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Introduction  

Model Predictive Control (MPC) [bibQB03, bibMac02] is a family of advanced 
control algorithms based on on-line optimisation of predicted control signals using 
process models. The main practical advantages of MPC over conventional feed-
back control methods are twofold: the ability to account for constraints on signals, 
and consistent yet simplified control design for multivariable processes. MPC is a 
rare example of an advanced control method that is well established in industrial 
practice. Typically, MPC is used at the medium level of the control hierarchy, be-
tween the top level of plant optimisation and the bottom level of physical control. 
Mainstream MPC approaches rely on on-line optimisation, which involves consid-
erable computational requirements. Consequently, capable hardware equipment is 
required, and sampling rates are restricted.  

The idea of the recently invented explicit 1 form of MPC (eMPC) 
[bibPDBBM00, bibBMDP02, bibPGD07] is to move the bulk of the computation-
al load into the off-line phase of controller design rather than doing it on-line. 
Hence a polyhedral partition of the whole parameter space of the controller is 
computed, for example by using multi-parametric quadratic programming (mpQP) 
[bibBao02, bibGBTM04, bibTJB03a, bibTJB03b, bibMR03, bibSKJTJ06, 
bibSTJ07] or multi-parametric linear complementarity (mpLC) [bibJM06] algo-
rithms. In the on-line phase, optimisation is replaced by a simple region-search al-
gorithm [bibTJB03c]. This enables controller implementation on standard indus-
trial automation equipment [bibKRM10], and the application niche is extended to 
processes with fast dynamics. eMPC suffers from high computational demand in 
the off-line design phase that grows exponentially with the dimensions of the 
problem. More precisely, it grows with the number of possible combinations of 
active constraints2 within the prediction horizon. In addition, the region-search al-
gorithm turns out to be efficient only with small-scale problems, i.e. it may take 
                                                         

1 Also known as multi-parametric. 
2 Active constraints are those inequality constraints of the eMPC problem setup 

which in certain conditions are at the equality boundary.  
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longer than the corresponding on-line QP for larger problems [bibZJM11]. There-
fore, the currently known algorithms are applicable to univariable or small-scale 
multivariable processes, typically at the bottom (physical) level of the control hi-
erarchy or for small stand-alone applications.  

eMPC provides an explicit view of the structure of the control law, which is 
hidden in conventional MPC. The controller comprises a set of local affine control 
laws, each of them being valid in a polyhedral region characterised by the same 
set of active constraints. The properties of the controller in each of those regions 
may be studied by using local linear analysis (LLA) of the closed-loop system 
[bibGSB08, bibGP09]. LLA is particularly useful for tuning in the region with no 
active constraints, and may also be used for other regions in which the controller 
tends to dwell. In addition, it may be used for clusters of regions with the same or 
very similar control parameters. LLA helps analyse the dynamical properties that 
are important with controller tuning for efficient tracking, the rejection of various 
types of disturbances, noise attenuation, and robustness to plant-model mismatch. 
The latter is particularly important as the closed-loop system comprising a state 
controller and a state estimator may be oversensitive to the modelling error.  

Issues related to the tuning of the eMPC controller for efficient and robust 
feedback performance are vital for application at the physical control level. The 
application of eMPC seems attractive in cases where eMPC algorithms are ex-
pected to be superior to PID control due to the more versatile controller structure 
as well as due to the improved constraints handling. However, practical applica-
tions of eMPC have been scarce so far, which is partly because the transition from 
eMPC theory to practical tracking controllers is not straightforward (see Section 
secTrackeMPC). With many theoretically sound approaches, the practically 
achievable prediction horizons are short, which severely impairs the ability to re-
act to approaching violations of state or output constraints in time. Relatively long 
sampling times are typically used in eMPC, which may result in less efficient dis-
turbance rejection compared to conventional PID control. Some simplified track-
ing approaches may also affect control performance. In addition, it is questionable 
whether the advanced constraints-handling of eMPC can lead to any significant 
practical advantage in simple univariable PID replacement applications, because 
univariable processes lack degrees of freedom in ranking control priorities.  

The aim of this work is to develop an offset-free tracking eMPC scheme based 
on the disturbance-estimation approach and a "joint" controller structure (with no 
target calculator), which allows implementation of eMPC with relatively fast sam-
pling and reasonably long horizons suitable for practical physical control applica-
tions, and test the scheme in an industrial pilot application where it is compared 
with an existing single-loop PID controller. We first summarise the basic state-
control eMPC problem with a state estimator. Then, we discuss several approach-
es to set-point-tracking with integral action in eMPC, and describe the particular 
offset-free tracking setup which is used. The control method is tested in a case 
study of cooling water temperature control in a biogas-fuelled 350 kW combined 
heat and power production (CHP) unit of a municipal waste-water treatment plant 
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(WWTP). A specific aim of the case study is to verify whether unnecessary excur-
sions of the cooling water temperature away from its set-point in the critical range 
near output constraints can be reduced with eMPC control. The eMPC controllers 
were designed using LLA and tested with a simplified simulation model, which 
includes linear nominal dynamics, disturbances that are present in the system, and 
constraints on the process signals. The design was verified experimentally on the 
CHP unit. The performance improvements due to eMPC feedback tuning and con-
straints-handling ability were examined. Finally, several implementation issues re-
lated to eMPC are discussed.  

