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Abstract: Reliable tools for reduction of dimensionality are needed for data processing
in many areas of science. Well known algorithms like PCA are usually taken as golden
standard and used as black box for any kind of problem. However, classical algorithms
(like PCA) usually does not provide information about uncertainty of their results thus pre-
venting further investigation of model structure. Proper Bayesian treatment is not feasible.
Variational Bayes is a new and interesting approximative method of Bayesian estimation.
In this text we summarize approximative Bayesian solution of PCA problem and identify
its week spots. A new model is constructed and computationally advantageous method of
variational PCA is presented.
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1 INTRODUCTION

Dimensionality reduction is considered as an inevitable subtask of many data processing appli-
cations when dealing with multivariate systems. It is usually defined as mapping

R:y—x 1)

where y denotes space of p-dimensional vectors and z denotes space of r-dimensional vectors.
The term reduction is used if » < p. The term dimensionality reduction is used across many
areas of science with slightly different definitions and understanding.

In this paper we distinguish two basic reasons why we need to reduce dimensionality of mea-
sured variables

Necessity total amount of measured data is too high for further processing. Typical example
might be data transfer with pre-specified bitrate. In this case we usually know what
amount of data we can afford to process. The task is then reduced to selection of the best
transformation function.

Physical nature of the process does not allow us to measure inner variables responsible for
system behaviour. We are able to observe only external variables which are believed to
be transformed inner variables corrupted by noise. The task is to verify whether measured
data contain enough information to determine dimension of inner variables, r, together
with optimal transformation.

Notice, that for the first case the question of optimality of chosen transformation can be easily
overlooked. In many application the problem specific transformation is used without ques-
tioning its relevancy. However, once the issue of optimal transformation is raised the very



next question is what kind of information is important and what can be neglected. This natu-
rally leads to signal and noise separation and consequently to probabilistic interpretation of the
whole problem

y={y, R: f(ylz), z € x}

where transformation from one space to another is given by probability density function. Proba-
bilistic calculus can be used to answer all above mentioned questions. Even though the solution
is formally straightforward it is often infeasible from algorithmic and computational point of
view.

That is why many practically used algorithms does not provide fully probabilistic solution but
usually point estimates of mean value of involved parameters. This approach is acceptable in
the first described case when we are interested in limited number of values. However, in the
second case this approach reach its limits as it is not able to provide estimates of number of
lower dimensions. This task falls into category of model structure estimation in which Bayesian
methods has proven the most successful one.

However, exact Bayesian solution is not feasible. There are various methods that provide ap-
proximative solution, namely Laplace method (R. E. Kass, 1994), Monte Carlo Markov Chain
methods and Variational approach. In this paper we will discuss application of Variational
methods.

2 PROBLEM FORMULATION

Probabilistic interpretation of dimensionality reduction problem was studied in context of latent
variable models (Everit, 1984), where unknown low dimensional variable z is the latent one.
The data generating model is defined

y=g(x,0)+e (2

where y denotes observed variable, x latent variable, g transformation function parameterised
by # and e denotes additive noise. The model is fully determined is we specify transformation
function g, and probability distribution of noise f (e). Data generation model can be rewritten

f(ylo,z). ©)

In order to obtain distribution of latent variable = conditioned by measured data we can use
Bayes rule

£ (aly) o< [ f (ke 6) fo (216) fo 6) d @

where f, denotes prior distribution. As we will see later analytical solution of this integral is
far from trivial even for very simple linear Gaussian model.

2.1 Linear Gaussian Model

Linear Gaussian dimensionality reduction is probably the first model ever studied. Its roots
goes back to 19th century. It represents a special case of the model (2) where transformation
function g(z, A) is linear combination and additive noise is chosen homogenous Gaussian with
zero mean and variance o. The data generating models is then

f(ylz,A) = N (Az,ol,) for onerealization (5)
f(Y|X,A) = N(AX,ol,® I,) for nrealizations



where the compact notation of multiple realizations Y = [y1, y2, - . ., Yn], X = [21, T2, . . ., Tp]
is possible due to properties of Gaussian noise. Matrix notation simplifies readability of many
following results.

This model is widely used as it is possible to show (Bishop, 1998), that its maximum likelihood
estimates correspond with well known Principal Component Analysis (PCA) (Jolliffe, 1986).
As it was mentioned in the introduction, maximum likelihood estimates does not provide esti-
mation of structure, e.g. number of dimensions r.

