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In this work we explore advanced control algorithms for the vertical stabilization of plasma in the ITER 
tokamak for the case where a combination of ohmic in-vessel and superconducting poloidal actuators is used for 
effective response to disturbances subject to thermal constraints. We apply constrained linear-quadratic optimal 
control, which is a hybrid between conventional linear quadratic optimal control and model predictive control 
(MPC). We discuss the issues of practical implementation in the form of explicit MPC, which allows application to 
fast processes by avoiding the use of on-line optimization.   
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1. Introduction 

Recent developments in vertical control of unstable 
elongated plasma in tokamak fusion reactors are focused 
on the ability to withstand large-scale disturbances, such 
as vertical displacement events (VDE) and edge 
localized mode (ELM) perturbations [1,2]. One of the 
design proposals for the ITER tokamak [3] provides the 
implementation of plasma vertical stabilization (VS) 
system by using a combination of actuators: ohmic in-
vessel (IV) coils, in order to assure a prompt and 
effective response to the envisaged disturbances, and 
superconducting (SC) poloidal field coils, to meet the 
thermal constraints that must be fulfilled for the IV coils. 

Constrained linear quadratic (CLQ) optimal control 
is a systematic approach to control of systems involving 
constraints. It is a hybrid of LQ control and model 
predictive control (MPC). CLQ increases the 
convergence region of initial states compared to LQ 
control, so it should allow rejection of larger VDE/ELM 
perturbations if it is adopted for the VS system. 

Conventional implementations of CLQ/MPC using 
on-line optimization are computationally infeasible for 
fast control loops such as the ITER VS system. 
However, explicit CLQ/MPC [4] shifts the bulk of 
computation out of the real-time control loop. It 
produces a piecewise-affine control law defined over a 
finite polyhedral partition of the system state-space. In 
real-time, the controller requires the evaluations of a few 
linear inequalities and of the local affine control law. 

In this work we apply CLQ control to the ITER 
tokamak model. The practical application of CLQ to 
systems with multiple inputs and outputs is not 
straightforward; some of the issues have been recently 
described in [5]. The control problem setup needs to be 
simplified in order to achieve a tractable and numerically 
reliable off-line computation. The complications arise 
from the practical requirements for a relatively short 
sampling time, needed for fast controller response, and a 
relatively long constraint-handling horizon, needed for 

timely reactions to anticipated activity of constraints. We 
start with a brief overview of CLQ/MPC; then we 
present the simulation setup, and the implementation and 
results of LQ, CLQ and MPC controllers.  

2. MPC and CLQ control setup 
Consider the discrete-time state-space system  
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with system matrices A, B, C, input u, output y, state x, 
and time index k, and the problem of its regulation to the 
origin, fulfilling the signal constraints maxmin uuu ≤≤ , 

maxmin yyy ≤≤  and minimising the cost function 
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with horizon N, cost matrices ux RQ , , and terminal cost 

NP  [4,6]. The LQ problem assumes N = ∞ with no NP , 
and finds the solution in the form of state-feedback 

xKu LQ=  by solving the associated Riccati equation, 
ignoring the constraints. Traditional MPC solves the 
constrained problem with a finite N by reformulation 
into an optimization problem which is, assuming 
standard control signal parameterization, solved with 
respect to a finite number of future control outputs 
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In CLQ, the infinite-horizon constrained optimum is 
found by using a dual-mode controller which appends a 
terminal LQ controller at the end of a finite-N MPC 
problem, assuming that the constraints are not violated at 
k ≥ N. The appending is carried out by 
• using the solution of the associated Riccati equation 

LQP  as NP ,  



 

• enforcing the LQ invariant set LQX , in which the 
LQ solution is feasible with respect to the signal 
constraints, as a terminal constraint 

LQkNk X∈+ |x . 

With the "feedback" control signal parameterization, 
MPC optimizes deviations ],...,[~

1−+= Nkk fff  from the 
LQ feedback law, fxKu += LQ , rather than u~  directly.  

3. Vertical control of ITER plasma 
3.1 Simulation model 

Both the simulations and the controller design 
presented in this paper are based on high-order 
CREATE-L and CREATE-NL linearized dynamical 
models of the plasma and the surrounding coils [7,8]. 
The plasma linear model 1 for the equilibrium at plasma 
current  MA14.5 =pI , poloidal beta 0.11 =pβ  and 
internal inductance 0.85 =il  has been considered as 
nominal model, while the substantially different plasma 
model 2 for the equilibrium at  MA15 =pI , 0.1 =pβ  
and 1.21 =il   was used for a preliminary robustness 
verification.   

