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Introduction  

Industrial control systems are normally based on conventional linear control 
methods, although the processes are mostly nonlinear by nature. Modern control 
theory offers many alternatives for achieving more efficient control of nonlinear 
processes. Advanced control methods are based on more comprehensive and accu-
rate process models [bibBeq91; bibHS97; bibMSJ97]. Surveys of industrial con-
trol technology [bibTIA98; bibSeb99; bibSA11] show that there is a sizeable and 
growing market for advanced controllers; yet relatively few vendors offer useful 
turn-key products.  

  Certain advanced control concepts, for example, fuzzy parameter scheduling 
[bibTHC97; bibBOOB02], multiple-model control [bibGHP02; bibDC03], adap-
tive control [bibHA00], and nonlinear model-predictive control [bibQB99] offer 
considerable improvements in the control of nonlinear or time-varying processes. 
There are, however, several constraints when it comes to applying these methods 
in industrial applications:  

1.   Narrow field of application. Real-life problems are diverse, and nonlinear 
control methods have restrictions regarding their scope of applications. Flexible 
methods or toolboxes of methods are needed in industry. 

2.   Availability. Advanced methods are required in the form of ready-to-use 
building blocks for industrial process control development software environ-
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ments. Custom design requires considerable effort, time, and money and is of-
ten not favoured. 

3.   Hardware requirements. Due to the complexity of implementation and the 
computational demands, advanced methods may require resources not normally 
available in industrial control hardware.  

4.   Tuning complexity. Non-specialised field engineers are intimidated by the 
complexity of tuning and maintenance.  

5.   Model reliability. With methods heavily dependent on accurate process mod-
els, the long-term reliability of nonlinear modelling is often an issue. 

6.   High profitability demand. In many cases, nonlinear processes can be con-
trolled using the ubiquitous PID controller. In order to replace a conventional 
control system with an advanced one, a considerable performance increase (fi-
nancial gain) must be ensured. The maintenance costs of an inadequate conven-
tional control solution may be less obvious.  

  Our aim was to design an advanced controller named ASPECT that addresses 
some of the aforementioned issues, with the emphasis on reducing tuning com-
plexity, using the concepts of agent-based systems (ABS) [bibWJ95; bibDR09]. 
The controller configuration procedure is simplified by the partial automation of 
the commissioning procedure, which is typically carried out by a control engineer. 
The idea behind ABS is that difficult problems may be solved by assigning tasks 
to networked software agents. These software agents are characterised by proper-
ties such as autonomy (i.e., they operate without the direct intervention of hu-
mans), social ability (i.e., they interact with other agents), reactivity (i.e., they per-
ceive their environment and respond to it), pro-activeness (i.e., they exhibit goal-
directed behaviour, take the initiative), etc. This work does not address the issues 
of ABS theory, but rather the application of basic ABS concepts to the rather con-
servative field of process systems engineering, where a number of restrictions 
have to be considered. For example: initiative is restricted, a high degree of relia-
bility and predictability is demanded, insight into the problem domain is limited to 
the sensor readings, specific hardware platforms are used where object-oriented 
programming is not supported, etc.  

  The outline of this chapter is as follows. Firstly, Section 2 presents an over-
view of the ASPECT controller’s implementation structure. Section 3 describes 
the Run-Time Module’s structure and its most important sub-modules (agents), 
including some simulation results and an overview of the implementation on a 
PLC (Programmable Logic Controller). Section 4 provides a brief description of 
the Configuration Tool. Section 5 describes the experimental results of the appli-
cation of the controller to a pilot plant where it is used to control the pressure dif-
ference on a hydraulic valve in a valve test apparatus. Finally, the lessons learned 
are discussed and the conclusions are drawn.  
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ASPECT Controller Concept  

  The ASPECT controller was designed to be an efficient and user-friendly en-
gineering tool for the implementation of parameter-scheduling nonlinear control in 
the process industry. User-friendliness was addressed by simplifying the commis-
sioning of the controller using automatic experimentation and tuning. Both the 
control and self-tuning algorithms were adapted for implementation on the PLC or 
open-controller industrial hardware platforms. 

  The key to the concept is the self-tuning mechanism. The controller parame-
ters are automatically tuned from a nonlinear process model. This model is deter-
mined on the basis of operating process signals by experimental modelling, where 
a novel online learning procedure is used. This procedure is based on model iden-
tification using the local learning approach [bibMSJ97, p. 188]. Compared to 
adaptive methods that use recursive identification continuously [bibHA00], a spe-
cific approach is used, where the measurement data are processed batch-wise, with 
additional steps performed before and after the model identification. These addi-
tional steps check the validity of the data prior to the self-tuning actions, and thus 
the reliability of the modelling and self-tuning is improved. Recently, similar ap-
proaches have been studied in the framework of evolving systems [bibAF04; 
bibDS11].   

  The controller is intended for single-input, single-output processes; a meas-
ured disturbance may be included and used for the feed-forward. The application 
range of the controller depends on the selected control algorithm. The controller 
has a modular structure that permits the use of a range of control algorithms that 
are suitable for different processes. The controller also monitors the resulting con-
trol performance and reacts to detected irregularities.  

  The two main components of the ASPECT system are the Run-Time Module 
(RTM) and the Configuration Tool (CT). The RTM runs on a PLC or an embed-
ded controller, performing all the main functionality of real-time control, online 
learning and control performance monitoring. The RTM includes a human-
machine interface (HMI) in the form of a hierarchical set of dialogue windows on 
the PLC operator panel, which allows the direct configuration of all the RTM pa-
rameters and assists in the execution of the plant experiments. The CT, which is 
used on a personal computer (PC) only during the initial configuration phase, sim-
plifies the commissioning procedure by providing guidance and default parameter 
values.  
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Run-Time Module  

RTM Structure 

  The RTM is made up of a set of interconnected modules, linked in the form of 
a multi-agent system. Fig. 1 shows an overview of the RTM and its main modules: 
the Signal Pre-processing Agent (SPA), the Online Learning Agent (OLA), the 
Model Information Agent (MIA), the Control Algorithm Agent (CAA), the Con-
trol Performance Monitor (CPM), and the Operation Supervisor (OS).  

