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Abstract

A novel adaptive model-based predictive-control algorithm is proposed for
the control of stable nonlinear dynamic systems. The model of controlled dy-
namical system is a Gaussian process (GP) model. It is a probabilistic, nonpara-
metric, kernel, black-box model. An evolving GP-modelling method is used for
the online model identification. Model-based predictive control utilising such
a model results in an adaptive feedback control. The proposed control-method
features are illustrated on a simulation example.
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1. Introduction. The paper presents a novel approach of model-based pre-
dictive control (MPC) [1] in which the model of controlled system is an Evolving
system. The Evolving system is based on the probabilistic, nonparametric, ker-
nel, Gaussian process (GP) model. The main idea of Evolving GP model [2]
regarding the controlled system is the online adaptation to it, an input-output
representation of it, and probabilistic prediction of its output signal. Nonpara-
metric black-box modelling methods facilitate the modelling necessary for control
design by avoiding acquiring knowledge about the first principles behind the dy-
namics of controlled system if it is time-consuming.

In order to model a dynamical system, the GP model is represented as a
nonlinear autoregressive model with exogenous inputs (NARX) [3]. The corre-
sponding GP model identification is based predominantly on the input-output
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signal measurements of the system to be controlled. The GP-based NARX pre-
dicts the output signal value in next time step as a normally distributed random
variable that depends on delayed output and input signal values.

Online GP-model identification [2] follows the concept of evolving, i.e. self-
developing systems. From the point of view of control systems, online model
identification enables the MPC algorithm to be adaptive.

GP models for MPC control systems are described as input-output or state
space. The survey of GP-model control methods [4] provides an insight into
adaptive control with GP models.

The main contribution hereby is a novel nonlinear control of an input-output
dynamic system with adaptive and probabilistic MPC algorithm employing the
Evolving GP model. The closed-loop control performance will be demonstrated
along with some variations in illustrative example.

2. GP model and its evolving upgrade for dynamical systems mod-

elling. The Gaussian process [5] is an arbitrary collection of random variables
y with joint normal distribution p(y) = N (y|µ,K) with mean vector µ and co-
variance matrix K. The GP is determined by the mean function µ(z) and the
covariance function k(zi, zj) which both define an arbitrary collection of joint
random variables y from some input vectors z, zi, zj ∈ R

D. GP is suitable for
regression modelling: the regressors of an input vector z ∈ R

D affect the mean
and covariance function value, meanwhile each regressand value, i.e. the output
variable, is normally distributed with the mean and covariance at corresponding
regressors value. Provided some measurements of the regressand, the applica-
tion of the Bayes theorem tunes the model [5] according to the measurements.
Therefore, the prior model mean and covariance is set to the posterior mean
and covariance function in closed form. The posterior mean function µ′(z) and
covariance function k′(zi, zj) is given by:

µ′(z) = µ(z) + kT(z,Z0)K
−1
0 y0,(1)

k′(zi, zj) = k(zi, zj) − kT(zi,Z0)K
−1
0 k(zj ,Z0),(2)

where K0 is the covariance matrix of modelled prior covariances between the
corresponding measured regressands y0, and k(z,Z0) is a vector of prior covari-
ances between an arbitrary regressand y and the measured regressands yo with
corresponding regression vectors z ∈ Z0. The prior mean is hereby assumed to
zero, but the prior covariance function is additionally parametrized with a vector
of hyperparameters θ. A posterior GP model with optimal hyperparameters is
obtained with respect to the maximisation of the marginal likelihood p(y0|θ) or
its logarithm [5]:

(3) log (p(y0|θ)) = −
1

2
log(|K0|) −

1

2
y0

TK−1
0 y0 −

n

2
log(2π),

where n is the number of measurements.
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GP model is a kernel model and therefore fundamentally nonparametric as
the inference of posterior mean and covariance function is analytically defined
directly from data. The inference of posterior mean and covariance is computa-
tionally intensive as it requires the inverse of covariance matrix K0.

The problems of computational burden and numerical instability gave rise to
sparse GP modelling methods [6] which try to represent the complete dataset D
with a smaller set, also known as the active set DA, that retains as much infor-
mation as possible. The Evolving GP model [6] is the case when the sparse GP
modelling is configured for online application. It is inspired by Evolving systems
which are self-developing systems as it may update online the hyperparameters θ,
the active set DA, the choice of regressors inside z, and it may also reconfigure the
structure of prior covariance function of the GP model [6]. In this case, we restrict
to the use of Evolving GP for updating the hyperparameters θ and the active set
DA rather than updating all of the formerly listed. Let er = (µ′(zn)− yn) be the
residual of the new measurement yn with corresponding zn, ζ > 0 be a predefined
residual threshold, MDA

∈ N
+ be the desired active set size limit, f ∈ (0, 1] be

the forgetting factor, g(z) be the age of the regression vector z. The active set
and hyperparameters DA, θ∗ are updated online to D′

A, θ′∗ under the following
rules:

|er| > ζ =⇒ D′

A = DA ∪ {yn, zn} =⇒ θ′∗ = arg max
θ

[log(p(y0|θ))] ,(4)

∃{zm, ym} ∈ DA : k′(zm, zm)fg(zm) ≤ k′(zj , zj)f
g(zj),∀{zj , yj} ∈ DA,(5)

|DA| > MDA
=⇒ D′

A = DA \ {zm, ym},(6)

where the condition in (5) describes a linear independence test from [7] with
additional weight term in a form of exponential forgetting factor.

