]
d=D


(22)

k(x) =
[
C(x,x)

]
= v (23)

respectively.
The information about the system’s behaviour in the vicinity of the point xi,

that was presented as a (large) set of functional values as described in Section 2
and in Kocijan et al. (2005), Kocijan et al. (2003), is now compressed in the
parameters of linear local model Mi. This way the behaviour of the system
around each equilibrium point is represented with fewer data points, which can
effectively reduce the computational burden.

We have to be careful to ensure that all local models are formed using the
same state representation. Values of regressors (10) are used as state coordinates
in our case, but other choices are possible as well.
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Input data can contain noise information. Where this information is avail-
able it is added to corresponding elements of covariance matrix (Solak et al.
(2003)); where not, the parameter describing noise variance is trained as stated
in Section 2. Prediction of the LMGP model is given with equations (8) and
(9).

Dynamic response of the LMGP model in off-equilibrium regions is repre-
sented with data points (response samples) and therefore represents global and
not local dynamical behaviour in these regions. On the other hand the incor-
porated local models on the equilibrium curve encapsulate the system’s local
dynamics and as the parameters of these local models do not change with opti-
misation, the dynamics of the system remains well modelled. The LMGP model
does not have a scheduling variable and also does not suffer very much from par-
titioning as the local models need only be put over the equilibrium curve in the
necessary density.

Beside not suffering from some of the problems of the LMN approach, the
confidence in the LMGP model’s output, depending on the input data, is also
provided. This confidence can be seen as the criterion for model quality in
corresponding region of the system.

4. Illustrative example

In this section the GP model with incorporated LM approach is presented
on the identification of the following discrete nonlinear second-order dynamical
system (Matko et al. (2000)):

y(k) = 0.893y(k − 1) + 0.0371y2(k − 1)− 0.05y(k − 2)−
−0.05u(k − 1)y(k − 1) + 0.157u(k − 1) + ϵ(k) (24)

where the output is corrupted with white Gaussian noise ϵ(k) ∼ N (0, σ2) with
variance σ2 = 4 · 10−4.

Our task will be to model the region bounded with input spanning between
umin = −2 in umax = 4 for the purpose of n-step ahead prediction. The statical
characteristic of the system (24) in the interested region is depicted in Figure 3.
The nonlinearity of the system is also shown in Figure 4, where the system’s
response to the alternating step signal with growing magnitude is presented.

[Insert Figure 3 about here]

[Insert Figure 4 about here]

4.1. Identification

As stated in Section 3.4, two different types of data represent the unknown
system in the LMGP model:
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• local models, describing the system’s dynamics in their centers and vicin-
ity, with centers lying on the equilibrium curve and

• samples of the system’s response, which describe the system regions not
described with LM (usually transient regions between equilibrium states).

These two different representations require two different measurement types.
For obtaining the off-equilibrium data, which describe the system’s behaviour

in transient regions, the system must be excited with such input that samples
of regressors cover as much operating space RD as possible. In our example
a pseudo-random binary signal (PRBS) was used as an excitation signal, ex-
cept that the magnitude of the input could occupy any random value between
umin and umax when changed. Training points for the LMGP model were later
sampled from input and system’s response.

Behaviour in the vicinity of the equilibrium curve is modelled with local
models. To obtain the local model’s parameters, the system is first driven into
the equilibrium point with a static input signal. After the settlement of the
system’s response, PRBS with small magnitude ∆U is added to the input to
stimulate the system’s dynamic response around the equilibrium point.

To obtain equilibrium dynamics of the system (24), five approximately evenly
distributed local models on the equilibrium curve were identified. Their centers
on the equilibrium curve can be seen in Figure 3. PRBS signal with switching
time Tsw = 4 steps and the magnitude of perturbation ∆U = 0.3 was selected so
that local models can be identified despite the noise. The models were identified
using the Instrumental Variables(IV) algorithm (Ljung (1999)).

An example of the identified local model response in equilibrium point
(Ueq, Yeq) = (0.415, 0.4) is presented in Figure 5, and it can be seen that the
model perfectly captures the dynamics of the system. It should be however
taken into account that here the identified system is ideal and of known order.