Explicit MPC  

We begin by outlining a simple eMPC controller for constrained linear sys-
tems. Just like in conventional MPC [bibQB03, bibMac02], control is based on a 
state-space process model   

)()(),()()1( mmm kkkkk xCyuBxAx =+=+  (eqmodelMPC) 

where k is the discrete-time index, unℜ∈u  and ynℜ∈y  the input and output sig-
nal vectors, xnℜ∈x  the state vector, and Am, Bm, and Cm the model matrices. The 
optimality of control is defined with the 2-norm constrained finite-time optimal 
control (CFTOC) problem [bibBao02]. The CFTOC value function is 
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where N and Nu are the prediction and control horizons, Qx and Ru the state and 
control weights, [ ]Tu

TTT
N Nkkk

u
)1()1()(~ −++= uuuu L  is the optimised 

sequence of current and future control signal values, and discrete-time indices in 
subscripts denote model predictions. The CFTOC problem typically includes the 
constraints 

umin ≤ u ≤ umax,      xmin ≤ x ≤ xmax (eqMPCconstraints) 

which have to be taken into account when optimising (eqMPCcost). A receding-
horizon implementation of the control law is used, meaning that only the first ele-
ment u(k) taken from 

uNu~  is used as the current control action. The remaining el-
ements of 

uNu~  are discarded and a new optimisation run is carried out for the next 

time instant with shifted horizons.  
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In conventional MPC, the optimizer 
uNu~  is typically computed by substituting 

a series of state update equations (eqmodelMPC) into the cost function (eqMP-
Ccost) and rewriting the expanded (eqMPCcost) and constraints (eqMP-
Cconstraints) to the standard QP form (see, e.g., Chapter 3 in [bibMac02])  

bAzzcHzzzz
z

≥+== tosubject)(),(min 2
1* TTJJJ  (eqQP) 

where the optimization argument vector z ∈ ℜn matches 
uNu~ , H ∈ ℜn×n is the 

symmetric positive definite quadratic-term cost matrix, c ∈ ℜn×1 is the linear-term 
cost vector (the constant term is omitted because it does not affect the optimisation 
result), and A ∈ ℜq×n  and b ∈ ℜq×1 define the stack of linear inequalities. This 
problem is solved in each sampling step using a suitable QP solver. However, in 
[bibPDBBM00, bibBMDP02] it was established that the problem (eqMPCcost)- 
(eqMPCconstraints) may be solved parametrically with respect to the vector of 
parameters θ ∈ ℜs,  where the multi-parametric QP problem form  

( ) bSθAzzczFθHzzθ
z

+≥++= tosubjectmin)( 2
1* TTTTJ  (eqmpQP) 

is used, with the additional terms comprising F ∈ ℜs×n in the cost and S ∈ ℜq×s in 
the constraints, where θ corresponds to the state x in the MPC formulation. As-
suming a strictly positive definite H, the optimizer z* is a continuous piecewise-
affine function of θ on a full-dimensional set of admissible parameters Θ ⊂ ℜs 
partitioned into non-overlapping convex polyhedral regions Ri, U RN

i iR
1=

=Θ , and 

the value function J* is a continuous piecewise-quadratic function of θ on Θ.  
Conversion of the MPC control problem (eqMPCcost)-(eqMPCconstraints) into 

the mpQP form (eqmpQP) is supported by several tools, e.g. the Hybrid Toolbox 
[bibBem06] and the open-source Multi-Parametric Toolbox [bibKGB05]. The lat-
ter includes two approaches. In the first approach, the mpQP matrices and vectors 
are built directly using the function mpt_constructMatrices. The more flexi-
ble second approach first translates the MPC problem into a Yalmip formulation 
using the function mpt_yalmipcftoc, then the mpQP matrices and vectors are 
generated by the Yalmip solver [bibYALMIP04].  

The task of an mpQP solver is to determine the polyhedral partition {Ri | i = 1, 
..., NR} and the corresponding optimisers z*(θ) = Fiθ + gi, where Fi ∈ ℜn×s and gi 
∈ ℜn. Such solvers are available, for example, in academic eMPC libraries 
[bibKGB05, bibBem06]. The solvers determine the partition by first finding an in-
itial feasible point and its associated full-dimensional region.  Then they explore 
the adjacent space until Θ is fully covered. Each of the regions is characterised by 
the cost function of (eqmpQP) and the set of active constraints.  

With the pre-computed polyhedral partition, on-line optimisation using a QP 
solver is no longer needed to compute the control signal u(k) for the current state 
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x(k) in each sampling instant. Instead, the active region is determined, and the cor-
responding local affine control law is applied. The active region may be deter-
mined using a region-search algorithm [bibTJB03c].  

In most practical cases, however, the state x(k) is not measured, and the signals 
are disturbed by noise terms. The underlying model reads 

)()()(),()()()1( mmmm kkkkkkk vxCywGuBxAx +=++=+   
  (eqmodelMPCnoise) 

where wnℜ∈w  is the state noise and ynℜ∈v  the output noise, with covariance 
matrices QKm = E{wwT} and RK = E{vvT}, respectively, assuming E{wvT} = 0; 
and Gm specifies the access of noise to the state. Instead of the state x(k), the state 
estimate )(ˆ k|kx  is used in the control problem (eqMPCcost)-(eqMPCconstraints). 
It is computed by using the steady-state Kalman filter (KF)  
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where the Kalman gain MKm is calculated using the steady-state solution of the 
Riccati equation with QKm and RK [bibMac02].  
 