GP modelling framework is also suitable for modelling dynamical systems.
GP model may be used as nonlinear autoregressive model with exogenous inputs
(NARX) where the regressors are taken from arbitrarily delayed input signal u

and output signal y [3]:

(7) y(k) = f (y(k − 1), . . . , y(k − l), u(k − 1), . . . , u(k − m)) + ǫ(k),

where ǫ(k) is the output signal noise and k is the sampling time instant. All
regressors at the time instant k are combined into a regression vector z(k) =
[y(k−1), . . . , y(k− l), u(k−1), . . . , u(k−m)]T. Note that z(k) may contain noise
from the past regressand values which is discussed in [8]. In this case the signal
noise is assumed to be not high enough to affect the training of GP model.

In deterministic NARX modelling the multi-step prediction is obtained it-
eratively with single-step prediction and so depends on deterministic past pre-
dictions, meanwhile the GP modelling framework enables the proper simulation
approach to propagate the uncertainty of past predictions. The naive approach
is to not propagate the uncertainty at all and take the expectation of predicted
random variable instead.
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3. Probabilistic adaptive model-predictive control. The Evolving GP
model of the system to be controlled adapts itself with online identification to the
operating region of the system. An optimisation algorithm finds the best control
input signal candidate according to the criterion that reflects the desired closed-
loop performance and depends on multi-step prediction of Evolving GP model.
Such MPC algorithm is presented in Fig. 1, where w is the set-point signal, y is the
output of the controlled system, and u is the control system input at the current
time-step k. Let J be a general cost function J = J (ŷ(k + j), w(k), ∆u(k + j))
that requires the predicted system output ŷ(k + j) ∼ N (µy(k + j), σ2

y(k + j)),
the corresponding control input difference ∆u(k + j) = u(k + j) − u(k + j − 1),
and the set-point signal value w(k) for any j ∈ N

+. Let the future control input
values be defined from a parameter vector p = [p1, . . . , pHc ]

T as follows:

(8) ũ(k + j − 1) =

{
pj if j ≤ Hc

pHc otherwise
,

where Hc is the control horizon. The MPC control method solves the following
unconstrained optimisation problem:

(9) p∗ = arg min
p

J = arg min
p

Hp∑

j=1

l (ŷ(k + j), r(k, j), ∆u(k + j)) ,

where p∗ determines the optimal future control input signal ũ, Hp is the prediction

horizon, l is an arbitrary nonzero function, and r(k, j) = (y(k)−w(k))e−j Ts
T +w(k)

is the reference trajectory. The optimisation problem in (9) is solved for each
time-step k, and only the first value of optimal future control input sequence is
applied. However, as the MPC model is probabilistic, the following case study
will provide an illustration of different approaches involving the mean µy(k + j)
and variance σ2

y(k + j) of predicted system output inside the cost function.
4. Case study. The proposed control method is demonstrated on a closed-

loop simulation on an anaerobic wastewater treatment plant which is the Contois
bioreactor model [9]. This bioreactor is a continuous, nonlinear, open-loop stable
dynamical system of order two. The bioreactor input and output signals are

w(k) y(k)u(k)

ŷ

Optimization Process

Evolving

z

GP model

Fig. 1. The scheme of adaptive MPC algorithm
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discretized with sampling time Ts = 1 hour. The input signal is the substrate
concentration of the inflow S0(t) [gCODdm−3] and the output signal is the biomass
concentration at the outflow of bioreactor X = X(t) [gVSSdm−3]. Let the volume
of the bioreactor V = 5 dm3, the inflow rate of wastewater Q = 1.49 dm3day−1,
the substrate concentration of outflow of the bioreactor S = S(t) [gCODdm−3], the
biomass concentration at the inflow side X0 = 0 gVSSdm−3, the yield coefficient
Y = 0.2116 gVSSg

−1
COD, the death rate of biomass kd = 0.0131 day−1, the Contois

kinetic parameter B = 0.4818 gCODg−1
VSS, the maximum population growth rate

µmax = 0.9297 day−1, and the population growth rate µ = µ(t) [day−1]. The
dynamical model of the bioreactor [9] is:

dS

dt
=

Q

V
(S0 − S(t)) −

X(t)µ(t)

Y
(10)

dX

dt
=

Q

V
(X0 − X(t)) + µ(t)X(t) − kdX(t)(11)

µ(t) = µmax
(S(t))

(BX(t) + S(t))
(12)

Xm(t) = X(t) + ǫ, p(ǫ) = N (0, 0.0012),(13)

where Xm(t) is the actual measurement of the biomass X(t).

