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Abstract: Ozone is one of the main air polluters with harmful influence over human health. Therefore, predicting the ozone
concentration and informing the population when the air quality standards have been exceeded is an important task. In this paper,
different Gaussian process models for 1-hour ahead prediction of ozone concentration in the air of Bourgas, Bulgaria are identified and
verified. For this purpose, the hourly measurements of the concentrations of ozone, SO,, NO,, phenol and benzene in the air, collected at
the automatic measurement station in the center of Bourgas for year 2008, are used.
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INTRODUCTION

Ozone is one of the main air polluters with harmful influence
over human health. Standards which guarantee the human
health protection are as follows [1]: health protection level
120 pg/m® eight hours mean concentration; informing the
public level 180 pg/m® one hour mean concentration; warning
the public level 240 pg/m® one hour mean concentration.
Therefore, predicting the ozone concentration and informing
the population when the air quality standards have been
exceeded is an important task.

It has been shown in [2], that the ozone concentration has a
strong daily cycle. Thus, the formation and collection of ozone
in the air starts after 7 o’clock and it reaches its maximum
between 13 and 16 o’clock. In [3], the relation between the
ozone concentration and three meteorological parameters have
been investigated using data about the region of Hessen in
Germany. Based on these data, a linear regression model to
predict the maximal daily ozone concentration in the air has
been obtained.

However, until now no models to predict the ozone
concentration in the air in any regions in Bulgaria have been
developed. Furthermore, it may be expected that using
Gaussian process models [4] would allow to obtain more
accurate prediction models where the presence of different air
polluters can be taken into account and more complex
relations between their concentrations and the ozone
concentration can be incorporated. The region of Bourgas city
is among the regions with highest ozone pollution of the air
and thus it is of primary interest to obtain a prediction model

for this region. To achieve this, data provided by the
Executive Environmental Agency of Bulgaria are used.

The following notation will be used in the paper. For a random

variable y with Gaussian distribution, N( ,u(y),o-z(y))

denotes its probability distribution, and x(y) and 0'2( y) are
respectively its mean and variance.

MODELLING OF DYNAMIC SYSTEMS WITH
GAUSSIAN PROCESSES

The Gaussian process model is an example of a non-
parametric probabilistic black-box model which, beside model
predictions, inherently provides also the uncertainty of
predictions. Its use and properties for modelling are reviewed
in [4]. The use of Gaussian processes in the modelling of
dynamic systems is a relatively recent development [5, 6, 7, 8,
9] and a retrospective review of dynamic systems modeling
with Gaussian process models can be found in [10].

A Gaussian process is a collection of random variables which
have a joint multivariate Gaussian distribution. Assuming a

relationship of the form y = f(z) between an input z e RP
and output yeR, we have y(1),y(2),...,(M)~N(0,X),
where X, =Cov(y(p),»(q))=C(z(p),z(q))  gives the
covariance between the output points y(p) and y(q)
corresponding to the input points z(p) and z(g). Thus, the
mean u(z) (usually assumed to be zero) and the covariance
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function C(z(p),z(q)) fully specify the Gaussian process.
Note that the covariance function C(z(p),z(g)) can be any

function with the property that it generates a positive definite
covariance matrix. A common choice is:

12 )
C(=(p),2(@) =viexp| == D wi(=(P) = Z(9)” |+ vo@pg (D
i=1
where ©=[w, ..., wp,vy,v] are the ‘hyperparameters’ of
the covariance function, z; denotes the i-th component of the

D -dimensional input vector z, and «,, is the Kronecker

operator. The covariance function (1) is composed of two
parts: the Gaussian covariance function for the modeling of
system function and the covariance function for the modelling
of noise. The noise, in our case, is presumed to be white.
Other forms of covariance functions suitable for different
applications can be found in [11]. For a given problem, the
hyperparameters are learned (identified) using the data at
hand. After the learning, one can use the w parameters as
indicators of ‘how important’ the corresponding input
components (dimensions) are: if w; is zero or near zero it

means that the inputs in dimension i contain little information
and could possibly be removed.

Consider a set of M D-dimensional input vectors
Z:[z(l),z(Z),...,z(M)]T and a vector of output data

Y =[y1),y?2),... ,y(M)]T. Based on the data (Z,Y), and

given a new input vector z , we wish to estimate the

probability distribution of the corresponding output y*.

Unlike other models, there is no model parameter
determination as such, within a fixed model structure. With
this model, most of the effort consists in funing the parameters
of the covariance function. This is done by maximizing the
log-likelihood of the parameters, which is computationally
relatively demanding since the inverse of the data covariance
matrix (MxM) has to be calculated at every iteration.