Exact Bayesian inference (4) for this model was derived (Press and Shigemasu, 1989). The
resulting distribution is a complicated one with surprising moments. Mean values for both A
and X are zero. This finding is (probably) closely related to principal indeterminacy of basic
model

D=AX+F

which yields the same result for any invertible matrix 7" of appropriate dimensions
AX = ATT'X. (6)

If you realize that AX is reached with the same probability as (—A) (—X) the zero mean of es-
timates is not so surprising. More practical approach would require solution of the the inference
with restrictions on positivity of involved matrices which would be far too complicated.

2.2 Other models

There are various models published in the literature that follows the basic scenario (2) in the
literature. They can be classified by transformation function, distribution of the noise and prior
information on parameters. These models are widely used in neural computation, artificial
inteligence, biology etc. However, Bayesian analysis of these models is not available.

Another famous dimensionality reduction algorithm is Factor analysis. It is the whole branch
of science by itself, however its basic algorithm can be interpreted as maximum likelihood
estimate of the linear model

fylz,A) = N(Az,R) ()
with diagonal covariance matrix R. It looks like a small difference compared to identity matrix

in PCA model however it has serious consequences on estimation algorithm.

3 VARIATIONAL BAYES

Variational approximation is based on application of Jensen’s inequality to the logarithm of the
likelihood function, where D denotes measured realizations of random variable y

Inf(D) = In /9  f(D,x,6)d8dx 8)
[ 402 FD.0.9) 4 _
= In - q(O,x)f(D’ 6, x)d0dx > e q(60,z)In 2(0.2) dfdx = L(D).(9)

We see that the function £ (D) forms a rigorous lower bound on the true logarithm of the
likelihood function. If ¢ (#) is pdf the error of approximation is given by

f(0,z|D)
q(0,z)
which is the Kullback-Leibler distance (Kullback and Leibler, 1951).

KL (¢(6,2) |£(6,21D) = = [ q(6,2)In de (10)



Note that equation (8) is valid for any pdf ¢ (6, z). The choice of approximation pdf ¢ is then
subject of design aim. For a choice ¢ (0, z) = f (0, z) KL distance is equal to zero, however it
does not solve intractability of integral (4). If we want to find a tractable solution we have to
restrict ¢ (0, x) to a space of tractable functions. This can be done basically in two ways:

1. direct specification of parametric form of ¢ (0, z) = Q (6, z|¢) and minimisation of KL
distance with respect to parameters ¢. Hence, parameters

¢ = argmax KL (Q (0, z(¢) [|f (6, 2| D))

determine the best approximation (9, x|q§) of f (8,z|D) in the space of Q.

2. non parametric restriction of functional ¢ (6, ). The solution has to be found by func-
tional minimisation of KL distance. The solution is more complicated, however it pro-
vides even the form of pdf.

The later approach is adopted as a basis for method called Variational Bayes.

Theorem 3.1 (Variational Bayes) Let f (0, z, D) beajoint pdf of data matrix D and variables
6,z and ¢ (0, z) be approximative pdf restricted to independent distribution of variables 6, x

q(0,z) =g (0) gz ().
Then, minimum of KL distance KL (¢ (6, x) || f (8, z, D)) isreached for

g0 (0) o< exp (&g, {In (f (0, z, D))}) , ¢u (x) o< exp (&g, {In (f (0, 2, D))})

where £, denotes expected value with respect to distribution g.

The above mentioned theorem is quite a powerful tool for estimation of latent variables. Notice
that it provide even the form of resulting pdf. However, moments of the resulting distribution
are mutually dependent. Consequences are illustrated on the following special case.

3.1 \Variational PCA

Variational approach was applied to the PCA model (5) by Bishop (Bishop, 1999). The model
has to be extended by selection of prior distribution on parameters and latent variables

fo(X)=N(0,I,1,), fo(A) =N (0,diag(a)®1I,), fo(o)=T (co,dp)

where a denotes vector of hyperparameters ;7 = 1...p — 1 with priors f (o) = T (ag, bo).
Application of theorem 3.1 gives following results

F(X)=N (MX, Yy ® I(NxN)) fA) =N (MA, Tpxp) ® EA) (11)
R

f(o)=T{ed) f(oz):HF(a,bi)

=1



with moments given by set of implicit equations

-1

My = SSEMAD Sy = (IT + 2 (S MAMA)) (12)
) -1

Ma= SEaMxD' %= (diag (3) + (O -+ My M)

a=uag+05p b=diag(b+ (Xa+ M\ Mp,))
1
c=co+05np d=dy+ §trace (DD'") — 2trace (D' M4 Mx) +
+trace (X4 + M\ M,) (Ex + MxMx)).