For vertical control, a two-input two-output 
subsystem was considered, where the inputs are  
-  the voltage applied to the IV coils VS3 icuu =1    
-  the voltage applied to the SC circuit VS1 12 VSuu =   
while the controlled outputs are  
-  the current in the IV coils icxy =1   
- the plasma vertical velocity pvy =2   
Simulations also show plasma position pz  and the 
current in the superconductive VS1 circuit 1VSi .  

In typical performance tests, a 10cm VDE event was 
simulated with a suitable initial state of the plasma linear 
model. Additionally, ELM disturbances may be 
simulated by injecting recorded profiles of pβ  and il  [3]. 
As performance measures, root-integral-square-error 
(RISE) values of icx  (in-vessel coil thermal load) and pv  
(vertical velocity regulation efficiency) were observed. 

3.2 Static output feedback (SOF) control scheme 

For reference, the results are compared with the SOF 
controller of Ambrosino et al. [3,9] 
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which provides relatively efficient and robust 
performance despite its simple implementation. 

3.3 LQ control 

A continuous-time (ct) linear-quadratic-Gaussian 
(LQG) optimal control scheme in Fig. 1 was the first 
intermediate control design step. A low-order 
approximation of the subsystem comprising the power 
supply models, the relevant part of the plasma model, 
and the diagnostics model, was sought. Low-order 

models are needed for explicit MPC (eMPC) and to 
avoid "over-fitting" considering the huge range of 
dynamics that the controller is expected to cope with. A 
third-order model { }0CBA ,,, rrr  obtained using Schur 
balanced truncation [10] was selected for LQG design. 
Model states are not measured, so a Kalman filter (KF) 
is used for state estimation. A saturation block prevents 
controller windup in case of unenforceable control 
signals.     

 
Fig. 1 LQG control scheme (top) and LQG controller 
block expanded (bottom). 

The LQG scheme may be sensitive to modeling error, 
which may be addressed using the concepts of Loop 
Transfer Recovery [11]. Tuning is challenging because 
of the large number of parameters; it was carried out 
using a graphical tuning environment for linear closed-
loop analysis based on Nyquist and Nichols diagrams 
with both plasma models. The following parameters 
were chosen for the ctLQ controller and the KF 
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Compared to the original SOF controller, the ctLQG 
slightly improves the performance (less thermal load on 
the IV coils and less pv  overshoot, see Table 1 and Fig. 
4) and the robustness (better stability margins and 
performance with model 2). The improvement is mainly 
due to the faster response of 2u , which is controlled 
directly from 2y  instead of from delayed 1y . 

The following step is a discrete-time implementation 
of the LQG scheme (dtLQ). Discretization of the 
reduced-order model using the zero-order hold approach 
is used, with the sampling time s005.0=sT ; the same 
cost matrices are used. Compared to ctLQ, dtLQ exhibits 
a noticeable deterioration of performance and robustness 
(no longer stabilizes model 2 with the same tuning). 
However, a shorter sampling time has adverse impact on 
explicit CLQ/MPC implementation.  

In Fig. 4, 2u  is clipped at the start of ctLQ and dtLQ 
simulations, therefore the response is not optimal.  



 

3.4 CLQ controller 

A CLQ controller is expected to provide optimal 
response with respect to the cost function (2) and 
constraints on control signals, with stability and 
feasibility guaranteed in the domain of attraction 
corresponding to the whole controller partition [12, 6]. 
So one may attempt to reduce the pv  overshoot observed 
in Fig. 4 by specifying constraints  

[ ] [ ]TT 3333 106105.1106105.1 ⋅⋅≤≤⋅−⋅− u

[ ] [ ]TT 51025105 44 ⋅≤≤−⋅− y  (6) 

The construction of the CLQ controller is based on 
the same model as dtLQ. The same cost matrices (4) are 
converted to an equivalent state-cost formulation. dtLQ 
is applied as the terminal LQ law, using feedback 
parameterization. Fig. 2 shows firstly the LQ invariant 
set LQX  in which no constraints are violated and the 
dtLQ solution is already optimal subject to constraints 
(6), then the state partition of the CLQ with the horizon 
N = 2, illustrating how much this CLQ increases the 
feasible region. The partition is the union of polyhedral 
regions of the controller, which are characterized by the 
same set of active constraints and the same local affine 
control law; it is computed using the Multi-Parametric 
Toolbox (MPT) [12] with modifications [13]. The CLQ 
controller is used in a scheme similar to LQG in Fig. 1, 
with the LQ gain replaced by the eMPC controller block.   

