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ABSTRACT 

Multi-parametric model predictive control (mp-MPC) makes possible the application of MPC controllers with a low on-

line computational demand and rapid sampling. It is appealing for low-level control applications, where the disturbance-

rejection properties are very important. This study explores two important issues in the transition from mp-MPC theory to the 

implementation of an industrial controller: offset-free output-feedback tracking, and controller tuning based on local linear 

analysis of the closed-loop system. An experimental case study on a two-input single-output system for pressure control in the 

vacuum chamber of a wire annealer is presented.  

Keywords: Predictive control; Kalman filters; Tracking; Tuning characteristics; Linear analysis; Control applications; 

Pressure control 

1 Introduction 

Industrial MPC is mostly associated with control of large-scale multivariate processes that have relatively slow dynamics, 

where it is used in the mid-layer of the control hierarchy [1]. Its advantages, such as the advanced constraints handling and the 

straightforward implementation of feedforward control, are also welcome for low-level control; however, such applications are 

relatively rare. This is mainly due to the computing requirements of on-line optimization. In a growing number of demanding 

control loops, PID controllers have been replaced by simplified predictive controllers, most notably Predictive Functional 

Control (PFC) [2]. However, such methods typically lack the full constraints handling and have weak analysis support.   

The recently developed multi-parametric (explicit) MPC approach [3], [4], [5], [6] avoids the need for on-line optimization 

by computing the complete solution to the MPC control problem parametrically in advance, at the stage of controller design. A 

state partition table is generated, comprising polyhedral critical regions, with each region being characterized by a set of active 

constraints and a local affine state control law. This allows the MPC control law to be interpreted as a hybrid or variable-

structure controller, which is equivalent to the underlying on-line MPC controller. The remaining on-line computation with 

mp-MPC includes a region-search algorithm and a state-vector multiplication with the selected row of the partition table. The 



computation may be implemented on industrial standard programmable-logic controllers, inexpensive microcontrollers, or 

FPGA chips [7]. The mp-MPC approach is limited to small-scale MPC problems due to the parametric explosion of the off-

line computation demand, most notably with the number of control-signal parameters and the number of possible combinations 

of active constraints [8]. 

The majority of the mp-MPC literature addresses theoretical issues that assume the state-feedback control, which are often 

of limited practical applicability. The publicly available mp-MPC software libraries Multi-parametric Toolbox (MPT) [9], [10] 

and Hybrid Toolbox (HT) [11] enable offset-free tracking of reference signals by applying velocity-tracking augmentation of 

the model. In mp-MPC, the time-varying reference signals appear as additional parameters of the multi-parametric controller, 

undesirably increasing the size of the off-line optimization problem; with fixed target values this may be avoided by applying 

simple coordinate shifts. However, this form of tracking does not remove offset with integrating disturbances (asymptotically 

non-zero disturbances [12], such as: offset, drift, etc.). 

Several approaches to the removal of steady-state offset with integrating disturbances may be found in the application-

oriented mp-MPC literature that considers output feedback, for example [13], [11], [14], and the POP toolbox of ParOS 

Parametric Solutions Ltd., however the implementations tend to depart from the mainstream MPC approaches. One possible 

approach is Tracking Error Integration (TEI). With TEI, the process model is first augmented with the reference signal state yr 

so that the new output becomes the tracking error (yr – y); then, an integrator state eTEI that integrates the tracking error is 

appended [11], [13]. The TEI scheme is prone to integrator windup when the set-points are unreachable; protection is required. 

Further, the modification to the cost function for significant integral action may adversely affect the nominal tracking 

performance in the form of overshoots, similarly as with PI control [15]. Disturbance Estimation (DE) is an alternative 

approach which is more commonly used in traditional MPC. With DE, an integrating disturbance state(s) is appended to the 

model (disturbance augmentation), and an observer or estimator is used to estimate the appended state(s) or the whole 

augmented state. In the simplest form of DE with the traditional output-step-disturbance (OSD) model, an open-loop observer 

is used for the basic model and a dead-beat estimator is used for the disturbance state(s) appended at the outputs. In more 

general DE formulations [16], [17], [18], [12], state estimation of the disturbance-augmented state is used. Multi-parametric 

moving-horizon estimators, which are dual to mp-MPC controllers, are also under development, but their off-line 

computational complexity is high [19], [20]. In some DE variants, for example [21], [22], the integrator of the tracking velocity 

form is also used in disturbance estimation; however, rate constraints must then be handled separately from the disturbance-

affected integrator states.  