secTrackeMPC Practical Tracking Controllers with eMPC 

In practice, the academic MPC setup (eqMPCcost) needs to be extended in or-
der to meet the requirements for offset-free tracking of asymptotically non-zero 
reference signals and in the presence of disturbances with asymptotically non-zero 
mean values, which are typically present in practical applications. A variety of 
tracking approaches may be applied. Specific approaches that depart from those 
typically used in conventional MPC appear in the published application-related 
eMPC literature. The problem is that the additional variables in tracking set-ups, 
such as disturbances and adjustable set-points, increase the parametric dimension s 
of the mpQP and the computational complexity of the mpQP. Another problem is 
that the available mpQP solvers appear to not be sufficiently numerically robust 
for the approaches where estimated disturbances appear as mpQP parameters and 
when relatively fast sampling is used [bibGer11]. We first discuss some of the 
considerations, then present the approach used in the case-study. 

The tracking option readily available in [bibKGB05, bibBem06] is variable set-
point tracking without integral action, meaning that a steady-state offset due to 
disturbances may occur. In [bibKGB05, bibBem06] this is implemented by aug-
menting the model with the integral state yr. An alternative implementation is pos-
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sible where the reference is included in the cost function, separately from process 
dynamics. Constant set-point signals may be implemented using coordinate shifts 
by substitutions such as yn = y – yrf, un = u – urf, or xn = x – xrf, where yrf, urf, and 
xrf are fixed target values for y, u, and x, respectively. Such substitutions do not 
increase the complexity of the mpQP problem, as the dimension of θ remains un-
changed. If only a few discrete values of yr are used, switching among a set of 
controllers may be used instead of yr, which in that case appears as an additional 
parameter. Penalising the control signal u as in (eqMPCcost) may cause tracking 
offset, which may be avoided by modifying the MPC cost (eqMPCcost) either by 
penalising the control moves Δu(k) = u(k) – u(k–1) with the weight Rdu, or by pe-
nalising the deviation of u from an appropriate ur target instead of using the de-
fault control cost.  

Tracking-error integration (TEI) is one possible offset-free tracking concept 
appearing in eMPC literature [bibBem06, bibGJK04]. With this approach, the 
model (eqmodelMPC) is first augmented with yr so that the output is the tracking 
error (yr – y); then, an integrator state that integrates (yr – y) is appended. Alterna-
tively, TEI may be implemented by adding an integral term to the MPC cost func-
tion (eqMPCcost). This approach does not require any estimator. Also, there is no 
need for a velocity-form augmentation if there are no rate constraints. However, 
integrator wind-up may occur due to unreachable set-points unless suitable anti-
windup protection is used. It was also observed that a significant integral action 
resulting therefrom may increase overshoot in nominal tracking performance, sim-
ilarly as the integrating term in PI control [bibPG08].  

Disturbance estimation (DE) is an alternative offset-free tracking concept, 
more commonly used in traditional MPC [bibMac02, bibMB02, bibPR03]. Here, 
the basic model (eqmodelMPC) is appended with a model of unmeasured disturb-
ances of an integrating character. This may be a simple "output disturbance mod-
el" comprising an integrator at the model output or some more elaborate disturb-
ance models. With the Box-Jenkins modelling approach, the unmeasured-
disturbance branch of the model is kept separate from the basic model branch, 
while in the AR(I)MAX model (auto-regressive integrating moving-average with 
exogenous input) the two branches sharing the denominator dynamics are merged. 
An observer or Kalman filter may be used for state estimation. The construction of 
the augmented model can be carried out in several different ways [bibGSB08, 
bibGAM08].  

DE may be used in a target calculator (TC) scheme [bibMR93, bibPR03, 
bibSak03, bibSDPP04, bibPLR06] which decomposes the controller into the TC, 
which handles the steady-state, and the remaining dynamic controller (DC), which 
deals with transient dynamics. The total controller output is the sum of TC and DC 
contributions. In the eMPC context, the TC scheme may be seen as a bi-level 
mpQP, where the outputs of the TC, xt and ut, appear as variable references for the 
DC [bibSak03]. The variable references xt and ut may be replaced with yr and the 
DE integrator state, which may yield a lower dimension of θ. This is carried out 
by substituting the parametric solution of the TC into the DC mpQP problem, 
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which is then computed for each region of the TC partition separately. This tends 
to result in a large joint number of regions. However, the TC scheme has several 
advantages; it may be used with infinite-horizon MPC costs; it allows steady-state 
infeasibilities to be easily screened out; for offset-free tracking it does not require 
the use of velocity form augmentation (needed only with rate constraints). On the 
other hand, the decomposition of the controller leads to certain suboptimality and 
feasibility problems, as the TC is oblivious to transient infeasibilities arising in the 
DC [bibRR99], and complicates the structure of the control law and analysis of the 
constrained performance. In an enhanced TC scheme [bibLAAC08], this decom-
position is removed, however at the cost of computational complexity.    

In our case-study, the DE concept is applied with a "joint" controller integrat-
ing the functions of constrained dynamic control and offset-free tracking 
[bibGP09]. This method was used because it results in a simple controller struc-
ture that allows straightforward analysis and because controllers with relatively 
low numbers of regions were obtained. No significant difference in performance 
was observed between the two DE schemes. Although typically used for square 
plants, the joint scheme can also efficiently handle processes with redundant con-
trol input despite the absence of a TC [bibGP09].  