 

 

Fig. 1. Run-Time Module Structure  
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Multi-faceted Model (MFM)  

  In order to accommodate the diverse model requirements of the OLA and the 
CAAs, the ASPECT controller is based on the multi-faceted model (MFM) con-
cept. The concept was proposed by Zeigler [bibZei79] and later on elaborated by 
other authors (e.g., [bibSHL90], [bibFra95]). In general, multi-faceted modelling 
represents the modelling of one system from different aspects and at different levels 
of complexity, thus providing a means to solve different (engineering) tasks or one 
task in different ways. The original idea was to have a multi-faceted model that 
would represent a database of various models. The appropriate models from this 
database should be selected according to the type of process, the working point of 
the process, the specifics of the CAAs, etc. With various types of models the dif-
ferent situations (states) in which the process is likely to be should be covered, 
thus enabling a high degree of autonomy of the system controlling the process. 

 
During development, the original idea was reduced to a less ambitious MFM 

that includes a set of local first- and second-order discrete-time linear models with 
time delay and offset, and also allows a fuzzy model interpretation. Each local 
model corresponds to one value of the scheduling variable s(k). The model equa-
tion for first-order local models is 

jjjjjj rdvkvcdukubkyaky +−+−+−=+ )()()()1( ,1,1,1
   (1) 

and for second-order models it is 

jjjjj

jjjjjj
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where k is the discrete time index, j is the number of the local model, y(k) is the 
process output signal, u(k) is the process input signal, v(k) is the optional meas-
ured disturbance signal (MD), du is the delay in the model branch from u to y, dv 
is the delay in the model branch from v to y, and ai,j, bi,j, ci,j, and rj are the parame-
ters of the j-th local model.  

For the OLA, the set of local models is interpreted as a Takagi-Sugeno fuzzy 
model, which in the case of a second-order model can be written in the following 
form: 
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where βj(k) is the fuzzy membership function value of the j-th local model at the 
current position of the scheduling variable s(k). Normalised triangular membership 
functions are used, as illustrated in Fig. 2. 

 

 
Fig. 2. Fuzzy membership functions of local models  

The scheduling variable s(k) is calculated as a weighted sum of the process sig-
nals with the coefficients kr, ky, ku, and kv as follows: 

)()1()()()( kvkkukkykkrkks vuyr +−++=   (4) 

The coefficients are configured by the engineer according to the nature of the 
nonlinearity of the process. 

Note that the applied modelling approach is very similar to the concept of “lo-
cal model networks” [bibMSJ97] but still preserves the idea of different models 
for different purposes present in multifaceted modelling.  In this sense, the process 
can be represented by a wide variety of models, starting from one simple, linear, 
first-order model without dead-time and ending with a Takagi-Sugeno model that 
includes 10 second-order sub-models with dead-time. 
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Online Learning Agent (OLA) 

The task of the OLA is to estimate the local models from the process signals 
using an experimental modelling procedure. The OLA scans the buffer of recent 
real-time signals, prepared by the SPA, and performs a model identification (esti-
mation of the parameters) of those local models that are excited by the signals. 
Then, the identified model is verified by comparing the simulated model output 
with the process output measurements. If the new sets of estimated parameters 
pass the verification test and are found to be better than the existing sets, they are 
submitted to the MIA.  

The OLA is invoked either upon demand from the OS or autonomously, when 
an interval of the process signals with sufficient excitation is available for pro-
cessing. Once activated, it processes the signals batch-wise and uses the local 
learning approach. An advantage of the batch-wise concept is that the decision on 
whether to adapt the model is not performed in real-time but following a delay that 
allows for an inspection of the identification result before it is applied. Thus, bet-
ter means for control over the data selection is provided. Fig. 3 illustrates in more 
detail the procedure that is executed when the OLA is invoked.  

The problem of distributing the computation time required for model identifica-
tion appears with the batch-wise processing of the data (as opposed to the online 
recursive processing that is typically used in model-based adaptive controllers). 
This problem is resolved by using a multi-tasking operation system, so that the 
OLA is executed as a low-priority task. The OLA typically requires considerably 
more computation than the real-time control algorithm; however, the computa-
tional load is acceptable for microprocessors in modern industrial control equip-
ment, as long as the processing of the batch does not have to be carried out within 
a single sampling period of the control algorithm.  
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Fig. 3. Online learning procedure 

Copy signal buffer and active MFM 

When the OLA is invoked, the relevant section of the signal buffer is acquired 
from the SPA that maintains it. This is required because the signal buffer is being 
updated during the OLA computations.   

The online learning procedure always compares the newly identified local 
models with the previous set of parameters. Therefore, the active MFM is obtained 
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from the MIA. A default set of model parameters is used for the local models that 
have not yet been identified. 

Excitation check  

A quick excitation check is performed at the start. If the standard deviations of 
the signals r(k), y(k), u(k), and v(k) in the active buffer indicate excitation above 
their threshold levels, further processing is initiated, otherwise the OLA termi-
nates. 

Select local models  

A local model is selected if the sum of its membership functions βj(k) over the 
active buffer normalised by the active buffer length exceeds a given threshold. 
Only the selected local models are included in further processing.  

Model identification  

The local model parameters are estimated using the Fuzzy Instrumental Varia-
bles (FIV) identification method developed by Blažič et al. [bibBSGD03, 
bibBSGD09]. This is an extension of the linear instrumental variables identifica-
tion procedure [bibLju87] for the Takagi-Sugeno fuzzy model. The method uses 
the local learning approach [bibMSJ97]. This approach is based on the assumption 
that the parameters of all the local models will not be estimated in a single regres-
sion operation. Compared to the global approach, it is less prone to the problems 
of ill-conditioning and local minima, and involves a less complex computation. 
The FIV identification method is well suited to the needs of industrial operation 
(intuitiveness, gradual building of the nonlinear model, modest computational de-
mands). It allows an inventory of the local models that are not estimated properly 
due to insufficient excitation. It is efficient and reliable in the early stages of con-
troller configuration, when all the local models have not been estimated yet. On 
the other hand, the convergence in the vicinity of the optimum is slow. Therefore, 
it is likely to yield a worse model fit than methods employing nonlinear optimisa-
tion using the global approach. An alternative approach based on recursive cluster-
ing and recursive least-squares has been investigated recently [bibDS11]. 

The main procedure of the FIV method is outlined as follows. Model identifica-
tion is performed for each selected local model (denoted by the index j) separately. 