[Insert Figure 5 about here]

Each of five local models contributed one functional value (value of system’s
response at equilibrium point) and four derivatives (one for each regressor) to
the training data. Thus together with fourteen points, sampled out of the sys-
tem’s off-equilibrium response, the LMGP model was formed using 39 training
points. The estimates of local models’ parameters variances, gained through
identification, were added to corresponding elements of the covariance matrix
(21).

4.2. Validation

The acquired LMGP model was validated with data not used in identifica-
tion. Two different inputs for simulation were used, both with the same general
properties as the sampled identification input, i.e. switching time step Tsw = 4
and the range between umin = −2 and umax = 4:
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• validation signal 1, where the maximum change of the input signal was
limited, so that the model was moving through better modelled regions
and

• validation signal 2, where the change of the input was not limited and the
model moved through whole operating region.

The idea behind this choice is to better present the properties of the LMGP
model. The results of simulation where the input was validation signal 1 is
presented in Figure 6 and the corresponding simulation error with accompanying
95% confidence band of the the model’s prediction is shown in Figure 7. Note
that for illustration purposes these two figures represent only a segment of the
whole simulation result. The autocorrelation of the simulation error Φee and
the cross-correlation between input and simulation error Φue for simulation on
validation signal 1 can be seen in Figure 8. From Figures 6 to 8 it can deduced
that the description of system behaviour in off-equilibrium regions is satisfactory
enough, even though only fourteen samples of the system’s response were used.
The model could be further improved by adding more samples of the system’s
response to training data.

[Insert Figure 6 about here]

[Insert Figure 7 about here]

[Insert Figure 8 about here]

The segment of the result of simulation on validation signal 2 are depicted in
Figures 9 and 10, where predicted output together with 95% confidence band is
compared to system’s output and simulation error together with 95% confidence
measure are shown correspondingly. These results show another useful attribute
of the LMGP model. That is, the confidence in the prediction of the output
decreases where the particular region of the system is not modelled adequately,
which can be seen from Figure 10 when comparing the error and corresponding
variance of the prediction.

[Insert Figure 9 about here]

[Insert Figure 10 about here]

Also two quality measures (Kocijan et al. (2005)) were used on the results
of validation:
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• mean squared error

SE =
1

N

N∑
i=1

e2i (25)

and

• log-predictive density error (Girard (2004))

LD =
1

2N

N∑
i=1

(
log(2π) + log(σ2

i ) +
e2i
σ2
i

)
(26)

where ei = ŷi − yi is an error of the model’s simulation and σ2
i a predicted

variance of the model in i-th time step. The results of both quality measures
applied to validation signals can be seen from Table 1.

[Insert [Table] 1 about here]

In the LMGP model framework the three exposed problems of the LMN
approach have diminished influence. The system in off-equilibrium regions is
represented with data points and the interpolation is smooth as one of the
attributes of the GP model. The problem of changing the model’s local dynamics
properties to provide a better global fit was solved within the Gaussian processes
framework, i.e. the information describing system’s local dynamics does not
change with optimisation. The problem of scheduling vector selection drops out
as there is no scheduling vector. The problem of region partitioning is reduced
as the local models are put only on the equilibrium curve and not over the
whole operating region as in the case of LMN. Also the values of covariance
function hyperparameters can be used as an indication of the influence along
the corresponding regressor components.

5. Identification of a two tank system

In the previous section the identification of a discrete second-order system
with the LMGP model was presented. Here the results of the same identification
method will be presented for a laboratory pilot plant. Again the purpose of the
model is n-step ahead prediction.

5.1. Laboratory pilot plant and chosen subsection for identification

The flowsheet of the laboratory pilot plant’s unknown subsystem is presented
in Figure 11. The subsystem consist of two tanks, R1 and R2, connected with
flow paths, serving to supply liquid from the reservoir R0. The flow path from
reservoir R0 to tank R1 has a built-in pump P1, driven with a DC motor with
permanent magnet. The angular speed of the motor is controlled by the analog
controller. The time constant of the angular speed is very short compared to the
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time constants of the dynamics of the levels in the tanks, i.e. we can consider
no lag between the reference speed and the real one.