Number of latent dimensions is determined by number of «; that remains higher than zero after
all iterations. Technically, as there is a prior on oz we need to set up some threshold above prior
value a/by.

The set of implicit equation has to be solved iteratively which implies usual issues of starting
point, stopping rule and convergency. Starting point in the original implementation was chosen
randomly, stopping rule by some small threshold on increment of parameter estimates. Con-
vergency of algorithm is quite stable but it is quite sensitive to initial guess of variance o. If it
is chosen too high algorithm does not detect all underlying dimensions, if too low convergency
of algorithm is very slow.

Overall, it is possible to say that with proper tuning of priors and thresholds algorithm is usable.
However, random starts produce different results. It does not provide guidelines for selection of
initial starting point and various tuning knobs. If we apply this algorithm on more complicated
models (see section 3.3) problems with selection of starting point and tuning knobs are growing.
Moreover, speed of convergency is significantly decreasing.

We believe that these problems are closely related to principal indeterminacy of the model
as described earlier. Thus we decided to address these problems by choice of unique data
generating model.

3.2 Orthogonal Variational PCA

This modification of Variational PCA is based on reformulation of data generating model in a
unique way. It is common to model lower rank matrices by means of singular value decompo-
sition (svd) algorithm:

D=ALX +F (13)

which is unique if A’A = I, XX’ = I, and L is a diagonal matrix L = diag (l4,...,1,)
of positive numbers. Notice that some indeterminacy is still present (signs of matrices A and
X), however there is an unwritten agreement that numerical implementations of svd algorithm
returns matrices with first column positive, which makes decomposition truly unique.

Solution follows methodology of variational estimates described in section 3. However, we
have to keep in mind restrictions of orthogonality of matrices A, X. These live on Stiefel man-
ifold with finite volume and thus we can choose prior distribution to be uniform. Normalising
coefficient is known (Khatri and Mardia, 1977), but it does not influence further evaluations
and thus we do not state it explicitely.

Prior information for remaining parameters is chosen as
i~ N(0XY) o ~T(a,b)

where parameters A, a, b can be chosen as very small values or totally neglected. Non-informative
prior on those variables provides almost identical results.



Direct application of theorem 3.1 gives us following results

A~ M(IXD'T)  I~N ( i —diag (XD'A) (7 + ) * Ir> (14)

— N 1 —— L
X~ M(DAL) o~T (”7 St [D'D - X'TA'D — D'ALX + (LI + EL)D .
We can see that minimisation of KL distance results in a bit exotic distribution, M, known as

von Mises-Fisher.

Moments for variables [ and o are quite easy to evaluate, & denotes mean value of variable o
(same for other variables) and X3;, denotes second moment of L
- T . —
L = — —diag (XDA) (15)
Y, = (6+a)7 ',

pN
tr [D'D ~-X'TA'D - D'ALX + (H + EL)] '

o =

However, moments of von Mises-Fisher distribution are more complicated. Fortunately, we
need only the fist one, mean value, which is known (Downs, 1972; Khatri and Mardia, 1977)
but hard to evaluate.

Theorem 3.2 (Moments of von Mises-Fisher distribution) Let X ~ M (F') be distributed
as von Mises-Fisher with given parameter F', and F' = USV be svd decomposition of matrix
F. Then mean value of X,

X =UDV (16)
where D is diagonal matrix with elements
0 1 1,
4= 54,108 (°F1 (5‘”’ 57 )) a7

where o F denotes generalised hypergeometric function (James, 1964).