MIA,
ˆ

jθ , the initial estimate of the parameter vector, is copied from the active 

MFM, and the covariance matrix Pj,MIA is initialised to 105 ⋅ I (identity matrix). In 
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the first step, the FLS (fuzzy least-squares) estimates, FLS,
ˆ

jθ  and Pj,FLS, are ob-

tained using weighted least-squares identification, with βj(k) used for the 
weighting. The calculation is performed recursively to avoid matrix inversion:  
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where [ ]T)(),1(),(),1(),()1( jjjjj dvkvdukudukukykyk −−−−−−−=+ βψ  is the 

vector of the measurements, and DZ(.) is the dead-zone operator with the parame-
ter xdead  
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In the second step, the FIV (fuzzy instrumental variables) estimates, FIV,
ˆ

jθ  and 

Pj,FIV, are calculated using weighted instrumental variables identification as fol-
lows: 
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where [ ]T)(),1(),(),1(ˆ),(ˆ)1( jjjjj dvkvdukudukukykyk −−−−−−−=+ βχ  is the 

instrumental variables vector, and )1(ˆ)()(ˆ
1

T −= ∑ =
kkky j

m

j j θψ  is the simulated 

output. The dead zone is used in the FLS and FIV recursive estimation in order to 
prevent result degradation as a result of noise. The vector of the parameters and 
the covariance matrix are updated only if the absolute weighted difference be-
tween the process output and its prediction is above the configured noise thresh-
old.  

In the case of a lack of excitation in the model branch from u to y or in the 
model branch from v to y (or when the measured disturbance is not present at all), 
simplified variants of the method with reduced parameter estimate vectors are 
used. 
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Model verification/validation  

This step involves local and global verification/validation, where the recent 
batch of measurements is compared with the model simulations. The same proce-
dure is referred to as "verification" with the newly estimated parameter sets FLS,

ˆ
jθ  

and FIV,
ˆ

jθ (over the same data set), or as "cross-validation" with the initial parame-

ter set MIA,
ˆ

jθ . 

Local verification is performed by comparing the simulation output ŷ  of each 
selected local model with the actual process output, recorded in the signal buffer, 
in the proximity of the selected local model position. The normalised sum of mean 
square errors MSEj = ( )∑ −

=
−

1

0
1 )()(ˆN

kN kyky  is calculated. The proximity to the se-

lected local model position is defined by the membership functions βj. For each of 
the selected local models, this step is carried out with three sets of model parame-
ters: MIA,

ˆ
jθ , FLS,

ˆ
jθ , and FIV,

ˆ
jθ . From among MIA,

ˆ
jθ  and FLS,

ˆ
jθ , the set with the 

lower MSEj is selected.  
Global verification is performed by comparing the simulation output of the 

fuzzy model, including the selected set with the actual process output. The nor-
malised sum of mean square errors (MSEG) is calculated. If the global verification 
result is sufficiently improved compared to the initial fuzzy model, the selected set 
is sent to the MIA as a result of the online learning, otherwise the original set 

MIA,
ˆ

jθ  remains in use.  

For each processed local model, the MIA receives the MSEj, which serves as a 
confidence index, and a flag indicating whether the model is new or not. Even if 
no new model is obtained, this may serve for model validity checking. 

Model structure estimation 

Two model structure estimation units are also included in the OLA. The Dead-
Time Unit (DTU) estimates the process time delay by comparing the estimation 
results with different dead-time values. The Membership Function Unit (MFU) 
suggests whether a new local model should be inserted. It estimates an additional 
local model in the middle of the interval between the two neighbouring local mod-
els that are the most excited. The model is submitted to the MIA if the global vali-
dation of the resulting fuzzy model is sufficiently improved, compared to the orig-
inal fuzzy model. The operation of both structure estimation units is only reliable 
when suitable excitation is present in the process signals, and therefore higher ex-
citation thresholds apply. 
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Model Information Agent (MIA) 

The MIA maintains the active MFM and its status information.  
Its primary function is to process the online learning results. When the OLA 

sends a new local model, it is accepted if it passes the stability test and its confi-
dence index is sufficient. If it is accepted, a "ready for tuning" notification is sent 
to the CAA. Each local model contains a flag indicating whether its parameters 
have been estimated since start-up or not, facilitating a quick overview of the pro-
gress of self-tuning, and a model confidence index. If the confidence index is be-
low the threshold, the Automatic Mode may be disabled.     

The MIA contains a mechanism for adding additional local models (at new po-
sitions of the scheduling variable) into the MFM. This may occur either by exter-
nal request or automatically, using the MFU of the OLA. The MIA may also store 
the active MFM to a local database or recall a previously stored one, which is use-
ful if the process switches between different operating modes.  

The process model in the MIA is built gradually. During the initial configura-
tion, the MIA is filled with default local models based on the initial estimation of 
the process dynamics. They are not exact but may provide reliable (although slug-
gish) control performance, similar to the Safe Mode. Using online learning 
through experiments or normal process operation (when the conditions are appro-
priate for closed-loop identification), an accurate model of the process is estimated 
by receiving identified local models from the OLA. 

Control Algorithm Agent (CAA) 

A CAA is composed of a non-linear control algorithm and a procedure for au-
tomatic tuning of its parameters. Several different CAAs may be used in the con-
troller and may be interchanged in the initial configuration phase.  

The controller may operate in the following modes:  
– Manual Mode: open-loop operation (actuator constraints are enforced)  
– Safe Mode: a fixed PI controller with conservatively tuned parameters 
– Auto Mode (or several auto modes with different tuning parameters): a 

non-linear controller 

The CAAs share a common interface of interaction with the OS and a common 
modular internal structure, consisting of three layers:  

1. The control layer contains the functionality of a local linear controller (or sev-
eral local linear controllers simultaneously), including everything required for 
reliable operation in industry, such as the handling of constraints with anti-
windup protection, bump-less mode, parameter switching, etc.  
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2. The scheduling layer performs real-time blending (switching or scheduling) of 
the tuned local linear controllers, so that in conjunction with the control layer, a 
fixed-parameter, non-linear controller is formed.  

3. The tuning layer is the automatic tuning procedure of the controller parameters 
from the MFM when the MIA reports that a new local model is generated, if 
auto-tuning is enabled. The replacement of the parameters of the control and 
scheduling layers must be carried out in such a manner that real-time control is 
not disturbed.  