Implementation of the joint scheme 

For the implementation of the joint-scheme DE concept following the 
ARIMAX approach in the state-space form, disturbance augmentation of the basic 
model (eqmodelMPCnoise) may be carried out by appending the additional inte-
grator state e with the associated noise signal we(k) either at the output  
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or at the input  
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(for details regarding the choice of the integrator position, see [bibMB02], 
[bibPR03]). Either of the two is further denoted as the disturbance-augmented 
model (Aa, Ba, Ca, Ga), with the state xa = [x T e T]T  and noise input wa = [w T we 
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T]T. Its state is estimated using a steady-state KF with Kalman gain MK calculated 
from the steady-state solution of the Riccati equation with QK = E{wawa

T} and RK. 
Using the MPT toolbox [bibKGB05], the MPC controller for the "joint" scheme 

is constructed by specifying the disturbance-augmented model (Aa, Ba, Ca, Ga), 
the signal constraints, and the MPC cost matrices as inputs to the function 
mpt_control. Within the function, the disturbance-augmented model further un-
dergoes a velocity-and-tracking augmentation, as described in [bibKGB05], so 
that the state vector of the resulting disturbance-velocity-tracking augmented 
model (corresponding to the parameter vector θ of the parametric solution) is 

[ ]TT
r

TTT
avt k yuexx )1( −=  [bibGP09]. Then the mpQP problem (eqmpQP) is 

formulated and solved using the mpQP solver. 

Industrial Case Study 

This section presents a field test where possible performance improvements 
due to replacing an existing PID controller with eMPC in a bottom-level control 
application were investigated. eMPC was successfully tested both in simulation 
and in plant experiments. What we managed to achieve was a slight improvement 
in performance compared to PID control in unconstrained operational conditions. 
However, eMPC was unable to provide a significant improvement in performance 
near the output constraints, which was the main motivation for the study.  

Process Description 

Biogas is one of the products of waste decomposition at the waste-water treat-
ment plant. It is used as fuel for a gas-fired rotation-engine combined heat-and-
power production unit, see Figure figCHP_photo. The engine drives a 350 kW 
electric generator, sending energy to the grid. It also produces heating power, 
which is used for heating in various facilities of the plant. Due to the free fuel (bi-
ogas) and subsidized rates for electric energy from renewable sources, the unit 
mostly operates at constant maximum power. The biogas production exceeds the 
engine consumption, and storage capacity is limited, so the unused biogas must be 
conveyed to a burner and combusted. When the heat produced exceeds the thermal 
load, it is dissipated via a forced cooling subsystem, which may operate continu-
ously in the summer season.  
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Fig. figCHP_photo. A biogas-fuelled CHP unit 

 
Figure figCHP_diagram shows a simplified schematic diagram of the unit fo-

cussed on heat transfer control. Black lines indicate the primary engine cooling 
water cycle (motor water, MW), dark-grey lines indicate the secondary water cy-
cle for heating (HW), the light-grey line indicates the forced cooling water cycle, 
and thin black lines indicate the control signals.  

The main disturbances acting on the system originate in the thermal load of the 
heating network. Heating water is used for several WWTP subsystems, which may 
be switched on or off and have local control systems that control water flow. This 
may cause considerable changes in thermal load impedance, as many valves may 
become open or closed, depending on the outside temperature.  

The process output y in our case is the temperature of water going back to the 
engine (T101). In the existing control scheme, the PI controller attempts to keep 
the process output at the set-point yr = 78 ºC by using the position of the three-way 
valve V121 (the manipulated variable u). The valve position range is from 0 to 
100 [%]. When fully open, all water is directed towards the heat exchangers. 
When the valve is closed, during engine warm-up, water returns directly to the en-
gine. The set-point is selected for optimal efficiency of the engine and is generally 
constant. An increase in the temperature may reduce engine lifetime. Therefore, if 
the temperature rises above 80 ºC, the forced cooling system is activated. While 
this is normal at a low thermal load, activations of forced cooling due to disturb-
ance transients at normal thermal loads result in unwanted wastage of heat. There-
fore, the aim of alternative control algorithms is to reduce transients due to dis-
turbances near the threshold value.  
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Fig. figCHP_diagram. Simplified schematic diagram of the CHP unit 

The disturbance dynamics are slower than the open-loop process dynamics. 
The nearest source of disturbances is the secondary water (HW) three-way valve 
V221. Normally this valve is used in a HW temperature control loop that regulates 
the temperature T202. During the experiments with controllers of the MW loop, 
the HW controller was switched to manual, and disturbances were generated by 
changing the V221 position (unmeasured disturbance signal d). Undesired oscilla-
tory disturbances of small amplitude can be noticed in all measurement signals, 
even in open-loop control. Generally, controllers tend to amplify this oscillation, 
but good control performance may be achieved if they are tuned for low sensitivi-
ty to measurement noise.    