DE may be implemented in a "joint" scheme or a Target Calculator (TC) scheme.  In the "joint" scheme, the MPC controller 

integrates the functions of constrained dynamic control and offset-free tracking, which is implemented by the velocity-tracking 

model augmentation and the tracking form of the cost function over a finite horizon. In the alternative TC scheme ([23], [24], 

[5]; [12], [25]), the MPC controller is decomposed into the asymptotic steady-state target calcualtor (TC) component (in 

charge of offset-free tracking) and the MPC "dynamic controller" (DC) (in charge of transient dynamics about the operating 

point). In the following sections, the joint scheme is chosen and described in detail; however no decisive practical performance 

difference was found in our case study and this choice is due to methodological preferences [15]. Due to the artificial 

decomposition of the MPC problem, the TC is blind to transient infeasibilities, which arise later in the DC, for example due to 

rate constraints [26]. In practice, reference pre-processing, back-off from the constraints, or a fall-back feasibility recovery 

controller may be used to overcome this problem. However, this complicates the structure of the control law and the analysis 

of constrained performance. An enhanced TC scheme exists where the target and the DC decision variables are being 

determined at once so that the artificial decomposition is removed [27]; unfortunately this increases the computational load, 

while our preference was a simple scheme that facilitates full handling of constraints over longer predictive horizons. 

In this paper we discuss the implementation of a "joint"-scheme DE-based mp-MPC controller suitable for engineering 

applications such as PID controller replacement. It is shown that output feedback may be handled with standard DE 

approaches known from conventional MPC, for example [1], [16], [17], [12], [5], [28], [21]. Local linear analysis (LLA) of a 

closed-loop system with such a controller is presented. We show how efficient control of a non-square plant with redundant 

control inputs may be implemented with the joint-scheme mp-MPC controller (without a TC). The approach is illustrated with 

an experimental case-study where the mp-MPC controller is applied for pressure control of a plasma annealer, a two-input 

single-output system. The role of LLA in tuning for efficient feedback performance and robustness to modelling error is 

described.  

2 Mp-MPC control using joint scheme  

The joint scheme is made using an integrated mp-MPC controller, based on the constrained finite-time optimal control 

problem, with extensions for reference tracking and disturbance estimation. The extensions in this form are not available in the 

mp-MPC toolboxes MPT, HT, and POP.  

The nominal discrete-time state-space plant model is 

)()()( ),()()()1( kvkCxkykGwkBukAxkx +=++=+  (1) 

where xnx ℜ∈ , unu ℜ∈ , yny ℜ∈ ; wnw ℜ∈  and ynv ℜ∈  are white-noise signals, and G may be used to specify the access of the 

noise to the state (by default, 
xnIG = ); k is the sample index. Normally, this scheme is suitable for square plants (nu = ny). This 



model is augmented with a DE integrator state dnd ℜ∈  with the associated white-noise signal dn
dw ℜ∈ , so that the augmented 

state is xa(k) = [xT(k) dT(k)]T with the noise signal wa(k) = [wT(k) wd
T(k)]T . In the case of disturbance augmentation at the 

output, the disturbance-augmented system is  
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while in the case of disturbance augmentation at the input it is 
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with the noise covariance matrices  QK = E{wawa
T} and RK = E{vvT}, respectively, assuming E{wavT} = 0. Detectability 

limitations must be considered [17], [12]. In both cases a compact description of the disturbance-augmented model is  
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The steady-state Kalman filter (KF) is used for state estimation with the disturbance-augmented model 
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where MK is determined by the steady-state solution of a Riccati equation from the noise covariance matrices QK and RK. 

For reference tracking, the joint scheme requires the velocity form (regardless of the presence of rate constraints) and the yr 

tracking parameter. This may be achieved either by velocity-and-tracking augmentation of the model (as in the MPT toolbox, 

for example) or by an extension of the cost-function formulation (POP toolbox). This implementation uses an approach similar 

to the one used by the MPT, but with the modification that velocity-and-tracking augmentation made on the disturbance-

augmented model. The disturbance-velocity augmented model {Aav, Bav, Cav, Gav}, with the state [ ]TTTT
av kudxx )1( −= , is 

made by appending the disturbance-augmented model with a noise-free integrator at the input. The disturbance-velocity-

tracking augmented model, with the state [ ]TT
r

TTT
avt ykudxx )1( −= , adds the reference signal yr as an additional 

uncontrollable state, so that a tracking controller may be formulated using suitably constructed cost matrices as in the function 

mpt_yalmipTracking of the MPT toolbox [9].  