The described approach can be easily utilized for regression
calculation. Based on a training set Z, a covariance matrix
K of size MxM is determined. As already mentioned before,
the aim is to estimate the probability distribution of the

corresponding output y* at some new input vector z . Fora
new test input z, the predictive distribution of the
corresponding output is y* |z*,(Z,Y ) and is Gaussian, with
mean and variance:

w(zH)=k(zHTK Y

o2(2) =ky(z) —k(z)TKk(z")
where  k(z")=[C(z(1),2"), ..., C(z(M),z)]T is the MxI
vector of covariances between the test and training cases and

2

ko(z*):C(z*,z*) is the covariance between the test input
and itself.

Gaussian processes can be used to model static nonlinearities
and can therefore be used for modelling of dynamic systems if
delayed input and output signals are used as regressors [8]. In
such cases an autoregressive model is considered, such that
the current predicted output depends on previous estimated
outputs, as well as on previous control inputs:

2(O) =[Pt =1, (¢ =2), ..., p(t = L),u(t - 1),
u(t=2), ..., u(t— L)~ 3)
()= f(z(0) +n(t)

where ¢ denotes consecutive number of data sample, L is a
given lag, and 7(¢) is the prediction error. The quality of the
mean values of predictions with a Gaussian process model can
be assessed by computing the average squared error (ASE):
I 2
ASE = I D Lu(3@)) = y(0)] “
i=1

and the log density error (LD) [4] is also a possible measure:

| M 2 L) =y
LD =—> log(27) +log[c” (P()]+————"— (5)
e e a2 (5(1)

In (4), (5), u(p(i)) and 0'2( ¥(i)) are the prediction mean and

variance, y(7) is the system’s output and M is the number of
the training points.

The Gaussian process model now not only describes the
dynamic characteristics of the non-linear system, but at the
same time provides information about the confidence in the
predictions. The Gaussian process can highlight areas of the
input space where prediction quality is poor, due to the lack of
data, by indicating the higher variance around the predicted
mean.

GAUSSIAN PROCESS MODEL FOR PREDICTION OF
OZONE CONCENTRATION IN THE AIR OF BOURGAS

Measurement data

Measurement data for the year 2008, collected at the
automatic measurement station in the center of Bourgas,
Bulgaria, are used. The data includes hourly measurements of
the concentrations of ozone, SO,, NO,, phenol and benzene.

Gaussian process models of ozone concentration dynamics
Six Gaussian process models for prediction of ozone
concentration are identified and verified based on the available
measurement data. The average squared errors (ASE)
corresponding to each model and computed both for the
training data and for the validation data are given in Table 1.

The training data include the measurements from 9 till 16
o’clock at every 5-th day of the year 2008. The reason to
consider this time interval is the following. In the previous
research [2], it has been proved that the ozone concentration
has a strong daily cycle. The formation and collection of
ozone in the air starts after 7 o’clock and it reaches its
maximum between 13 and 16 o’clock. After 16 o’clock, the
ozone concentration decreases. Therefore, we are interested to
obtain an accurate prediction of ozone concentration in the
interval from 9 till 16 o’clock, where there is some risk to
exceed the established air quality standards. Thus, the total
number of the training data is 424 corresponding to 53 days of
the year. Note that the days, for which there is not a full
collection of are measurements in the interval 9 - 16 o’clock,
are excluded from the data set.

The validation data include the measurements from 1 till 23
o’clock at all days of the year 2008. It should be noted that the
days, for which there are measurements at some hours only,
are excluded from the data set. Thus, the total number of the
validation data is 5497 corresponding to 239 days of the year.

The identified Gaussian process models are the following:

Model A
The model has the form:

co, (t+1)= f4(co, (1) ©)
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where cp, is the concentration of ozone in the air and

t=0,1,2,3,...,22 are the hours of the day. For this model, the

prediction of ozone concentration at a given hour of the day is
based only on its value at the previous hour.

Model B
The model has the form:

co,(t+1) = fp(co, (1),cno, (1) @)
where cyp, is the concentration of nitrogen dioxide in the air.
It can be seen from Table 1, that the incorporation of cyp, as

an input to the model increases its accuracy (the average
squared error is decreased).

Model C
The model has the form:
co, (t+1) = fc(co, (1),cno, (150, (1)) (®)

where cgp, is the concentration of sulphur dioxide in the air.
The use of cgp, as an input parameter does not improve the
model quality (see Table 1). Therefore, cso, is excluded from

the next models (models D and E).

Model D
The model has the form:
co,(t+1) = fp(co,(1):cno, (D.ccmom (1) ©)

where cc 0 1s the concentration of phenol in the air. It can
be seen from Table 1, that cc o does not contribute to the

improvement of model accuracy and it is excluded from the
next model (model E).

Model E
The model has the form:
co, (t+1) = fi(co, (D).cno, (0.ccr, (1) (10)

where cc y, is the concentration of benzene in the air. This

model has the largest average squared error for the validation
data, i.e. it is least accurate among all models.