Both valves are driven by electric motors. Positioning is performed incremen-
tally by on/off switching of the motor in both directions. There is no absolute posi-
tion measurement, so the position is estimated by integration. Both valves require 
120 s to move from a fully open to fully closed position or vice versa, which im-
plies additional rate constraints that need to be considered. A dead zone is used to 
respect the minimum movement time of 1.2 s. This causes some tracking offset 
and a specific valve movement pattern.  
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Figure figPI_exp shows an experimental run with the existing PI controller. 
The top graph displays the process output y (temperature T101 in ºC, solid line) 
and its reference signal yr (dotted line). The bottom graph displays the controller 
output u (valve V121 position in %, solid line) and the load disturbance signal d 
(valve V221 position in %, dotted line). The test sequence comprises pairs of con-
secutive step changes of signals in opposite directions (first away from the initial 
operating point and then back towards it):  
1. Set-point tracking: step change of yr, step amplitudes –3 ºC and 3 ºC;  
2. Rejection of the input disturbance: step changes of the artificial disturbance 

entering at u, step amplitudes –15% and 15%;  
3. Rejection of the output disturbance: step changes of the artificial disturbance 

entering at y, step amplitudes –2 ºC and 2 ºC; and  
4. Rejection of the load disturbance: step change of d (V221 position), step am-

plitudes –40% and 40%.  
The existing PI controller was initially tuned using magnitude-optimum-based 

tuning rules [bibVPS99]. The integral time constant TI was 110 s, and the propor-
tional gain was KP = 18. With this initial tuning shown in Figure figPI_exp up to t 
= 800 s, tracking performance and suppression of step disturbances were good, but 
suppression of measurement noise was not satisfactory since the variance of the 
position of valve V121 was too high. With the reduced value KP = 8 after t = 800 
s, the control signal variance was reduced, but still above the desired level. The 
amplitude of the step change of d was set too high, and caused y to rise above the 
limit 80 ºC, as forced cooling was disconnected during the experiment. The dis-
turbance amplitude was decreased in the subsequent experiments. 

 

 
Fig. figPI_exp. PI controller, experiment 
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Modelling  

A linear discrete-time state-space nominal model describing the dynamics from 
u to y is required for eMPC design. Due to the nonlinearity of the plant, such a 
model is obviously a poor approximation of the process dynamics. Since the pro-
cess dynamics are relatively slow, experimentation is time-consuming and detailed 
nonlinear modelling is prohibitively expensive with respect to the anticipated 
gains. In industry, PID controllers for such processes are commonly tuned by ap-
plying tuning rules to linear models obtained from step response tests at the most 
challenging operating point. eMPC is being considered as a straightforward re-
placement for PID control and, consequently, the modelling and experimentation 
effort should be comparable to that of tuning a PID loop. The running assumption 
that eMPC is robust enough to cope with the model inaccuracy was verified later 
using LLA, simulation, and experimental tests. 

Models were identified from a relatively short open-loop measurement data se-
quence around the operating point (y = 76 ºC, u = 65%, d = 100%) which exhibits 
the highest process gain. Using the prediction error method in Matlab's Identifica-
tion Toolbox, two candidate nominal state-space models were obtained. The first-
order discrete-time model is defined by  

 am = 0.9742, bm = -0.009121, cm = 2  (eqmodel1) 

and the second-order model reads  

[ ]19064.0,
009435.0
006895.0

,
9634.00
03934.0

mmm −=







−
−

=







= cbA  (eqmodel2) 

both sampled at Ts = 2 s. Model validation in Figure figModel shows good agree-
ment between the open-loop process response y and open-loop simulations with 
both models around the designated operating point yr = 78 ºC. The difference be-
tween the two candidate models is hardly visible, therefore both were subsequent-
ly used in controller design. Note also that the difference between the modelled 
and the measured response is considerable in the operating area away from the 
designated operating point, which is due to the considerable decrease in the pro-
cess gain at valve positions u > 80%. 
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Fig. figModel. Model cross-validation  

eMPC Control  

Several tracking eMPC controllers with different model structure were de-
signed and tested. Each of them was first tuned using local linear analysis (LLA) 
[bibGP09], then tested by simulation, and finally assessed experimentally.  

The tuning approach was based on LLA of the "unconstrained" region (the re-
gion with no active constraints). LLA is based on computing the relevant transfer 
functions of the closed-loop system by combining the equations of the model, the 
controller, and the Kalman filter. LLA for the unconstrained region does not re-
quire parametric solution of the mpQP problem. However, once the parametric so-
lution is computed, LLA is also valuable for supplementary3 analysis of con-
strained regions. LLA results below are presented in the form of sigma diagrams, 
but root-locus diagrams were also used in tuning, and other forms of linear analy-
sis are available as well. 

Controller design is based on the nominal model, but it also allows robustness 
analysis with a set of different "true" models. A relatively short sampling time TS 
= 2 s had to be used in order to achieve disturbance-rejection properties competi-
tive with those of the original PID controller. A relatively long prediction horizon 
N is required for effective handling of output constraints, and a short Nu tends to 

                                                         
3 LLA is strictly valid only when the process dwells in a certain region for a 

sufficiently long time. 
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restrict control performance. Therefore, the horizons were chosen as long as feasi-
ble for reasonably short partition computation. The tuning objectives were near-
critical damping of dominant poles and well-behaved responses to the reference 
signal and disturbance signals at input, load, and output. Covariance estimates 
from open-loop experimental runs were used for KF tuning initially. However, the 
disturbance models were not reliable due to the short experimental data sequences. 
The final values were chosen using the observer concept where the diagonal ele-
ments of the KF covariance matrices were treated as tuning parameters. The de-
sign parameters of the resulting controllers are summarised in Table 
TAB_eMPC_par. As an illustration, Figure figeMPCxs shows projected three-
dimensional cross-sections of four-dimensional polyhedral partitions of eMPC1 
(top) and eMPC4 (bottom), both with yr fixed at 78 ºC. These controllers are fur-
ther discussed in the following subsections.   