This theorem has very useful consequences for the whole iteration algorithm. Natural starting
point of the iterative algorithm is svd decomposition of data matrix

D = USoVo (18)

which determines Ay = Uy, Ly = Sy, Xo = Vp, reasonable guess for o is the lowest (non-
zero) singular value. First iteration yields

A, = DX,Looo = UpSoVoVySozo = Upt (5350)
X, = GoLoAyD = 50SoUslUoSoVo = 2 (S370) Vo

where o (S) is operation defined by (17). Following the iteration steps we can see that mean
value of matrices preserves the form A4, = UyS4, X, = SxVy where Sy, Sx are diagonal
matrices of size p x p. Thus all we have to do in each iteration step is to perform operation (17)
for matrices S, and Sx and operations (15). Which brings significant speedup in comparison
with multiplication of matrices A and X in each step which is required for original version.

The most problematic point remains operation (17) because definition of hypergeometric func-
tion of matric argument is quite complicated and exact evaluation is far from trivial (James,
1964). Fortunately, Khatri and Mardia (Khatri and Mardia, 1977) provides approximative for-
mulas which are suitable for preliminary evaluation. Further study on this issue is very needed.



3.3 Other moddls

The application of variational theorem to more complex models is straightforward and that
is why it has already been published for mixtures of factor analysers (Ghahramani and Beal,
1999) and independent component analysis (ICA) (Miskin, 2000). Those works are pioneering
however still a lot of work remains to be done, especially with respect to speed of convergence
and guidelines for selection of initial conditions of iterative algorithm.

Above described orthogonal reformulation of model is surely possible for model known as
factor analysis (7). However, application of variational theorem gives A being distributed as
generalised Bingham distribution (Khatri and Mardia, 1977) which moments are not published
in available literature. Further research in this area may bring very interesting and widely useful
algorithms.

4 RESULTS

Performance of both methods was tested on both synthetic and real life data. Synthetic data
were generated by the model (5) with values n = 4000, » = 3, p = 60. With various levels of
noise variance. Comparison of typical run of both methods is listed in the following table

Simulated data Real life data

VPCA \ OVPCA | VPCA \ OVPCA
estimated dimensionality, r 3 3 123 113
CPU time consumed 290s 3s 4800s 18s

As we can see both methods estimated correctly underlying dimensionality of latent variables.
In general our experience based on many experiments is that OVPCA has tendency to under-
estimate number of latent variables while VPCA even though it sometimes provides different
results (random initialisation) is usually correct. The behaviour of OVPCA can be explained by
used approximation which is valid for high values of singular values thus eliminating dimen-
sions with lower evidence in data.

Significant differences in CPU time consumption can be partially explained by improper choice
of initial conditions of VPCA. It is possible to tune initial guess of ¢ to achieve better perfor-
mance. However, it would be necessary to do for each realization of the noise. In this respect
deterministic initial conditions of OVPCA are of high interest. The main computational burden
of OVPCA lies in svd decomposition of data matrix. The iterative algorithm is very fast be-
cause it uses very simple approximation of hypergeometric function. It gives us hope that even
more sophisticated approximation would be still computationally feasible.

Real life data were taken from Prague traffic light control system. We have collected 2300 data
records from 173 sensors. Correct dimensionality of data is naturally not known. Unbiased
comparison of both methods is again complicated by the fact that VPCA is started randomly
and provides slightly different results for each start. Moreover, number of selected components
is influenced by selected stopping rule as well.

Figure 1 shows typical evolution of parameters determining latent dimensionality. It is param-
eter L for OVPCA and « for VPCA. As we can see evolution of L is very fast but evolution
of « is singificantly slower and it seems to slide to higher values. This behaviour is, however,
allowed by the original model (5) increasing values of A are compensated by decreasing values
of X and their mutual product remains constant. Chosen prior distributions are designed to
deal with this problem but they are not strong enough to keep it steady.
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Figure 1: Comparison of evolution of hyperparameters o of VPCA (left) and parameters L of
OVPCA (right). These parameters determines estimated dimensionality of latent variable in
each method and thus allow as to compatre its efficiency.

5 CONCLUSION

In this paper we have shown that variational methods represent very interesting tool for estima-
tion of latent variable models. Drawbacks that prevented use of these method for use in large
dimensions were identified as missing guidelines for selection of initial conditions and tuning
knobs and speed of convergence.

We have shown that these illnesses can be overcome by reformulation of the model at least for
the simplest case, known as PCA model. Reformulation of the model for more complex models
is possible. However, numerical evaluation of moments of resulting distributions is far form
trivial and further research is needed for successful realization.
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