In the following, we outline the formulation of the MPC controller, similar to [21] but with a different model augmentation 

approach. A multi-step prediction yN(k) for the prediction horizon k+1, ..., k+N and the control horizon k, ..., k+Nu–1 is  
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where [ ]Tu
TT

N Nkukuku
u

)1(,),()( −+∆∆=∆ L , and suitable matrices NN and SN are constructed by stacking the consecutive 

prediction equations for y(k+1 | k), ..., y(k+N | k) [21]. The future reference is assumed to be constant over the horizon and not 

known in advance 
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The MPC cost function is defined as 
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where ),,(diagQ 434 21 K
N

yyy
QQ=  and  ),,(diagR 4 34 21 K

uN

uuu RR ∆∆∆ =  are the expanded cost matrices, and the prediction of the tracking 

error e = y – yr over the whole predictive horizon eN(. | k) is 

 )()()|()|(. kyIkuSkkxNke rrNNavNN Nu
−∆+=  (9) 

The unconstrained solution of the MPC control law may be obtained easily without having to compute the full multi-

parametric solution, and is valuable in the early stages of controller tuning. In the absence of constraints, the control-law 

optimizer )(* ku
uN∆  is found analytically by inserting (9) into (8) and deriving with respect to )(ku

uN∆ . It has the form of a 

least-squares problem 
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If the disturbance-velocity-tracking augmented state vector xavt is used, it is computed as 
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With receding-horizon control, the control becomes 
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where the controller gain KC is defined as 
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The full mp-MPC solution requires the minimisation of the cost (8) subject to the specified constraints on the process signals 

within the predictive horizon, with respect to )(ku
uN∆  and as a piecewise-affine function of the augmented state vector xavt [4], 

where the feasible parameter space of xavt is divided into a finite number of polyhedral critical regions CRi. This problem is 



reformulated as a multi-parametric quadratic program (mp-QP) and solved using an mp-QP solver ([9]; [11]; [29]). The 

optimizer obtained by mp-QP is then rearranged into the following form  
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where [ ] ii
r

i
x

nni
r

nnnni
x fffff yuudxu =ℜ∈ℜ∈ ×++× ,,)( , and 1×ℜ∈ unig . The control scheme comprising the process represented by 

the true model {Aa
*, Ba

*, Ca
*, Ga

*}, the mp-MPC controller, the estimator, and the velocity augmentation is shown in Fig. 1.     

*** FIG 1 HERE *** 

2.1 Local linear analysis (LLA) 

LLA is based on closed-loop system dynamics from the inputs wa(k), v(k), and yr(k) to the noise-free output ynf(k) [30]. 

Whereas the controller and the estimator are designed using the nominal model, analysis is also possible with a different true 

model ([31], p. 402). Further, analysis may be performed with a set of candidate true models.  

Closed-loop system dynamics are obtained by blending thecontrol law (15), the estimator (5), and the true model {Aa
*, Ba

*, 

Ca
*, Ga

*} (4). Velocity augmentation is applied to both the true model and the estimator model, so that the controller output 

∆u(k) matches the inputs of the true model {Aav
*, Bav

*, Cav
*, Gav

*} and the estimator {Aav
*, Bav

*, Cav
*, Gav

*; MKv}, and the 

estimator output [ ]TTT
aav kukkxkkx )1()|()|( −=  matches the controller input. The implementation of the augmentation is 

similar to eq. (3), except that there is no access of noise to the added integrator state u(k–1), so [ ]TT
nn

T
KKv yu

MM ×= 0 . The 

closed-loop system in the state-space form is made by combining the state update equations for the true model state xav(k) and 

its estimate xav(k|k), its input being a stack of the external signals and a constant for the controller's gi term     
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where q denotes the forward-shift operator. If the true model is equal to the nominal one, eq. (16) simplifies and the closed-

loop poles of the system comprise the union of the controller poles i
xaa fBA +  and the observer poles aaKa ACMA −  in the 

spirit of the Separation theorem ([31], p. 356). 

The closed-loop system may be used with various forms of linear analysis: for step or impulse responses in the time domain, 

for root locus analysis on the complex plane, and for frequency domain analysis. The complementary sensitivity function T(ω) 

is the transfer function from the noise signal v to the noise-free measurement ynf; it is obtained by extracting the appropriate 

part of eq. (16), transforming to the transfer function form, and shifting the numerator. The (output) sensitivity function S(ω) is 

the transfer function from v to the noisy measurement y; it is calculated using the relation S(ω) + T(ω) = I (see Section 7.3 of 

[16], or [21] for more details). The same eq. (16) may be used for the analysis of the unconstrained region of the on-line MPC 

controller with 0,, ==−= uc
rC

uc
rNC

uc
x gIKfNKf

N
, without mp-MPC partition calculation.  