Table TAB_eMPC_par. eMPC controllers 

Controller Model 
order 

N Nu Rdu QK Integrator 
position 

Output 
constraints 

Regions* 

eMPC1 
eMPC2 
eMPC3 
eMPC4 
eMPC5 

1 
2 
2 
1 
1 

41 
27 
33 
41 
33 

4 
3 
3 
4 
3 

0.03 
0.01 
0.01 
0.03 
0.005 

diag([10 100]) 
diag([0 0 1000]) 
baba

T⋅104 +diag([0 0 103]) 
diag([10 100]) 
diag([1 100]) 

output 
output 
input 
output 
input 

none 
none 
none 
y ≤ 79 
none 

137 
89 
84 

1048 
63 

All controllers: Ry = 1, RK = 1, input constraints 0 ≤ u ≤ 100, -cdu ≤ du ≤ cdu, cdu = TS⋅100/120 s 
* The number of regions is dependent on the chosen range of Θ. 
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Fig. figeMPCxs. eMPC partition cross-sections (top: eMPC1; bottom: eMPC4) 
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eMPC Control without Output Constraints 

In the first step, we examine the overall feedback performance of eMPC con-
trollers where output constraints are not considered in the formulation of the MPC 
control law, and also study the effect of the model order choice. 

The controller eMPC1 is based on the first-order model (eqmodel1), using the 
disturbance model with the integrator at the output. The simulated performance is 
shown in Figure figeMPC1_sim, while the result of the plant experiment is pre-
sented in Figure figeMPC1_exp. A similar experiment as in Figure figPI_exp was 
performed. The simulation results are in good agreement with the performance of 
the real system, with the exception of the response to the disturbance signal d. 
This difference is due to valve saturation – in this attempt, the disturbance ampli-
tude in the experiment was too small. The results may also be compared with 
time-responses computed using LLA. LLA set-point and output disturbance re-
sponses match the simulation results, whereas LLA responses to input disturb-
ances and d differ slightly because they do not consider signal rate limits. Com-
pared to the performance in Figure figPI_exp, there is much less variance in u due 
to better suppression of measurement noise, while tracking and disturbance re-
sponses are comparable in this case.  

Second-order models produce a slightly better estimation fit in model identifi-
cation. LLA and the simulation results indicate that eMPC controllers using the 
second-order model structure may yield better disturbance-rejection performance, 
but they have not been verified experimentally4. Figure figeMPC2_sim shows the 
performance of the controller eMPC2 using the pure output-disturbance model in 
simulation. Figure figeMPC3_sim shows the simulation with the eMPC3 control-
ler using the disturbance model with the integrator at the input, where KF tuning is 
inspired by the Loop Transfer Recovery approach [bibMac89]. The simulated per-
formances with eMPC2 and eMPC3 are very similar, with eMPC3 having a slight 
advantage in terms of rejection of input and load disturbances. Compared to 
eMPC1, both produce faster response to input disturbances and also faster tracking 
performance, however there is a slight tracking overshoot.  

 
 
 
 

                                                         
4 Experiments with second-order models could not be carried out in the first 

experimental round due to numerical problems with the mpQP algorithm. After 
the issue was resolved, simulation analysis indicated that another set of time-
consuming experiments is not justified. The simulations predict the abovemen-
tioned improvements in overall feedback performance, but do not predict a signif-
icant improvement in performance near y constraints compared to the original PI 
control. 



17 

 
Fig. figeMPC1_sim. eMPC1 controller, simulation 

 

Fig. figeMPC1_exp. eMPC1 controller, experiment 
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Fig. figeMPC2_sim. eMPC2 controller, simulation  

 
Fig. figeMPC3_sim. eMPC3 controller, simulation  

Figure figeMPC_sigma compares sigma diagrams of the eMPC controllers 
eMPC1 (top-left), eMPC2 (top-right), eMPC3 (bottom-left), and eMPC5 (bottom-
right). The sigma diagrams display the sensitivity functions S(ω) and T(ω) for the 
unconstrained region of the controllers. The corresponding transfer functions are 
computed from closed-loop system formulae for the system comprising the pro-
cess model and the tracking controller [bibGP09]. The sensitivity function S(ω) is 
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the transfer function from the measurement noise signal v to the noisy measure-
ment y, while the complementary sensitivity function T(ω) is the transfer function 
from v to the noise-free output ynf; more details on sensitivity functions can be 
found in [bibGSB08] and [bibMac02]. The solid and dashed lines represent the 
nominal T(ω) and S(ω) for the nominal model, while the dotted lines show a fami-
ly of sensitivity functions obtained with a set of modified true models, serving as 
an indication of robustness to the anticipated modelling errors. The latter include 
modified process gain and an additional sample of computational delay.  

 

 
Fig. figeMPC_sigma. Sigma diagrams of nominal sensitivity functions S(ω) (dashed) and T(ω) 
(solid); S(ω) and T(ω) with a set of true models (dotted). Top-left: eMPC1; top-right: eMPC2; 
bottom-left: eMPC3; bottom-right: eMPC5.  