Three CAAs have been developed and each has proved effective in specific ap-
plications: the Fuzzy Parameter-Scheduling Controller (FPSC), the Dead-Time 
Compensation Controller (DTCC), and the Rule-Based Neural Controller (RBSC). 
In the following subsections, an overview of the three CAAs using the above-
mentioned layers is presented.  

Fuzzy Parameter-Scheduling Controller  

A graphical overview of the FPSC is shown in Fig. 4.  
The control layer includes a single PID controller in a form suitable for control-

ler blending using velocity-based linearization. It is equipped with anti-windup 
protection and bump-less transfer during mode changes.  

The scheduling layer performs fuzzy blending of the PID controller parameters 
according to the scheduling variable s(k) and the fuzzy membership functions βj(k) 
of the local models. The concept of velocity-based linearization enables the dy-
namics of the blended global controller to be a linear combination of the local con-
troller dynamics across the entire operating region, not just around the equilibrium 
operating points. This provides the potential to improve the performance with a 
few local models and more transparent behaviour at the off-equilibrium operating 
points [bibLL98; bibKZSV02]. In order to facilitate the velocity-based lineariza-
tion approach, the Kp and Td parameters are blended directly, while in the case of 
Ti, its inverse value is blended.  

The tuning layer is based on the magnitude optimum (MO) criterion imple-
mented using the multiple integration (MI) method [bibVSJ01]. By applying the 
MO criterion, the magnitude (amplitude) of the system’s closed-loop, set-point re-
sponse is made as flat and close to unity as possible for a large bandwidth [bib-
Whi46]. This results in a relatively fast and non-oscillatory response of the closed-
loop system. The expressions for calculating the PID controller’s parameters using 
the MO criterion are quite complex; however, the MI method significantly simpli-
fies the equations and enables the calculation of the PID controller’s parameters 
directly from the open-loop response of the process.  

Some additional steps are required for using MOMI tuning in the ASPECT 
controller. At the start of the auto-tuning procedure, a discrete-time local model is 
received from the MIA. This model is converted into a continuous-time form. 
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Then, the so-called areas are calculated using the MI method. Finally, the PI and 
PID controllers’ parameters are calculated from the areas. Thanks to the transpar-
ent concept of the FPSC, an experienced engineer may choose to configure the 
control algorithm manually by specifying the local PID controller’s positions and 
parameters directly, without using the model-based tuning procedure.  

 

Fig. 4. FPSC overview 

Dead-Time Compensation Controller  

The DTCC is a nonlinear scheduling control algorithm based on Predictive 
Functional Control, a relatively simple predictive control method that uses an in-
dependent internal model, polynomial control signal parameterisation, and per-
formance criterion reduced to a few coincidence points [bibRic93; bibMac02]; the 
algorithm is also closely related to the Smith predictor [bibSmi59].  

The control layer of the DTCC is composed of a set of local linear PFC control-
lers, one for each local model. The local PFC controller implementation supports 
first- or second-order local models with time delay and feedforward compensation 
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for the measured disturbance. The storage of the signal buffers for the controller 
input, output, and four internal signals is required by the algorithm. Fuzzy blend-
ing of the local controllers (the scheduling layer) is performed at the controller 
outputs. A schematic diagram of the DTCC structure is displayed in Fig. 5. 

The auto-tuning algorithm of the DTCC's tuning layer starts by the conversion 
of the local models (1)-(2) to continuous time; with second-order models (2), the 
factorisation to two serial first-order transfer functions is applied. Then it com-
putes the tuning parameters of the local controllers, which are the desired settling 
time  

jPjduj TTT ,,,DST 0914.06231.0 +=       (8) 

and the coincidence-point location (horizon) 

)1155.1(ceil
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where Tsamp is the sampling time, Tdu is the time delay in the model branch from u 
to y, and TP is the time constant (or the sum of time constants) in the model branch 
from u to y. Notice that TDST is a more user-friendly alternative to the exponential 
filter coefficient for the reference trajectory λ , which is calculated as follows: 

DST
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Fig. 5. DTCC overview 

  

Rule-Based Switching Controller  

The RBSC is based on safe-switching theory, a relatively recent approach to 
controlling a large class of nonlinear processes whose behaviour varies considera-
bly over its operating region [bibMor95; bibABLM01; bibKKS02; bibKKS07]. 
The design objectives of the RBSC are to attain optimum performance in the 
neighbourhood of any anticipated equilibrium operating point and generation of 
the best strategy that will ensure safe transition from any operating point to anoth-
er without jeopardizing the stability of the closed-loop system. 

A very practical simplification of the general safe-switching theory used in the 
RBSC is to make all the candidate local controllers for the different operating 
points have the same architecture, in which case only the set of parameters of the 
controller needs be changed. It is paramount that safe and bump-less transfer be 
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ensured following every controller parameter change so that the plant is not sub-
jected to switching transients that can lead to disruption in the operation of the 
plant. Specifically, the industrial-standard PID structure of the incremental form is 
used in the control layer, and a look-up table of local controller parameters is 
stored in the switching layer of the RBSC. A schematic diagram of the RBSC 
structure is displayed in Fig. 6.  

 

Fig. 6. RBSC overview 

For a brief illustration of the safe-switching strategy, we consider a simplified 
case with a second-order local linearized discrete-time model about every equilib-
rium operating point (approximant 

jθ̂ )  
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where the coefficients are real and 0 < b1 < b2, and q–1 is the delay operator, and a 
PI controller that allows the discrete-time representation   
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The stability of the closed loop can now be examined from the closed system 
polynomial 
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Given the coefficients of the plant approximant, the closed system is asymptot-
ically stable if the following inequalities are satisfied:  
a) b1 ≠ 0, b2 ≠ 0 
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b) b1 = 0, b2 ≠ 0 
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c) b1 ≠ 0, b2 = 0 
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The proposed rule-based switching algorithm requires information on the cur-
rent operating conditions and the intended target set-point of the process. The iter-
ative design procedure consists of the following rules: 
Step 1: Assume that at a countable set of nominal equilibrium points Y1, Y2,... Ym 
the parameters of the corresponding plant approximants 

1θ̂ , 2θ̂ ,... 
mθ̂  have been 

identified and are available.  
Step 2: Satisfy the design requirements for all process approximants. This implies 
that the closed system is optimum in every sector and stable during transition. 
Step 3: Consider the controller Cj applied to the plant model jθ̂ . Determine the 

regions Rj, j = 1, ..., m so that the controllers satisfy the requirements set in Step 
2. 
Step 4: If the intersection Rj ∩ Rj+1 ≠ ∅, go to Step 5, otherwise go to Step 6.  
Step 5 (Switch): For Y ∈ [Yj, Yj+1] use a controller Cj ∈ Rj ∩ Rj+1. Repeat until j 
– 1 = m. 
Step 6: Select one of the following and repeat the algorithm:  

a) Relax the requirements in Step 2.  
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b) Identify the process at points lying between existing operating points, there-
by increasing the available knowledge regarding the process.    