LLA is an extremely valuable supplementary tool for efficient tuning of the MPC controller and the estimator, used in 

addition to simulation analysis commonly performed with MPC. It allows better insight into the effects of the tuning 

parameters than simulation, and facilitates fast unconstrained analysis with very long horizons. When tuning, LLA is most 

useful for examining the performance in the unconstrained region, where the controller commonly dwells most of the time. In 

addition, with mp-MPC a similar analysis may be made for any other region where the controller tends to dwell. For 

engineering purposes, such analysis may be useful also for wider clusters of neighbouring regions with similar controller 

parameters. In addition, one may use the merged diagrams for all controller regions at once, for observing the influence of the 

tuning parameters on the whole cluster of controller regions and for detecting the outliers. For instance, one may plot a step 

response for any controller region, and the family of normalised step responses for all controller regions at once. These step 

responses are strictly only valid for step changes of small amplitudes, so that the process state does not leave the corresponding 

controller region. It may be argued that such analysis does not always make sense because the system does not settle in many 

of these regions; however, it still provides useful information about the local dynamic properties of the system. Further, using 

simulation analysis only one may overlook inappropriate behaviour under certain rarely encountered combinations of 

constraints, caused by an inappropriate choice of the MPC costs and horizons.  

2.2 Modification for non-square plant 

A modification of the typical tracking implementation with the joint scheme is required to address the issue of spare degrees 

of freedom when the plant has more inputs than outputs. A fixed reference urf may be imposed either on spare input(s) directly 

or on the corresponding additional state(s) u(k–1) of the velocity-augmented model, and a relatively small cost weight Ru is 



added to this state in the cost function, so that the convergence towards urf is slow and the yr tracking offset caused by this in 

the case of primary input saturation is hardly noticeable.  

The cost function (8) is extended to 
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where ),,(diagR 434 21 K
uN

uuu RR= , and the additional error term for u is expressed in a similar form as (9), with an appropriate 

construction of NU and SU  
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The controller gain definition (13) is extended to  
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and the receding-horizon control law in the unconstrained region becomes 
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3 Plasma annealer experimental case study 

In our case study, mp-MPC is used to control the vacuum subsystem of a novel wire-annealing machine of PlasmaIt GmbH 

shown in Fig. 2. The machine heats the moving metal wire using magneto-focused plasma in an inert-gas atmosphere. The task 

of the controller is to maintain the specified pressure (y) in the plasma chamber of the annealer. The operating conditions may 

vary depending on the type of wire and the gas. The construction of the vacuum subsystem ensures that a certain pressure 

profile along the vacuum chamber is maintained to prevent any undesired leakage. The vacuum is maintained by several 

vacuum pumps, connected to different chambers in a cascade. Rough control of y is done by adjusting the input u1, i.e., the 

frequency converters of the pumps connected to the chambers at the wire exit (right-hand side of Fig. 2). Fast regulation of 

disturbances is carried out by input u2, a valve bypassing the sealing before the main chamber, with a five times faster response 

but a limited action range. The controller must be able to rapidly suppress any fast-acting disturbances that appear during 

operation, such as momentary sealing problems, the ignition of plasma, etc. It must also be able to operate over a wide range of 



operating points, affected by the diameter of the wire, the yr set-point, the temperature during start-up, etc. Finally, it must be 

able to suppress the measurement noise efficiently.  

*** FIG 2 HERE *** 

The amplitude and rate constraints are present at both inputs: 0 < u1 < 50, 0 < u2 < 10, -5 s-1 < Δu1 < 5 s-1 and -5 s-1 < Δu2 < 5 

s-1. The rate constraints become active at any significant actuator movement; however, with inadequate control, this may lead 

to an oscillatory response that is undetected by linear analysis. As there is one controlled output and two manipulated inputs, 

there is a spare degree of freedom, which is available when the constraints are inactive. It is reasonable to keep u2 in the centre 

of its range when possible, so that the controller may effectively react to disturbances in any direction. Ignoring the spare 

degree of freedom may result in a poor coordination of the manipulated inputs and awkward control actions and poor 

conditioning of the control problem. 

A previously existing control scheme with two PID controllers (2PID) comprises two loops: the fast loop attempts to control 

y to yr by manipulating the valve position u2; the slow loop drives u2 towards the centre of its effective range u2r = 3. The 

tuning parameters KP1 = –0.5, TI1 = 5, KP2 = –1, TI2 = 1 were determined by manual experimental retuning after using the 

magnitude optimum tuning rules of [32]. Due to quantization noise (which is present because the operation is at the lower end 

of the measurement range), the derivative terms are not particularly useful.  