[Insert Figure 11 about here]

Flow is generated by varying the angular speed of the pump P1. The other
interesting part is the manual valve V 5, which is positioned on the path from
tank R2 to reservoir R0. It is partly open, so it enables liquid flow from tank
R2 back to reservoir R0. The capacity of the reservoir R0 is much greater than
the capacity of the tanks so that its level can be considered constant during the
operation.

Voltage on the motor, which represents the input into the system, drives the
pump P1. The pump generates flow from reservoir R0 to tank R1. Liquid flows
from tank R1 to tank R2 and from there back to reservoir R0 through ventil
V 5. The liquid level in tank R2 represents the output of the system and was
measured using capacity sensor.

5.2. Operating region, measurements and identification

The represented second order system is a single-input single-output system,
where voltage U on the DC motor of pump P1 is the input, and liquid level h2

in tank R2 is the output of the system. The static characteristic of the system’s
response is given in Figure 12. Besides the static nonlinearity, observed in
Figure 12, the system’s dynamics is nonlinear too.

[Insert Figure 12 about here]

The working region is restricted by height hmax = 60 cm of the tanks R1
and R2. The maximum voltage on P1 was fixed to Umax = 4 V by the trial and
error method, preventing the liquid level h1 from reaching the top hmax of the
tank R1. Sample time Ts = 10 seconds was chosen experimentally, so that the
dynamics of the system were satisfactorily modelled.

As in the previous section example, the LMGP model demands two different
types of measurements for two different types of incorporated information:

• measurements providing data for linear local model identification in dif-
ferent points on the statical characteristic (equilibrium curve) and

• measurements providing data to model the system in off-equilibrium re-
gions.

When identifying linear local models, the system was first brought to the
desired equilibrium point by the corresponding static input signal Ueq. Then
PRBS with magnitude ∆U (see Table 2 for values) and switching time Tsw =
20 s was added to it. An example of input and measured output signal for
working point (Ueq, Yeq) = (2.5 V, 16 cm) is given in Figure 13. Local models
were, as in Section 4, identified using the Instrumental Variables algorithm
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(Ljung (1999)). They were validated on the PRBS with the same characteristics
as, but a different sequence to, the signal for identification. An example of
identified local model’s response to the validation signal is given in Figure 13.

[Insert Figure 13 about here]

Three local models were identified. Their parameters, together with the
estimates of their standard deviations, are presented in Table 2. The second
order was chosen for the local models as the underlying first principle model
is of the second order. Higher order models were also tried, but increasing the
order did not contribute to an improvement of the model’s response. A discrete
linear local model, modelling the behaviour of the system in the vicinity of
working point (Ueq, Yeq), is described by parameters a1, a2, b1 and b2:

y(k) = −a1y(k − 1)− a2y(k − 2) + b1u(k − 1) + b2u(k − 2) (27)

where y is liquid level h2 and u is voltage U at appropriate time samples.

[Insert [Table] 2 about here]

A second type of measurement provided us with data describing the system
in off-equilibrium regions. Again input signals were realized as PRBS signals
where magnitude could occupy any value between Umin = 0.8 V and Umax =
4 V when changed. Two such signals were used, one for training and one for
validation. A part of the signal for validation can be seen in Figure 14.

[Insert Figure 14 about here]

Three local models obtained in equilibrium points and 68 samples from off-
equilibrium system’s response were incorporated into the LMGP model, result-
ing in 83 input/target training pairs. The estimates of local models’ parameters
variances, gained through identification, were added to corresponding elements
of the covariance matrix (21).

5.3. Validation

The simulation input signal for validation was different from the one for
identification. The results of the simulation of the trained LMGP model on the
part of the validation signal can be seen in Figure 15. The signals over the whole
time scale are again not shown for illustration purposes. Absolute error of the
model simulation together with predicted 95% confidence band is depicted in
Figure 16. In Figure 17 the autocorrelation of the simulation error and cross-
correlation on the whole validation signal between input and simulation error
is shown. The performance measure values for validation are SE = 0.26 and
LD = 3.5. These results show that the LMGP performance is moderately fine.
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[Insert Figure 15 about here]

[Insert Figure 16 about here]

[Insert Figure 17 about here]

6. Conclusions

The basic concepts of dynamical systems identification with the GP model
with incorporated local models were introduced in this paper. The method
was demonstrated on two dynamical systems — a nonlinear discrete second
order system and a laboratory pilot plant. To our knowledge these are the first
published results of the LMGP method used to identify a higher order system
and also the first results where the method was used to identify a system using
measured data. The result of the illustrative example identification showed that
method can be successful and the result of the plant identification proved the
method’s practical capability.