As long as the output value is close to a nominal operating point at which an 
approximant has been identified, the candidate controller in region Rj will result 
in optimum performance. Depending on whether the target set-point is set higher 
or lower than the current operating point, the transition strategy can be simply 
stated as follows:  

1. If a new target set-point lies in the same region as the current one, then do noth-
ing.  

2. If a new target set-point is in a region above the current one, then switch to the 
target region controller.  

3. If the new target set-point is in a region below the current one, then remain with 
the current controller.  

4. If quiescence is reached in any target region, then revert to the target region 
controller.  

The foregoing logic-based switching strategy is suitable for processes whose 
steady-state input-output relationship yss = f(uss) is increscent, i.e., f'(uss) > 0, in 
which case the stability regions satisfy the condition Rj-1 ⊂ Rj ⊂ Rj+1. The 
switching strategy can be generalized. For illustration, a diagram of the regions of 
stability and the optimum controller parameters of a pH controller with three 
steady-state operating points (pH 6, 7, and 8) is displayed in Fig. 7.  
 

 

Fig. 7. Regions of stability for the three closed subsystems and the optimum controller parame-
ters for each case 
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Given the coefficients of each approximant 

jθ̂ , it is necessary to determine the 

optimum controller parameter set (c0, c1) with respect to a certain performance cri-
terion. Here, the ITAE criterion was used because it leads to a compromise be-
tween rise time and overshoot. An initial estimate of the set of local controller pa-
rameters by using the Åström and Persson technique [bibAH95] is used as a 
starting point for the stochastic search using the Metropolis-Hastings simulated 
annealing algorithm. The search region is determined by the chord defined by the 
stability bounds. However, a rectangular search space whose boundaries are de-
fined by the algebraic criterion was found to reduce the computational effort sig-
nificantly. To increase computational effort further, a modified Jury stability test 
was carried out for each trial parameter set, immediately discarding over 90% of 
the candidate sets of parameters.   

Control Performance Monitor (CPM) 

The CPM is a software agent that assesses the behaviour of the control loop. It 
consists of three modules: the Buffer Pre-processor (BP), the Situation Classifier 
(SC), and the Performance Estimator (PE). Just like the OLA, it is invoked auton-
omously or upon demand from the OS and runs as a low-priority task. A block di-
agram of the CPM’s operation is shown in Fig. 8.  
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Fig. 8. CPM overview 
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When the CPM is invoked, the BP scans the buffer of the recent real-time sig-
nals, which is maintained by the SPA. It starts by making a copy of the buffer. 
Then, it checks if the process is in a steady state; if there is no external excitation 
and the standard deviations of the signals are within the limits, it terminates the 
processing. Otherwise, it filters the signals and performs a low-level analysis.  

The SC searches the pre-processed buffer for the last recognisable event that 
may be evaluated or is otherwise important. Firstly, if oscillation is detected, a 
warning is issued to the OS and the processing is aborted. Then, the event classifi-
cation takes place, where a step change in the reference signal or the measured 
disturbance signal, or an unmeasured disturbance transient may be identified. In 
the case of an unrecognised event, the processing is terminated. The final task of 
the SC is to assess whether the event is eligible for an estimation of features by the 
PE. Unmeasured disturbance transients do not qualify because their causes are 
generally not known. In the case of step changes, the SC verifies whether the sig-
nal/noise ratio is sufficient, whether the transient after the event has settled, and 
whether there was a steady-state period before the event.   

When an eligible event is detected, the PE estimates the appropriate features, 
depending on the event type. The following features may be estimated: overshoot, 
settling time, rise time, oscillation decay rate, and tracking-error measure or regu-
lation-error measure. Using a fuzzy evaluation procedure, an overall performance 
index (PI) is also calculated from the features.  

The CPM results are sent to the human-machine interface for display and to the 
OS for further automatic actions. If poor performance is detected, an automatic 
switchover to the Safe Mode may be triggered. Other automatic actions include, 
for example, blocking the OLA if an oscillation is detected (oscillatory signals 
may appear to contain rich excitation; however, their frequency spectrum is not 
suitable for model identification by the OLA). Generally, the OS does not perform 
a "direct" adaptation of the CAA parameters based on the CPM results because the 
primary concept of the ASPECT controller is "indirect" model-based, self-tuning 
and the role of the CPM is supervisory; however, direct adaptation could also be 
implemented for specific applications. 

Operation Supervisor (OS) 

The OS coordinates the control, modelling, and tuning activities of the agents 
and user interaction through the hierarchical set of dialogue windows of the hu-
man-machine interface (HMI). The OS and the HMI include the functionality re-
quired for automatic, user-friendly experimentation, which is usually required for 
controller commissioning. The controller-commissioning procedure includes the 
phases of the basic settings, an approximate estimation of the process dynamics 
for safe controller tuning, nonlinear modelling and tuning of the CAA, and con-
figuration of the regime for regular operation.  
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Typically, the commissioning of the controller is performed by conducting a set 
of experiments that are intended to explore the process dynamics over the whole 
operating range of the process. The OS supports the control engineer by automati-
cally executing the experiments for the identification of local models. These ex-
periments consist of a series of step changes about the operating point of the mod-
el, in either an open or closed loop. In addition, the OS coordinates the OLA, the 
MIA, and the CAA to automatically process the signals, build the model, and tune 
the local controllers. This is the fastest and most reliable way to tune the controller 
when experimentation with the plant is allowed. The automatic conducting of ex-
periments for a closed-loop performance evaluation using the CPM is also sup-
ported.  

Alternatively, if experimentation is not allowed, it may be possible to perform 
controller commissioning without the scheduling of experiments by gathering 
model information during normal plant operation. In this case, the controller is ini-
tialised in the Safe Mode, and processing of the signals for modelling and tuning 
is triggered by the OLA autonomously. However, it is required that sufficient ex-
citation over the whole operating region is available during regular operation. The 
progress of the modelling is indicated by the status flags of the local models in the 
MIA. The flags show which models have been tuned and their respective confi-
dence indices.   