In sigma diagrams, high bandwidth of T(ω) at medium frequencies (MF) indi-
cates a fast tracking response. Fast roll-off of T(ω) at high frequencies (HF) indi-
cates efficient suppression of measurement noise. A peak in the MF range of T(ω) 
is a sign of tracking overshoot. Low S(ω) in the low frequency range (LF) indi-
cates efficient rejection of input disturbances. A peak in the MF range of S(ω) 
suggests an underdamped input-disturbance response. For example, one can notice 
lower S(ω) at LF with eMPC3 and eMPC5, which are both based on the disturb-
ance model structure with the integrator at the input. Also, faster HF roll-off in 
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T(ω) may be noticed with eMPC2 and eMPC3, which are both based on the sec-
ond-order model.  

eMPC Control with Output Constraints 

We now investigate the ability of eMPC to suppress disturbance transients that 
push the output temperature y above the set-point 78 ºC to more than the forced 
cooling threshold value 80 ºC by applying output constraints in the eMPC control-
ler. The disturbances that are the most relevant in this case have slow dynamics, as 
they are mostly caused by V221 and other valves in the heating network. There-
fore, the system response to disturbances at d is the most important. However, we 
focused upon very similar disturbances at u due to their better repeatability in ex-
periments.   

Figure figyconstr_exp compares responses to step-wise disturbances injected at 
u, starting at 200 s and 350 s, in three plant experiments:  
• The solid line shows the response of the controller eMPC1, which does not 

consider output constraints.  
• The dashed line refers to the response with the controller eMPC4 with the 

same tuning parameters as eMPC1, but with the additional hard output con-
straint y ≤ 79, which is otherwise violated without constraints handling. How-
ever, the difference in the peak value of y compared to eMPC1 is minimal, and 
setting the constraint any lower results in its violation and therefore the infea-
sibility of the control problem.  

• The dash-dot line shows the response with the controller eMPC5 based on a 
different disturbance model with the disturbance integrator at the process in-
put, with no handling of output constraints. Suppression of input disturbances 
is improved considerably.  
The effect of the output constraints may be further investigated by examining 

the open-loop predictions in the samples immediately following the step disturb-
ances and the components of the MPC value function J*.  

With a tightly-tuned univariable MPC controller (with very low Rdu), J* is 
dominated by the tracking cost, which penalises excursions of y from the set-point 
yr in the least-squares sense. Therefore, it also serves the purpose of avoiding y 
constraints almost as much as possible. In theory, by applying the y constraints it 
might be possible to transform the disturbance response so that the peak does not 
violate the constraints despite an overall increase in the tracking cost. In practice, 
this is difficult to achieve because of the restricted control horizon and because 
predictions of unmeasured disturbances may not be accurate.  

With an MPC controller detuned for slower response (with higher Rdu), J* in-
cludes a more considerable portion of the control move cost. With such tuning, the 
optimum obtained without considering the y constraints is likely to violate the lim-
it due to the slow controller reaction to the disturbance. The constrained optimum 
may provide a feasible solution with a faster controller response, at a higher J* 
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value due to a higher control move cost. Therefore, less aggressive tuning may act 
as a "crush zone" for the y constraints, and the controller may react to a disturb-
ance much faster in case the predicted values of y approach the constraints than it 
would otherwise. 

Due to competition with the original PID control, our eMPC controllers are 
tuned relatively tightly. In Figure figyconstr_exp a slightly shorter delay in the re-
sponse of u to the disturbance at 200 s can be noticed with eMPC4 than with 
eMPC1, and there is also a slight reduction in the y excursion. However, the per-
formance improvement due to the improved disturbance model of eMPC5 is con-
siderably more noticeable in our case.  

A practical eMPC implementation would need to address the infeasibility prob-
lem in case of a violation of the output constraints. For applications where output 
constraints are user-specified values rather than physical constraints, soft output 
constraints are appropriate. With soft constraints, suitably penalised violation cost 
terms are added to the cost function J, instead of actually including the corre-
sponding constraints in the CFTOC problem formulation. However, a straightfor-
ward implementation of soft constraints tends to increase the computational com-
plexity over the feasible limit. Implementation is possible with the following 
complexity-reduction measures [bibGer11]:  
• move blocking, for the sake of improved conditioning of computation;  
• sparse placement of output constraints over the prediction horizon, in order 

to decrease the number of regions and avoid large numbers of very small re-
gions (nano-regions); 

• numerical improvement of the mpQP algorithm. 
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Fig. figyconstr_exp. Suppression of step-disturbances at the process input by controllers eMPC1 
(solid), eMPC4 (dashed), and eMPC5 (dash-dot), experiment  

Problems and limitations in applying eMPC  

Crush zone. MPC enables improved control performance in the presence of 
constraints on process signals, compared to conventional controllers. However, 
when setting constraints that the controller should respect, one must also mind the 
"crush zones". Crush zones are spare degrees of freedom in the optimisation of the 
MPC cost-function that the controller may use when approaching constraints. 
Such crush zones may be in the form of:  

a) redundant control inputs, which may occasionally deviate from the opti-
mal or default value; 

b) less important controlled outputs, which may be temporarily dropped 
from the control objective;  

c) less aggressive tuning, which may be tightened in an emergency;  
d) soft constraints, which may be used to find an acceptable compromise 

among several undesirable violations by specifying appropriate penalties 
in violation costs. However, in the absence of feasible alternatives, soft 
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constraints may merely prevent the occurrence of control-problem infea-
sibility without reducing constraint violations.   

Therefore, the constraints-handling advantage of MPC is most notable with 
multivariable processes, where items a) and b) are available. With a relatively 
tightly tuned univariable process, such as the one presented here, almost no such 
crush zone is available. That is why only a slight performance improvement is 
achievable by constraints handling.  