It is evident that the process is of a nonlinear nature; however, as a challenge a simple mp-MPC replacement for the 2PID 

scheme, based on an identified low-order nominal model, is sought. The aim is to improve feedback performance while 

minding robustness to changes of operating conditions (modelling error). The following nominal discrete-time state-space 

model for model-based control design was obtained using identification from open-loop experimental signals about the 

operating point for yr = 5.0 with the sampling time TS = 0.2 s  
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with 2nd-order dynamics in each input branch, and the steady-state gain [–0.7 –1.7]. The set of models for robustness analysis 

using LLA or simulation includes models for the operating points yr = 2.9 and yr  = 7.0, where the same dynamics are used, but 

the steady-state gain is changed to [–0.32  –1] and [–1.0  –2.4], respectively. Additionally, two similar models with one more 

sample of time delay are included in the set.   



Intensive simulation testing of the mp-MPC controllers was performed prior to their experimental application, although 

simulation results are omitted due to the limited space. Aside from the nominal dynamics in eq. (21), the simulation model 

optionally includes rough estimates of the input static nonlinearities, signal quantisation, and measurement noise.  

4 Controller tuning 

In this first tuning step the following parameters for the joint scheme controller are selected: the sampling time TS, the 

prediction horizon N, the control horizon Nu, the control move cost RΔu, and the additional input cost Ru; the output cost Qy is 

fixed at 1. While tuning, step responses to the reference and disturbance signals (assuming measured states) and the (dominant) 

controller pole positions are observed. Initially, this is done using LLA for the unconstrained region; subsequently, the mp-

MPC controller is calculated and the constrained performance is verified. Various root locus diagrams obtained using LLA are 

extremely valuable, because they may help to explain unexpected effects of the tuning parameters.    

The following values were selected for the parameters: TS = 0.2 s, N = 27, Nu = 2, RΔu = [0.1 0; 0 0.05]; the spare degree of 

freedom is handled with u2rf = 3 and Ru = [0 0; 0 0.02]. The disturbance-augmented state includes four original model states 

x1(k)... x4(k) and one disturbance-estimation state d(k). Along with the two previous inputs u1(k–1) and u2(k–1) due to the 

velocity form and the set-point yr(k), the total number of mp-MPC controller parameters is eight. A controller partition 

comprising 300 regions was computed in 30 s on a P-M@2GHz laptop computer using the MPT toolbox. Notice that the 

number of regions and the computation time are influenced by the bounds of the parameter space that are negotiable. The 

horizons were originally set using conventional rules of thumb. The choice of Nu is constrained by the designer's patience; at 

Nu = 3, 2800 regions are generated in 500 s. TS is relatively short to allow rapid suppression of disturbances; therefore, a long N 

is required. Short N values tend to result in an undesirable constrained performance, while very long values cause a decrease in 

the T(ω) bandwidth; with the chosen Nu, N is fine-tuned using LLA of the unconstrained region to achieve desirable dominant 

pole locations near critical damping. A higher bandwidth may be achieved by longer (or infinite) Nu, but it may not be desired 

considering robustness to model inaccuracy.  

With the mp-MPC controller partition determined, one may examine the nominal controller closed-loop dynamics i
xaa fBA +  

provided by LLA. The position of the poles of the controller is of interest because near-critical damping of the dominant poles 

and reasonable placement of all poles are desired. Figs. 3 and 4 show the nominal controller poles for all controller regions at 

once (the poles exactly at 1+j0 belong to the velocity form integrators and should be ignored). For a detailed examination of 

specific regions, a separate diagram for each region may be plotted; however, the merged diagram of all regions is convenient 

for observing the overall pattern of changes when adjusting the tuning parameters and for finding the outliers. With the 

preferred choice N = 27 in Fig. 3, there is a single dominant pole in the unconstrained region, and the placement of the other 



poles is acceptable. With N = 17 in Fig. 4, there is a dominant pair of poles in the unconstrained region indicating an overshoot 

in the step response; some of the poles in the constrained regions are undesirably underdamped. The performance with the 

shorter horizon may be modified by increasing the control cost RΔu, however the less desirable positioning of some of the poles 

in the constrained regions remains; similar conclusions may be reached using simulation analysis.   

*** FIGS 3 AND 4 HERE *** 

4.1 Simulation example 

Fig. 5 displays a simplified mp-MPC simulation example to illustrate of the role of LLA in controller tuning. A single step 

change of the set-point from 3 to 9 is shown. The simulation is disturbance-free, with the nominal model (21) from the 

operating point for yr = 5.0 used in place of the process. The mp-MPC controller with N = 17 (Fig. 4) is used. 