A range of operating regimes may be configured by enabling or disabling the 
agents and changing their configuration parameters. This results in a flexible con-
trol system that covers the requirements of a wide range of applications, and may 
help diagnose problems. Thus, although designed for the control of nonlinear pro-
cesses, the ASPECT controller may also be used for adaptive control using a sin-
gle linear model or as a tool for PID controller tuning. Some specific operating-
regime options include the following: 

– The OLA and/or the CPM may be invoked autonomously (during regular 
operation) or upon OS demand (following scheduled experiments), or 
both.  

– The OLA may estimate the process dead-time continuously or not.  
– The OLA may attempt to insert additional local models when appropriate, 

or estimate the local models at the fixed pre-selected positions only.  
– Controller retuning may be triggered automatically immediately after each 

change of the model in MIA ("adaptive" operation), or following the con-
firmation by the engineer ("self-tuning" operation).  

– The OLA may also be used for monitoring the process dynamics by cross-
validation of the model, without the intention of controller tuning.  

While the initiative and suggestions of the agents are helpful during system 
configuration, this may not be desirable during regular operation. Therefore, at the 
end of the commissioning procedure, the system may be reconfigured to deacti-
vate self-tuning activity. 
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Simulation results 

 
In order to test the concept of the control system and the performance of partic-

ular algorithms, the prototype of the RTM was first developed in the 
MATLAB/SIMULINK environment. 

In the initial simulation tests [bibBSGD03], the performance of the controller 
was evaluated on the pH control benchmark of Henson and Seborg [bibHS94], 
shown in Fig. 9. In the benchmark process, an acid stream Q1, a buffer stream Q2, 
and a base stream Q3 are mixed in a tank T1. The pH of the mixture is measured 
with a sensor located downstream. The effluent pH is the controlled variable y, 
and the manipulated variable u is the flow of the base stream Q3. The static char-
acteristic of the process is highly nonlinear and its open-loop gain changes by a 
factor of 8, and therefore it is very difficult to control with a conventional PID 
controller.  
 

 

 

Fig. 9. A simulated neutralisation benchmark process 

The nonlinear model of the benchmark simulated by using Matlab/Simulink 
was used in the role of the real process, while the controller used a model in the 
form of the MFM obtained by online learning. The operating range between pH 
values 6 and 8 was covered with five local models placed at positions 6, 7, 7.15, 
7.4, and 8. These positions were determined based on the known shape of the titra-
tion curve. s(k) = 0.3 y(k) + 0.7 r(k) was used as the scheduling variable. Each lo-
cal model was trained with online learning using an open-loop experiment consist-
ing of three step-changes of u of small amplitude about the operating point, and 
the local controllers were tuned automatically from the local models. Fig. 10 
shows the performance comparison between PI control in the Safe Mode (top), 
FPSC control, DTCC control, and RBSC control (bottom). The process output fol-
lows the reference signal reasonably well under FGSC control, while the perfor-
mance of a fixed PI controller is sluggish in some areas. The PI controller is tuned 
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for stable performance in the high-gain operating area around pH 8; however, its 
operation in the low-gain region below pH 7 is sluggish. 

The presented tests as well as some other tests performed on the pH model 
demonstrated that the proposed concept of the system for advanced control is via-
ble and that further work towards implementation on PLC platforms is reasonable. 
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Fig. 10. Simulated pH control performance comparison:  
PI  (top), FPSC, DTCC, and RBSC control (bottom) 
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PLC Implementation 

Despite the careful selection and modification of the algorithms to reduce the 
computational demand, the OLA and CPM modules are not suitable for imple-
mentation in typical PLCs. A DSP or an open controller add-on module tends to 
be a more cost-effective solution than an upper-market PLC. The platform for 
running the RTM of the ASPECT controller in the pilot application presented in 
this paper consists of a Mitsubishi A1S series PLC with an INEA IDR SPAC20 
coprocessor, based on the Texas Instruments DSP TMS320C32 at 40 MHz with 
2MB of RAM, and a Mitsubishi MAC E700 HMI unit. 

The RTM is implemented as an extension for INEA IDR BLOK1 v. 4.22, a 
graphical development tool for closed-loop control applications in the process in-
dustry using Mitsubishi Electric MELSEC AnSH PLC controllers [bibIne01]. The 
FPSC algorithm is included as an additional controller block "PID/FPSC". Other 
RTM components are implemented as separate PLC tasks, coded in C and down-
loaded to the PLC in the compiled form. They are supervised using the HMI unit 
through a hierarchical set of menus (such as: Operator Display, Trends Display, 
Settings Overview, Experiment Parameters, Online Learning Settings, Model Pa-
rameters, Model Status, FPSC Settings, FPSC Parameters, etc.). Two sample HMI 
menus are shown in Fig. 11. 

 

                                                         
1 The concept of IDR BLOK is closely related to the more recent "Function 

Block Diagram" of the IEC 61131-3 standard. An IEC 61131-3 compliant version 
of IDR BLOK has been developed recently. 



28  

 

Fig. 11. Sample HMI menus: Operator Display (top), Experiment Parameters (bottom) 

Configuration Tool 

The CT is intended to assist the control-system designer in the commissioning 
of the nonlinear controller during the initial configuration phase. It simplifies the 
commissioning procedure by providing guidance and default parameter values. It 
runs on a PC which is connected to the PLC running the RTM, and takes ad-
vantage of the better graphical-user-interface capabilities of the PC platform.  

Two implementations of the CT were developed:  
– The original CT facilitates self-configuration of the RTM, closely follow-

ing the above-described project concept, and mostly relies on the function-
ality of the RTM.   

– The alternative CT is an extension of the single-loop PID tuning tool "Lek 
Tuner" [bibVH07] for the tuning of non-adaptive, stand-alone FPSC con-
trollers for applications on less-capable PLC platforms that cannot host the 
whole RTM.  
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Original CT 

The original CT contains a configuration "wizard" that guides the engineer 
through the typical scheduling-controller commissioning procedure. It was de-
signed for plant engineers who may not have an in-depth knowledge of nonlinear 
modelling and control. The procedure is broken down into small steps (25 dia-
logue windows). In each step, instructions are displayed and default values are 
suggested by using rules of thumb, based on the information already available. In-
consistency warnings may be displayed. Notice that an experienced engineer may 
conduct a similar procedure directly with the RTM via the HMI. 