 
Tuning and disturbance models. Certain performance improvements with 

eMPC are achievable by tuning the feedback action for efficient and robust feed-
back performance. The appropriate methods are mostly available as the legacy of 
LQG control. The output-step-disturbance approach of the traditional industrial 
MPC methods typically offers simple design for robust but not the most efficient 
feedback performance. The feedback performance of an MPC controller is based 
on the structure and the parameters of the disturbance model (for unmeasured dis-
turbances). Estimation methods for automated tuning of disturbance model param-
eters are available [bibORR06]. However, the controller must typically ensure a 
reasonable response to several different types of disturbances and also to set-point 
changes, and maintain them for a certain range of modelling errors; therefore, tun-
ing is often a study in the art of compromise.  

 
Partition size. The number of local controllers in the partition corresponds to 

all feasible combinations of the constraints. In on-line MPC, this is not a relevant 
consideration, as the regions need not be stored (although this may affect calcula-
tion time with a QP solver). With eMPC this is very important; not only due to 
storage requirements, but also because the on-line region search algorithm may 
take longer than on-line QP calculation for sizeable problems [bibZJM11]. It is 
important to keep the number of parameters and decision variables low, and place 
constraints sparingly.  

 
Short-sightedness. Relatively fast sampling is needed for efficient disturbance 

rejection at the bottom level of the control hierarchy. In order to keep the partition 
size manageable with eMPC, one cannot afford long horizons. The two require-
ments together typically result in short-sighted controllers unable to account for 
output constraints violations, which are likely to occur after the end of the predic-
tion horizon. Infinite horizon MPC algorithms may help construct a meaningful 
cost function with short N and have favourable theoretical properties, but they do 
not help to react early to disturbances that lead to constraints violations. However, 
the short-sightedness problem may be worked around by using blocking tech-
niques for decision variables and by sparse placement of output constraints.  

 
Tracking implementation. With eMPC, special care is required in order to make 

the off-line computational demand manageable. For example, variable reference 
signals increase computational complexity. Therefore, there is an advantage in 
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handling fixed reference signals with coordinate substitutions, and in handling ref-
erence signals, which have a small number of discrete positions, via controller 
switching. Furthermore, various offset-free tracking implementations are possible, 
with two main approaches being tracking-error integration and disturbance esti-
mation. The former may allow simpler implementation, but the resulting perfor-
mance may be suboptimal.   

 
Partitioning reliability. The available academic multi-parametric quadratic 

programming algorithms [bibKGB05, bibBem06] used to compute the explicit 
MPC solutions are not well-suited to practical tracking controllers, and may in 
some cases produce incomplete controller partitions. Problems appear in terms of 
poorly conditioned computations and in growing numbers of increasingly small 
regions (nano-regions) in specific partition areas. They stem from dense place-
ment of constraints due to short sampling time and from the increased number of 
mpQP parameters that appear in tracking controllers due to model augmentation. 
Problem conditioning may be improved by applying move-blocking and by sparse 
placement of state/output constraints over the prediction horizon. To improve the 
reliability of partitioning, systematic treatment of numerical issues and degenera-
cies arising in several parts of the mpQP solver and its sub-functions is required 
[bibGer11]. This includes the choice of external LP and QP solvers and their 
threshold values.  

It should be pointed out that QP solver reliability may also be an issue in on-
line MPC, and that the problems may not be detected until the state enters a spe-
cific problematic area. For example, the QP solver of Matlab's Optimization 
Toolbox is prone to failing to find an existing feasible solution and to entering a 
cycling loop which never converges to the correct set of active constraints.   

Conclusions 

The experimental case study showed that eMPC is implementable for applica-
tions at the physical control level, which are currently dominated by PID control. 
However, eMPC's systematic constraints handling ability may not result in an ob-
vious improvement regarding violations of output constraints if a suitable degree 
of freedom is not provided. 

In our application, certain improvements in feedback control performance were 
achieved using eMPC compared to PI control, primarily regarding the suppression 
of slow process disturbances and measurement noise. However, it must be admit-
ted that the PI controller achieves remarkably good performance especially when 
taking into account its simplicity, and the improvements achieved with eMPC 
were not considered substantial enough to warrant a control system redesign in 
this application.  
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Abstract    

In explicit model predictive control (eMPC), the bulk of the computational load 
of classic MPC is performed during the off-line design stage, which enables the 
controller to be implemented on standard industrial automation equipment and for 
processes with fast dynamics, however the computational complexity restricts ap-
plicability to small-scale control problems. The approach is appealing for a niche 
of control applications, but practical applications have been scarce so far. We de-
scribe one possible offset-free tracking setup that allows implementation of eMPC 
with relatively fast sampling and reasonably long horizons for practical applica-
tions. The applicability of eMPC is illustrated by an experimental case study of 
cooling-water temperature control in a biogas-fuelled combined-heat-and-power 
production unit, where eMPC replaces a pre-existing single-loop PID controller, 
with the aim of reducing unnecessary excursions of the cooling water temperature 
away from its set-point in the critical range near output constraints. eMPC control-
lers were designed using local linear analysis and tested both on a simplified simu-
lation model and experimentally on the CHP unit. The performance improvements 
due to tuning of eMPC feedback action and due to the constraints-handling ability 
were examined, and several implementation issues related to the practical imple-
mentation of eMPC are discussed. 
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