The advantages of the Gaussian process modelling method with incorporated
local models (LMGP method) over LMN concepts are:

• Equilibrium and off-equilibrium information describing the system is joined
transparently in the LMGP model.

• The description of the system’s behaviour does not change with optimiza-
tion as the data describing the system (local models, system’s response
samples) does not change.

• There is no problem of scheduling vector determination.

Beside avoiding some of the LMN problems, the additional bonus of the
method is that it gives confidence in its prediction based on the variance of
the parameters and the distribution of the training data in the input space.
Confidence can be viewed as the indicator of model validity region and used,
for example, in control of the identified system.

When comparing the LMGP model to the GP model, the advantage of the
former is that it provides the possibility to include prior knowledge in the form
of local models. This also results in possible reduction of the computational
burden, as local models can effectively substitute a larger set of training points
describing a nearby region of the system. The drawback of the method is the
partitioning of the operating space, though not to the same extend as in LMN,
because the local models are to be obtained in the equilibrium points only. This
problem originates in an unknown system to be identified, and is common to all
approaches where local models are used.

17



The future plans are to include the propagation of uncertainty into the
LMGP model and exploitation of the various potential applications of models
obtained with the presented method. Another interesting problem is systematic
data preprocessing and data fusion from large amounts of documented signals
available in industrial environments, e.g. the process industry.
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Figure 1: Simulation with repeated one-step-ahead prediction of a dynamical
model

Figure 2: Target data of LMGP model consist of local models and data
points – an illustration of the approach for first order system. Ovals represent
local models’ proximity regions and dots represent samples of off-equilibrium
system’s response.

Figure 3: Static characteristic of the second-order dynamical system
Figure 4: Response of the second-order dynamical system to a growing al-

ternate step input signal
Figure 5: Example of the identified local model response in equilibrium point

Yeq = 0.4
Figure 6: Simulation of identified LMGP model on validation signal 1
Figure 7: Absolute error of the LMGP model simulation on the validation

signal 1 together with 95% confidence band
Figure 8: Autocorrelation of the simulation error Φee (top) and cross-correlation

between simulation input and error Φue (bottom) on validation signal 1
Figure 9: Simulation of identified LMGP model on validation signal 2
Figure 10: Absolute error of the LMGP model simulation on the validation

signal 2 together with 95% confidence band
Figure 11: Process scheme of chosen subsystem of the plant
Figure 12: Static characteristic of the chosen subsystem of the plant
Figure 13: Example of the identified local model response at equilibrium

point Ueq = 2.5 V, Yeq = 16.0 cm
Figure 14: Validation signal for LMGP model of the plant
Figure 15: Comparison between LMGP two tanks model simulation and

plant response to the same input signal for validation
Figure 16: Absolute error of the two tanks LMGP model simulation on the

validation signal together with 95% confidence
Figure 17: Autocorrelation of the simulation error Φee (top) and cross-

correlation between simulation input and error Φue (bottom) on validation signal
for LMGP model of the plant
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Table 1: Two quality measures of simulation for validation for illustrative example (24),
namely mean square error SE (25) and log-predictive density error LD (26)

Valid. signal SE LD
1 1.8E-3 -1.00
2 3.2E-3 -0.47
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Table 2: (Ueq , Yeq) define i-th local model working point in (cm, V), −a1,−a2, b1, b2 are the
coefficients of the linear local model together with their standard deviations and ∆U is the
magnitude of PRBS in V in working point for LM estimation
Ueq Yeq −a1 −a2 b1 b2 ∆U
1.0 3.7 0.7573± 0.0699 −0.0580± 0.0532 0.2903± 0.0051 0.0704± 0.0248 0.4
2.0 9.2 0.8550± 0.0362 −0.0462± 0.0338 1.0203± 0.0348 0.9716± 0.0574 0.4
2.5 16.0 1.1594± 0.0186 −0.2912± 0.0174 0.7792± 0.0247 0.8767± 0.0384 0.2
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