The main phases of the commissioning procedure are:  

A. Basic settings: the selection of the control signals, the signal constraints, the 
sampling time, the CAA, the scheduling variable, and the model order.   

B. Safe-mode configuration: the estimation of the process dynamics, where ex-
perimentation and identification using the RTM may be used; self-tuning of 
the "safe" controller parameters; optional performance verification.  

C. MFM initialisation: initialisation of the local model positions and their pa-
rameters; display of the local model parameters and step responses. 

D. CAA settings: the initialisation of the default values and the advanced auto-
tuning parameters. 

E. OLA settings: the initialisation of the default values and the advanced OLA 
settings.  

F. CPM settings: the initialisation of the default values and the advanced CPM 
settings.  

G. Experiment settings: the initialisation of the default experimentation parame-
ters and advanced automatic experimentation settings. 

H. Local controller tuning: conducts the sequence of automatic (open- or closed-
loop) experimentation, online learning, and tuning using the RTM around 
each local model position.  

I. Performance verification: conducts the sequence of automatic experimenta-
tion and performance evaluation using the RTM around each local model po-
sition.   

Sample dialogue windows for OLA settings (stage E) are shown in Fig. 12. 
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Fig. 12. OLA Configuration in original CT. Basic OLA settings (top) and advanced OLA param-
eters (bottom). 
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Alternative CT 

The alternative CT is built on a tab-based user interface and designed to allow 
experienced engineers closer interaction with the stand-alone, non-adaptive FPSC 
controller configuration. It assumes the self-tuning functionality of the RTM, and 
allows detailed supervision or overriding of all the self-tuning steps.  

The user interface is composed of the following tabs:  

1. Overview: a condensed overview of the basic configuration parameters, an 
overview of the status of the local model estimation and local controller tuning, 
with buttons that trigger actions for the experimental tuning of local controllers.    

2. Connection: OPC communication settings with the corresponding FPSC con-
troller block on a PLC.  

3. Experiment: contains a list of experiments for local controller tuning, scheduled 
in the Overview tab. Untypical plant experiments may also be triggered. When 
an experiment is active, its progress is displayed in a separate window.  

4. Measurements processing: displays the experimental results, estimates the ex-
citation of local models, enables import, export, filtering, and trimming of 
measurements for model identification.    

5. Local model: displays the estimated local model parameters (MIA vs. OLA) 
and the model simulation results.  

6. Local controller: displays the tuned local-controller parameters and a simulated 
response of the closed-loops system to a step change in the reference or dis-
turbance signal.  

Tabs 4-6 refer to each configured local controller (scheduling variable position, 
shown in the upper right quadrant) individually. For illustration, tabs 1 and 5 are 
shown in Fig. 13.  
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Fig. 13. Alternative CT sample tabs (in Slovene). Overview tab (top) and Local Model tab (bot-
tom). 
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Experimental application to a valve-testing apparatus 

The ASPECT controller was tested in several pilot applications, for example, 
on a gas-liquid separator [bibKVDG03] and a hydraulic pilot plant [bibBSGD09]; 
in this section we present a pilot application on an apparatus for testing hydraulic 
valves, located in a hydraulic-equipment production plant. A simplified scheme of 
the apparatus is shown in Fig. 14. The apparatus is composed of a boiler with local 
temperature control, three pumps P1-P3, a pressure sensor PT, a valve test stand 
with a pressure-difference sensor ∆PT, three flow meters QT1-QT3 that may be 
connected alternately for different measurement ranges, and an expansion vessel. 
The pumps are connected in parallel and may be activated in different combina-
tions so that different flow ranges may be achieved. They are equipped with fre-
quency converters; when switched on, all of them receive the same control signal 
u.   

 

Fig. 14. Apparatus for testing a hydraulic valve (simplified)  

 
The apparatus is used for testing various types of valves in a range of con-

trolled operating conditions. The most important control task is to control the 
pressure difference on the tested valve ∆pv (also denoted as the process output y), 
by adjusting the control signal u that is connected to the active pumps. The pro-
cess is nonlinear and time-varying because: 
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1. The steady-state relation between the pressure difference on the valve ∆pv and 
the mass flow through the valve Qm (related to the pump rotation speed ω) is 
quadratic; 

2. The openness of the valve Sv is sometimes changed during a test, but the signal 
Sv is generally not available (manual valves);  

3. Different pumps (or combinations of pumps) may be used, according to the size 
of the valve. 

These factors severely affect the process dynamics; therefore, the performance 
of the previously existing control system based on a fixed PI controller was con-
sidered unsatisfactory.  

The scheduling variable selection is a crucial step when applying a parameter-
scheduling controller. While the nonlinearity (a) alone may be easily solved using 
scheduling from ∆pv, the condition (b), in particular, makes the problem consider-
ably more difficult, because it is necessary that the system should find the proper 
tuning autonomously, not by entering the unknown process parameters manually. 
Process modelling was used2 to determine a suitable scheduling variable, namely 
the quotient ∆pv / Qm, which is easily computed from the available signals [bib-
GDVK06]. To improve the reliability of the computation of this quotient at low 
measurement values of Qm, the latter was replaced by the control signal u filtered 
by a first-order lag filter that approximates the pump dynamics.   

Once the scheduling variable s is configured, the commissioning of the 
ASPECT controller is an empirical procedure, supported by the automatic experi-
mentation functionality of the OS. Firstly, the Safe Mode is tuned, so that its PI 
controller maintains stable control over the whole operating region. Then, the lo-
cal model/controller positions are selected; a default equidistant distribution of six 
positions over the operating range of s is used in this application. Because experi-
mentation with the process is allowed, the typical procedure involving a batch of 
experiments is used, with each experiment being made in the vicinity of one local 
model position. In practice, this is the simplest way to ensure proper excitation of 
the signals. Using the Safe Mode, the process is consecutively brought to each of 
the s positions, where auto-tuning experiments are activated by the push of a but-
ton. The OS conducts a mode switch (open-loop experiments are preferred), in-
jects the excitation signal containing four step changes, invokes model identifica-
tion and CAA tuning at the end of the experiment, and finally restores the original 
mode. For the first two local models, the excitation signal amplitude is 4%. Due to 
lower process gain, it is increased to 8% for other local models, in order to im-
prove the signal-to-noise ratio. An overview of the MIA status shows that all the 
local models have been identified successfully. The Auto Mode is configured after 

                                                         
2 Generally, the ASPECT controller is intended to be tuned empirically through 

experimentation, and process modelling is not required for simpler scheduling 
control applications. 
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the engineer confirms the new controller parameters. Table 1 displays the results 
of this experimental tuning procedure on the process. 