Model F
The model has the form:

co, (t+1) = fr(co,(1),cno, (1):cs0, (D).cc mom (Do, (1)

(11)
This model includes all measured parameters (ozone, SO,,
NO,, phenol and benzene) and it is identified only for
comparison purposes.

Table 1. Average squared errors for the different models.

MODEL ASEtrANNG ASEyaLaTION
Model A 122.59 177.56
Model B 115.33 172.59
Model C 113.26 176.31
Model D 115.33 172.59
Model E 109.47 184.75
Model F 117.93 179.66

From Table 1, it can be seen that model B provides the best
quality of prediction, since it has the smallest average squared
error for the validation data (ASEvarmation = 172.59). The
accuracy of this model is further improved by enlarging the

training data set. In Table 2, the average squared errors of four
models of type B are given, which correspond to different
number of the training data.

Table 2. Average squared errors for models of type B.

TRI\/I\[IJII\\I/iI]?IIéRD(z)xFTA ASErraming | ASEvaumarion
424 115.33 172.59
456 95.13 185.16
664 99.60 169.82
960 93.59 176.67

From Table 2, it can be seen that the Gaussian process model
B, whose identification is based on 664 training data has
smallest average squared error for the validation data
(ASEyarLipation = 169.82). Its hyperparameters are the
following:

O =[wy,wy,vy,v]=[165.96, 710.20,10.02, 115.94] (12)

In Figures 1 to 5, the mean value and 95% confidence interval
of the ozone concentration predicted with this model are
shown for some days of year 2008.

Ozone concentration [ug/m?]: Date: 22.2.2008
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Fig. 1. The predicted mean value and 95% confidence interval
of the ozone concentration for 22-nd February, 2008.

Ozone concentration [ug/m?’]: Date: 8.4.2008
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Fig. 2. The predicted mean value and 95% confidence interval
of the ozone concentration for 8-th April, 2008.
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Ozone concentration [ug/m>]: Date: 20.7.2008 CONCLUSIONS
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| prediction is accurate enough and can be used for public
8or ! ‘ - warning in cases of high health risk.

60 - ~\<I L: + validétion d;ta
| : : —&— GP model mean
40 e T--r -1~~~ GPmodel mean + 2*std| — REFERENCES

: \\/J‘r T‘ : : T**"GP n‘wodelr‘nean —‘Z*Std‘

20 - e 1. Directive 2002/3/EC of the European Parliament and of

e the Council of 12 February 2002 relating to ozone in

0 2 4 6 8 10hou1r i 14 16 18 20 22 ambient air.
Fig. 3. The predicted mean value and 95% confidence interval 2 Efgizli{;vozgn?&ﬁfﬁg;&i iﬁa&?é lji\;,fAs.tzﬁ?;rtg:;Ed
of the ozone concentration for 20-th July, 2008. daily cycle. Proceedings of 19-th International
) 3 Symposium on Bioprocess Systems, Sofia, 2006.
Ozone concentration [ug/m]: Date: 14.8.2008 3. Nedialkov, D., M. Angelova, A. Krastev, H. Hristova.
180 F - S P SO T T N S Prognostication of ozone concentration in the air.

T R e N O S Proceedings of 20-th International Symposium on
] s e Bioprocess Systems, Sofia, November 6-7, 2007, pp.
97 S 00" S A N IL1-IL8.

! ! 4. Rasmussen, C. E., C. K. . Williams. Gaussian processes
1201~ -~ -~ for machine learning, MIT Press, Cambridge, MA,
100 — —1- - dm— A1 London, 2006.

b 5. Azman K., J. Kocijan. Application of Gaussian processes
80F - B e for Dblack-box modelling of biosystems. ISA
60~ - L - [—e— validation data Transactions, vol. 46, No. 4, pp. 443-457,2007.

| —A— GP model mean 6. Girard, A., C. E. Rasmussen, J. Quinonero Candela, R.
SO T T ae Y T T GPmodelmean + 2std ) Murray-Smith. Gaussian process priors with uncertain
sl =l ol [T GRmodelmean- s ] inputs & application to multiple-step ahead time series

I forecasting. Proceedings of NIPS 15, Vancouver,

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 4. The predicted mean value and 95% confidence interval
of the ozone concentration for 14-th August, 2008.

Ozone concentration [ug/m?’]: Date: 13.11.2008 8.
9.
10.
|
| | |
— | |
| | | ’ . N |
20+ — — - — —1- > —— + — | —®— validation data - —+< 11.
| | | I | —&— GP model mean I b
: : : : — = = - GP model mean + 2*std : :
o) M TR PR P —~ ~ "GPmodelmean-2*std || _ | _
1 1 1 1 1 1

1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22
hours
Fig. 5. The predicted mean value and 95% confidence interval
of the ozone concentration for 13-th November, 2008.

It can be seen that the accuracy of prediction is highest for the
time interval of the training data (from 9 till 16 o’clock),
where the ozone concentration is maximal. The less accuracy
of prediction outside this interval is acceptable.
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