 
Fig. 2 The invariant set of the terminal LQ controller 
(top) and the CLQ controller partition (bottom). 

Unfortunately, this attempt of reducing the pv  
overshoot fails due to a number of practical issues, and 
several assumptions required for the favorable 
theoretical properties to hold are violated: 

• Due to numerical issues, the horizon N = 2 
achievable in the explicit implementation is very 
short. This is much shorter than the initial 2u  
saturation in Fig. 4, and the CLQ controller is 
infeasible in the corresponding states [14]. 

• With such short horizon, the controller is incapable 
of a timely reaction to an approaching violation of 
output constraints.   

• The online implementation of the same controller is 
possible with longer horizons. However, with the 
terminal LQ set constraint the problem remains 
infeasible. The feasible partition space does 
generally grow with increasing N, but only at some 
of its facets. If the terminal LQ set constraint is 
dropped, the feasible partition space increases, 
however the trajectory is not optimal and is likely to 
run into infeasible space.  

• Underestimation of pv  in open-loop prediction due 
to model inaccuracy is another observed cause of 
running into infeasibility. 

3.5 A practical eMPC controller 

A practically useful and computationally tractable 
eMPC controller that avoids infeasibility and achieves a 
reduction of the  pv  overshoot may be reached by 
departures from the theoretical CLQ setup:  
• Control move blocking reduces the number of 

decision variables and improves numerical 
conditioning. 

• Soft y constraints, which replace hard inequality 
constraints on predicted signal values with an 
additional term in the cost function penalizing 
constraint violations, are used to avoid infeasibility 
problems, but they are challenging computationally 
due to the additional decision variables. Softening of 
y constraints may be used when combined with 
sparse placement of y constraints over the horizon.  

The eMPC controller was implemented using the Yalmip 
[15] method of MPT [12] with modifications [13]. It is 
based on the same model as dtLQ, with cost matrices (2) 
converted to an equivalent state-cost formulation. It uses 
the conventional control signal parameterization, horizon 
N = 9 with move blocking of u into two groups with 2 
and 7 elements, respectively; LQ terminal cost with no 
terminal constraint; tighter soft output constraints 

TT ]5108.1[]5105[ 44 ⋅≤≤−⋅− y ; and soft constraint 
cost 2

410 ISy ⋅= −  (where I2 is the identity matrix of 
dimension 2). The partition of the basic version of eMPC 
with y constraints at each horizon sample in the top 
section of Fig. 3 contains 4826 regions; eMPC-SC2 with 
y constraints at each second sample 1462 regions; 
eMPC-SC4 with y constraints at each fourth sample in 
the bottom section of Fig. 3 531 regions, respectively. 
Thus, Fig. 3 visually displays the reduction in the density 
of partitioning of the feasible state-space. A considerable 
simplification of the controller partition is achieved; 
however it is accompanied by a deterioration of the 
performance as seen in Table 1 and Fig. 4. With soft y 
constraints, the partitions in Fig. 3 are much larger than 



 

the one in the bottom part of Fig. 2, as the controller 
does not become infeasible if an output constraint is 
violated.         
 

 
Fig. 3 EMPC controller partition: output constraints at 
each sample (top) and eMPC-SC4 (bottom). 

 

Table 1: Controller performance 

Controller In-vessel coil 
thermal load  

( ))(RISE txic  

Vertical velocity 
regulation 

( ))(RISE tv p  

SOF 9805.7 0.10786 
ctLQ 8239.4 0.09625 
dtLQ 8563.6 0.11658 
eMPC 8061.0 0.11097 
eMPC-SC4 8291.3 0.11136 
 
 
4. Conclusions 

A computationally tractable explicit MPC controller 
for the plasma VS system capable of practically useful 
constraint-handling was demonstrated. Softening of the 
output constraints was required for feasibility, while 

computational tractability was reached by using move 
blocking and sparse placement of constraints.     
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Fig. 4 Closed-loop response to a 10 cm VDE, model 1.  

 