Table 1. Experimental tuning results – local model and controller parameters 

Local 

model po-

sitions 

Local model  

parameters  

Local controller 

parameters 

OLA model parameters (Tsamp = 0.5 s) Derived parametersa 

u
ys α=

 

du b1 b2 a1 a2 r Kol T90% T1  T2  Kp Ti 

0.10 1 0.002 0.009 -1.212 0.256 -0.002 0.25 20.0 8.01 0.38 5.78 8.03 

0.26 1 0.003 0.014 -1.369 0.410 -0.002 0.41 16.5 6.55 0.61 2.58 6.56 

0.42 1 0.004 0.017 -1.392 0.432 -0.005 0.52 16.5 6.41 0.66 1.95 6.29 

0.58 1 0.003 0.022 -1.401 0.442 -0.005 0.61 15.5 6.09 0.68 1.54 6.12 

0.74 1 0.001 0.026 -1.471 0.508 -0.008 0.73 15.0 5.77 0.85 1.14 5.92 

0.90 1 -0.001 0.044 -1.397 0.440 -0.019 1.00 15.0 5.80 0.69 0.86 5.97 
a Kol is the open-loop model gain. T90% is the rise time from 0 to 90% of the open-loop step re-
sponse in s. T1 and T2 are the denominator time constants of the continuous-time equivalent 
model in s. α = 1.89 is a scaling factor.  

 
The open-loop gain of the local models obviously rises with s, which results in 

a decrease in Kp. A decreasing trend of T1 with s can also be noticed, which is as-
sociated with the pump dynamics and which has the most influence on Ti. There is 
a considerable but acceptable difference in Kp between the first two local control-
lers. The differences between the local controller parameters in the higher range of 
s are small; fewer local controllers could be used in that region.   

The control performance is shown for the PI controller, realised using the Safe 
Mode of the ASPECT controller, and the FPSC controller. Fig. 15 shows the 
measured process response to a sequence of step changes in the set-point signal 
over the whole operating range when using the PI controller. The parameters of 
the PI controller were determined so that the optimal response was achieved at 
lower values of ∆pv. As the pressure increases, the response became oscillatory. 
Fig. 16 shows the response when using the FPSC control algorithm. Here, the per-
formance is very good over the entire operating range. In addition to the signals 
shown in Fig. 16, the scheduling variable s is also shown in the bottom graph of 
Fig. 16.  
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Fig. 15. Control of pressure difference pv using the PI controller. Process output pv and its set-
point (top), pump control signal u (bottom). 
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Fig. 16. Control of pressure difference pv using the FPSC algorithm. Process output pv and its 
set-point (top), pump control signal u and scheduling variable s (bottom). 
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Discussion in the context of theory/practice issues 

The main motivation in pursuing the present work was to build an advanced 
control system for non-linear processes that would be simple to use and would run 
on PLC platforms. In this way, some theoretically already-established approaches 
could be brought closer to everyday use. Although the basic goals of the project 
were achieved, some important problems were encountered that substantially in-
fluenced the final results, such as the following:  

 
– The entire concept of the control system relies on models identified from 

process data; therefore, the quality of control depends on the quality of 
models. We were aware of this fact right from the beginning of the project 
and planned to have an even larger set of models available for various situ-
ations. Although such an approach would certainly improve the versatility 
and usability of the control system, this idea had to be abandoned due to 
time and financial limitations. 

– The three CAAs come from substantially different theoretical back-
grounds. However, when tested in pilot applications in an industrial envi-
ronment, they produced similar results, with only a slight performance ad-
vantage with regard to the DTCC. This is mainly due to the same 
underlying model structure and because the performance is limited by the 
achievable model accuracy. The latter is constrained by the time consid-
ered feasible for modelling and tuning in the process industry. The differ-
ences among the algorithms become more pronounced in the case of spe-
cific process requirements; for example, the DTCC shows additional 
advantages with processes that involve more significant dead-time, while 
the RBNC could show more value in the case of additional safety require-
ments.   

– One of the main concerns was how to implement the rather complex struc-
ture of the control system on the target PLC platforms. To do this gradual-
ly, we decided to first develop the algorithms in Matlab, then build the 
controller on the intermediate PC platform in the C programming lan-
guage, and to finally transfer it to the target PLC platform. It turned out 
that overcoming the platform differences was underestimated; major im-
plementation redesigns of the software were required due to the differences 
in the operating systems and GUI implementation.  

– An important lesson learned was that the main restrictions for the imple-
mentation of advanced algorithms on the PLC platform are not the compu-
tation and storage capabilities, but rather the limitations of the human-
machine interaction for operator interaction and even more for application 
development.  

– One of the basic ideas of the project was to develop a system which would 
be appropriate for less-experienced users. Such a system must have a high 
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degree of autonomy in its actions, a large set of “safety jackets” to prevent 
undesired behaviour, and as small an interaction with operators as possible. 
Although an important step in this direction was made in the frame of this 
project, it turned out that there is still much room for improvement. It is al-
so quite obvious that the solution to these problems has very little to do 
with control algorithms, and much more to do with the system around the 
algorithms. Therefore, much more research-and-development effort will 
have to be devoted to this area. However, to make a real breakthrough, 
some knowledge from other fields (e.g., cognitive systems) will also have 
to be employed. 

Conclusion 

An advanced, self-tuning, nonlinear controller was successfully implemented 
on an industrial PLC platform. An experimental pilot application for pressure con-
trol in a hydraulic apparatus was presented. Compared to the industry-standard PI 
controller, a considerable improvement in control performance was achieved using 
the advanced control algorithms. Moreover, this performance was easily achieved 
in practice with self-tuning using an online learning procedure, by performing a 
sequence of short experiments around a few operating points. The modular, multi-
agent structure contributes to the remarkable flexibility of the control system, such 
that it is easily reconfigured for various requirements. Parts of the applied algo-
rithms are incorporated into the software for the design of the PLC systems con-
trol solutions of Mitsubishi Electric.  
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