*** FIG 5 HERE *** 

Table 1 lists the controller regions visited during the step change in Fig. 5. Before the step change, the controller is in the 

unconstrained region 1; the corresponding controller poles are labelled with black × in Fig. 4. Shortly after the step change, the 

controller briefly passes through the constrained regions 229 and 123, and then stays for six samples in regions 122 and 58. All 

these regions are constrained regions with different combinations of rate and amplitude constraints at u1 and/or u2, where the 

controller output is saturated and LLA shows open-loop system dynamic. This is followed by a brief transition through the 

regions 8 and 18 where u1 is no longer rate-limited but u2 remains at the lower amplitude constraint. For these regions 

(including 14 other regions with free u1 and saturated u2), LLA indicates underdamped positions of the dominant poles near 

0.85±0.25i. With the chosen MPC cost matrices this is not a problem in practice; Ru is chosen so that u2 returns towards u2rf as 

soon as u1 can take over, therefore such states are transient. However, with different tuning this may cause obvious 

performance degradation in such constraint conditions. At time 103.4 s, the controller enters region 2 where the immediate 

control move u(k) is unconstrained, however u1(k+1|k) is at the lower amplitude constraint; LLA shows near-unconstrained 

dynamics. Finally, u1 reaches the lower amplitude constraint at time 110.8 s and the controller enters region 17. In region 17, 

LLA shows near-unconstrained controller dynamics for the u2 branch, and open-loop dynamics for the u1 branch. A small 

tracking offset is detected (invisible in Fig. 5), due to the use of the Ru cost and the saturation of u1. 



Table 1.  Regions of the mp-MPC controller visited during the step change simulation in Fig. 5. 

Time Region Constraints* fx
i                                                                                                           fr

i               gi 

Controller poles (LLA)             
 95.0 

 
 

1 
 

 

none 
 
 

 0.0074   -0.0069    0.0293   -0.0669    0.1112   -0.0993   -0.0335       -0.1112      -1.3123 
-0.0327    0.0698   -0.0562    0.1902    1.1196   -0.0671   -0.9842       -1.1196       0.0042 

0.0166  0.5963±0.1225i  0.8478 0.9073±0.0767i 
100.0 

 
 

229 
 
 

3, 6, 12, 13 
 
 

 0             0             0             0             0             0              0                 0               -1.0000 
 0             0             0             0             0             0              0                 0               -1.0000 

0.6047  0.7635  0.8503  0.9197  1  1 
100.2 

 
 

123 
 
 

3, 12, 13 
 
 

 0             0             0             0             0             0              0                 0               -1.0000 
 0             0             0             0             0             0              0                 0               -1.0000 

0.6047  0.7635  0.8503  0.9197  1  1 
100.6 

 
 

122 
 
 

3, 9, 12 
 
 

 0             0             0             0             0             0              0                 0               -1.0000 
 0             0             0             0             0             0             -1.0000        0                0 

0  0.6047  0.7635  0.8503  0.9197  1 
101.8 

 
 

58 
 
 

9, 12 
 
 

 0             0             0             0             0             0              0                 0               -1.0000 
 0             0             0             0             0             0             -1.0000        0                0 

0  0.6047  0.7635  0.8503  0.9197  1 
103.0 

 
 

8 
 
 

9 
 
 

-0.0622    0.1415  -0.0902    0.3373    2.4905   -0.2418     0                -2.4905      -1.3034 
 0             0             0             0             0             0             -1.0000        0                0 

0  0.6047  0.7434  0.7635  0.8580±0.2480i 
103.2 

 
 

18 
 
 

2, 9 
 
 

-0.0666    0.1515  -0.0929    0.3582    2.6142   -0.2836     0                -2.6142      -0.8543 
 0             0             0             0             0             0             -1.0000        0                0 

0  0.6047  0.7314  0.7635  0.8407±0.2434i 
103.4 

 
 

2 
 
 

2 
 
 

 0.0094   -0.0110    0.0356   -0.0817    0.0243   -0.1141   -0.0358       -0.0243      -1.0511 
-0.0321    0.0686   -0.0543    0.1857    1.0934   -0.0715   -0.9849       -1.0934       0.0831 

0.0152  0.5998±0.1190i  0.8522  0.8969±0.0662i 
110.8 

 
 

17 
 
 

2, 8  0             0             0             0             0            -1.0000     0                 0                0 
-0.0313    0.0677   -0.0514    0.1791   1.0953     0            -0.9878       -1.0953      -0.0018 

0  0.0152  0.5972±0.1202i  0.8503  0.9197 
 * Constraints: rows of the constraints matrices defining CRi in (15) (only those appearing in the table listed, out of 30): 

   2: u1(k+1|k) amplitude (min) 
   3: u2(k+1|k) amplitude (min) 
   6: u1(k+1|k) rate (down)  
   8: u1(k|k) amplitude (min) 
   9: u2(k|k) amplitude (min) 
 12: u1(k|k) rate (down) 
 13: u2(k|k) rate (down)  

 

5 Estimator tuning 

In this tuning step the disturbance-augmentation type and the observer pole positions or the KF covariance matrices QK and 

RK are selected, where several specific parameterization forms may be used. The practical aim is to find a balanced 

compromise of the feedback responses to the process noise, the input disturbances, and the output disturbances; with 

acceptable results also with plant-to-model mismatch (over the whole operating range). While tuning, the closed-loop system 

dynamics with a set of candidate true models are studied using simulation, the root locus diagram and sensitivity functions 

diagrams. In sensitivity functions, the bandwidth of T(ω) and its roll-off at high frequencies (noise attenuation), the disturbance 

suppression in S(ω) at low and medium frequencies, and the resonance peaks near the bandwidth are observed.  