The control system is required to track the reference substrate concentration
with notable convergence. The properties of closed-loop performance depend on
setting both the identification process and the MPC parameters. The identifica-
tion of GP model requires regression vector z(k) = [Xm(k−1), Xm(k−2), S0(k−
1), S0(k − 2)]T and the regressand y(k) = Xm(k) composed from samples of sig-
nals. The prior GP mean is set to zero, the prior covariance is an exponentiated
quadratic form with automatic relevance detection [5], the marginal likelihood is
maximised with conjugate-gradients method limited to 20 iterations, and the de-
sign parameters for the online identification are ζ = 0.002, MDA

= 40, f = 0.975.
At the beginning of simulation, the bioreactor input is manually operated to col-
lect MDA

datapoints and to prepare an initial GP model for better computational
stability. After day two, the bioreactor is set in proposed closed-loop control in
which the GP model starts evolving.

The arbitrarily set parameters of the MPC control are the prediction horizon
Hp = 6, the control horizon Hc = 3, and the reference trajectory constant T = 2.4
hours. Here we list four of possible variants of function l that determines the cost
function J :

(a) the simple quadratic cost function, as described in [10], provides a closed-loop
response that avoids highly uncertain regions and tracks the set-point signal:

l(r, y, ∆u) = E
[
a2||r − y||2

]
= a2||r − µy||

2 + a2σ2
y , a = 1,(14)
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(b) the generalised quadratic cost is adopted from [4] and it contains an additional
cost term of control-input signal and weight matrices Wmu,Wσ,Wu. Such
cost function may reduce the controller sensitivity to the output-signal noise
and an arbitrarily smooth control-input signal, but it requires defining the
weighting terms.

(15)
l(r, y, ∆u) = ||r − µy||

2
Wµ

+ ||σy||
2
Wσ

+ ||∆u||2Wu
,

Wµ = 1,Wσ = 100,Wu = 1.

Here, ||x||2A denotes the squared weighted norm of a vector x, defined for
some positive-definite matrix A ≻ 0, i.e. ||x||2A = xTAx.

(c) the generalised quadratic cost is similar to (b), but it includes a bias term s

for the acceleration of identification process with cautious excitation of the
plant

(16)
l(r, y, ∆u) = ||r − µy||

2
Wµ

+ ||σy − s||2Wσ
+ ||∆u||2Wu

,

Wµ = 1,Wσ = 100,Wu = 1, S = 0.006,

(d) the saturating cost, described in [10], allows automatic exploration and ex-
ploitation. The control algorithm explores the operating region if the model
is uncertain. On the other hand, if the model is precise, the cost function is
more sensitive to the tracking error.

(17)
l(r, y, ∆u) = E

[
1 − exp

(
− 1

2a2 (y − r)2
)]

= 1 − a
(
σ2

y + a2
)
−

1

2 exp
(
−1

2
(µy−r)2

σ2
y+a2

)
, a = 0.1.

The resulting closed-loop responses for the given functions l in Fig. 2 illustrate
the differences how the function l affects the smoothness and range of control sig-
nal input S0, the value of predicted variance during the transition to an unknown
operating region, and the tracking performance of the reference signal. In Fig.
2, the bioreactor output and the mean value of one-step-ahead model prediction
are almost indistinguishable.

5. Conclusion. The proposed algorithm provides a possible solution for
adaptive model-based predictive control of a nonlinear dynamic system, described
with a probabilistic input-output model. An adaptive control algorithm allows
adaptation of the controller to different operating regions of the controlled system,
provided the transition between operating regions is sufficiently smooth. The
inclusion of control input signal into the cost function is necessary for a closed-
loop response with smooth control input signal. On the other hand, the addition
of bias into the variance term in function (c) may affect the control algorithm to
noninvasively explore the current operating region.
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Fig. 2. Closed-loop responses of the proposed control method where each column is associ-

ated with the listed functions l. The upper row contains the set-point w in dashed black, the

bioreactor output X in solid black, and the mean value of one-step-ahead model prediction

in solid grey. A vertical dotted black line at t = 2 days indicates the transition from man-

ual operation to the MPC control method. The middle row contains the double standard

deviation of one-step ahead prediction. The bottom row shows the input signal S0

GP model identification involves several computations in which the load in-
creases with third power of the number of input data. The number of identifica-
tion data is, however, kept small by using an online identification algorithm. A
possible direction for future work is input-output model-based predictive control
of open-loop unstable nonlinear systems.
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