From the theoretical point of view, a pole-placement observer appears to be a simple solution to the output-feedback 

problem. However, one should guess where the poles should actually be placed. One general recommendation suggests that the 

observer dynamics should be faster than the controller dynamics, so that the estimation error vanishes quickly enough for the 

controller to work properly. Unfortunately, the stability margins of the closed-loop system with LQG control may be reduced 

by such tuning [33]. This was also observed in our case study. An analysis of the closed-loop system properties with the set of 

candidate plant models was performed [21]. It does not appear possible to find any set of faster pole locations that would not 

result in a considerable deviation of the actual sensitivity function courses from the nominal ones. Similarly, the sets of closed-

loop system poles with candidate "true" plant models would be dispersed far away from their nominal positions on the 

complex plane. Even with slower dynamics, a manual search was not particularly efficient. However, due to the small number 

of parameters this approach may be suitable for automated robustness optimization approaches, after the optimization 

constraints are properly defined.    

The next starting point is the well-known output-step disturbance (OSD) model, obtained by selecting the disturbance 

augmentation at the output, QK = diag([0 ... 0 1]), and by fine-tuning the noise filter with RK = 0.01. The resulting sensitivity 

functions are shown in Fig. 6. An inspection of the estimator poles reveals a slow pole on the real axis, which agrees with the 

findings of [28]. Compared to the sensitivity functions of the original 2PID scheme in Fig. 7, this OSD tuning shows a lower 

bandwidth and less aggressive suppression of disturbances, but the lower resonance peaks indicate better robustness to 

modelling error. The experimental control results of the OSD tuning are shown in Fig. 8 for the nominal set-point yr = 2.9 and 

in Fig. 9 for the high-gain set-point yr = 7. In Figures 10 and 11, the experimental performance of the original 2PID scheme in 

the same operating points is shown. The sequence of bidirectional step changes of amplitude 0.5, used in all the control 

experiments is: yr reference at time 40 s, followed by u1 disturbance at 80 s, u2 disturbance at 120 s, and y disturbance at 160 s 

(a positive step change being always followed by a negative one). The 2PID scheme performs reasonably well, however it has 

an undesired tendency to overshoot, the variance of the control signals is higher than desired, and the responses in the high-

gain set-point yr = 7 are underdamped. With the mp-MPC controller with OSD tuning, the noise suppression is improved, so 

there is less variance in the control signals. There is also better damping during the transients at yr = 7, where the process gain 

is increased. The bandwidth is lower, but the response is still reasonably fast. It is possible to retune the 2PID scheme for a 

similar noise suppression and robustness to gain variation by reducing KP2 to –0.5, but at the cost of a similarly decreased 

bandwidth. When tuned to a comparable bandwidth, the mp-MPC/OSD controller only has a slight advantage of lower 

overshoot. Conversely, the OSD feedback approach may not be retuned for much more aggressive response. 

  *** FIGS 6 AND 7 HERE SIDE-BY-SIDE *** 



  *** FIGS 8 AND 9 HERE SIDE-BY-SIDE, BELOW THEM FIGS 10 AND 11 SIDE-BY-SIDE *** 

Improving the robustness to the modelling error was considered very important. This may be obtained by applying the 

concepts of "loop-transfer recovery" (LQG/LTR) [33]. For our case study the approach of recovery at the process input is 

convenient. By choosing QK = BaBa
T and RK to be very small, the closed-loop poles of the set of actual models indeed gather 

around the nominal controller poles. However, there is no integral action, as the noise covariance to the uncontrollable 

disturbance estimation state is zero with such tuning. By tuning a combination of OSD and LTR with QK = BaBa
T + diag([0 ... 0 

kd]), where the additional parameter kd is used to tune the integral action, the robustness at the same level of performance can 

be only slightly improved, compared to the OSD model. Tuning QK and RK using covariance estimation (and manual tuning of 

the integral action) was also attempted, with very similar results. 

Finally, with some applications the feedback performance may be improved considerably by using the input-step disturbance 

(ISD) model; ISD may also be blended with LTR or covariance estimation based tuning. Fig. 12 shows the sigma diagram for 

QK = BaBa
T + diag([0 ... 0 1]) and RK = 0.01. Nominal LLA results generally show an improvement: the T(ω) bandwidth is 

increased, and there is better suppression of the disturbances in the low-frequency range in S(ω); there is more overshoot in the 

response to the output disturbances. However the robustness to plant-to-model mismatch is reduced, therefore ISD tuning was 

rejected.   

*** FIG 12 HERE *** 

6 Discussion  

Stable control was also achieved with a simpler mp-MPC controller with first-order dynamics in each model branch, but 

considerable detuning was required and the results were not competitive with those of the 2PID scheme. A similar conclusion 

was reached when using the tracking error integration approach instead of disturbance estimation [15].  

The presented output-feedback tracking concept can be extended to piecewise-affine (PWA) hybrid systems with no binary 

inputs, by using a modified hybrid form of the Kalman estimator that adjusts the estimator gain with respect to the currently 

active dynamic [34]. While this may appear to be an appealing possibility for the practical implementation of control for 

hybrid and also nonlinear processes, it should be noted that the resulting controllers may suffer from short-sightedness, like 

with attempts to use mp-MPC with constrained linear systems that have large dimensions. Within a reasonable time, such 

problems may only be solved off-line with very short horizons; this makes tuning difficult and efficient handling of state and 

output constraints practically impossible. With short horizons, infinite-horizon extensions of the cost function are valuable for 

the construction of a practically meaningful cost function, but do not help for long-term handling of constraints.  



When long horizons are required for the sake of output or state constraints and fast sampling is preferred for the sake of 

efficient disturbance rejection, the tractability of the off-line computation may be regained by control move blocking and/or by 

placing the constraints sparsely over the prediction horizon [35]. While this may be considered sub-optimal, the optimality of a 

controller with slow sampling may as well be an illusion.   

It was found that the mp-QP solvers of the MPT and HT toolboxes, used for the computation of the mp-MPC controller, are 

incapable of solving certain other more challenging mp-MPC control problems satisfactorily, which is due to a number of 

degeneracy-handling and numerical issues in the mp-QP solver [35]. However, the mp-QP solver issues are outside the scope 

of this paper.     

7 Conclusions  

It is shown that the disturbance-estimation based offset-free tracking schemes involving an observer/estimator, known from 

on-line MPC, are also applicable in mp-MPC. Further, that a "joint"-scheme, in which the MPC controller integrates the 

functions of constrained dynamic control and offset-free tracking without using a separate target calculator, may be efficiently 

used for control of small-scale multivariable processes with redundant control inputs. Such schemes facilitate tuning for 

efficient disturbance rejection and robustness, which is extremely important in low-level control applications. Local linear 

analysis was found to be an extremely valuable tool for tuning and performance analysis of the feedback action. However, the 

results of the case study also indicate that the improvements may not come as easily as some optimistic references predict [5]. 

With the tuning preference on the robust side of the performance/robustness trade-off, a relatively small improvement over the 

original two-loop PID control scheme in the form of lower overshoot was achieved at roughly the same response speed. There 

is also a certain improvement in the constrained performance compared to PID anti-windup, and a better insight into the 

constrained performance is available due to the explicit form of the mp-MPC control law. More significant practical 

advantages are expected in applications where output constraints or measured disturbances are important, or where PID-based 

control is less efficient due to more demanding process dynamics. 
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Fig. 1.  Schematic diagram of closed-loop system with mp-MPC. 



 

Fig. 2.  Vacuum subsystem of plasma annealer. 



 

Fig. 3.  Nominal controller closed-loop poles for all controller regions, N = 27 



 

Fig. 4.  Nominal controller closed-loop poles for all controller regions, N = 17 



 

Fig. 5.  Simulated mp-MPC response to a large step change of the set-point signal. 

 



 

Fig. 6.  Sigma diagram of nominal S(ω) (dashed) and T(ω) (solid), mp-MPC with OSD disturbance model. Dotted: set of true models. 



 

Fig. 7.  Sigma diagram of nominal S(ω) (dashed) and T(ω) (solid), 2PID scheme. Dotted: set of true models. 



 

Fig. 8.  mp-MPC + OSD, experiment, yr = 2.9. 



 

Fig. 9.  mp-MPC + OSD, experiment, yr = 7. 



 

Fig. 10.  2PID scheme, experiment, yr = 2.9. 



 

Fig. 11.  2PID scheme, experiment, yr = 7. 

  



 

Fig. 12.  Sigma diagram of nominal S(ω) (dashed) and T(ω) (solid), mp-MPC with ISD+LTR disturbance model. Dotted: set of true models. 
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