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Abstract: The effect of the algebraic constitutive equations on local stability of lumped
process models is investigated in this paper using local linearization and eigenvalue check-
ing. Case studies are used to systematically show the influence of algebraic equations on
the open loop local stability of process systems using illustrative examples of a continuous
fermentation process model and a countercurrent heat exchanger.

Keywords: lumped process systems, differential algebraic equations, stability analysis,
local linearization

1. INTRODUCTION

Lumped dynamic process systems are known to be modelled by differential and algebraic equations
(DAEs). The differential equations originate from conservation balances for the extensive conserved
quantities while the algebraic constitutive equations describing physico-chemical properties, equa-
tions of state, reaction rates and intensive-extensive relationships complete the model as described by
Hangos and Cameron (2001). The general form of DAE process models consists of an input-affine
differential part, and the algebraic equations are given in an implicit form:

dx

dt
= f(x, z) +

p∑
i=1

gi(x, z)ui (1)

0 = h(x, z) (2)

wherex is the state vector,u = [u1 . . . up]
T is the vector of manipulable control inputsui andz is the

vector of algebraic variables. Note that control inputs only occur in the differential part of the model.
Dynamic nonlinear analysis techniques like in the book of Isidori (1995) are not directly applica-

ble to DAE models but they should be transformed into nonlinear input-affine state-space model form
by possibly substituting the algebraic equations into the differential ones. There are two possible ap-
proaches for nonlinear stability analysis: Lyapunov’s direct method (using an appropriate Lyapunov-
function candidate) or local asymptotic stability analysis using the linearized system model.

In this paper, only the latter will be considered for the purpose of showing the influence of alge-
braic equations on open loop stability of process systems using illustrative examples of a continuous
fermentation process model and a countercurrent heat exchanger. Special emphasis is put into the
effect of different mechanisms, such as convection, transfer and reaction, occurring in lumped param-
eter process systems on local stability.



2. LOCAL STABILITY OF LUMPED PROCESS MODELS

This section contains the basic notions and techniques which are used for local stability analysis of
lumped process models.

2.1. The structure of nonlinear DAE process models

The structure of lumped process models depend on both the mechanisms taking place in the system
and on the choice of input variables. Two practically important different cases are considered.

1. Inlet intensive potential variables as inputs
Hangoset al. (1999) showed that if the control inputs are chosen to be the intensive potential
variables at the inlets then the differential equations (1) of the above general DAE process
models are in the following special form:

ẋ = Atransx + QΦ(x, z) + Boutconvx + Binconvu (3)

where the coefficient matricesAtrans, Boconv andBinconv are constant matrices originating from
the convective terms, whileQφ is a smooth nonlinear function representing the transfer and
source terms, respectively.

2. Flowrates as input variables
If the flowrates of the convective flows are chosen to be the input variables, then the differential
(conservation) equations take the following special form:

ẋ = Atransx + QΦ(x, z) +
p∑

i=1

gconvi(x, z)ui (4)

whereAtrans is a constant matrix term, while the nonlinear smooth functionsgconv andQφ

originate from the convective terms and source terms, respectively.

Under the assumption that physico-chemical properties are constant and specifications result in an
index 1 model, the algebraic equations are always substitutable into (1).

2.2. Open loop local stability analysis of DAE models

For the purpose of stability analysis, we need to linearize the DAE model around a steady state
operating point[x∗ z∗]T , which is in the following form in the case of the general model (1-2):

ẋ =
∂f

∂x

∣∣∣∣
(x∗,z∗)

x +
∂f

∂z

∣∣∣∣
(x∗,z∗)

z +
(

g1(x∗, z∗) g2(x∗, z∗) . . . gp(x∗, z∗)
)

u (5)

0 =
∂h

∂x

∣∣∣∣
(x∗,z∗)

x +
∂h

∂z

∣∣∣∣
(x∗,z∗)

z (6)

for given operating point values of the input variablesu∗i (i = 1, . . . , p), and with the centered vari-
ablesx = x− x∗, z = z − z∗ andu = u− u∗.

If ∂h
∂z

∣∣
(x∗,z∗)

is invertible (which is equivalent with that the model has a differential index equal to
one), the vector of centered algebraic variablesz can be explicitly expressed in terms of state variables
x yielding to a purely differential representation:

ẋ =

(
∂f

∂x
− ∂f

∂z

(
∂h

∂z

)−1 ∂h

∂x

)∣∣∣∣∣
(x∗,z∗)

x +
(

g1(x∗, z∗) . . . gp(x∗, z∗)
)

u (7)



The operating point(s)[x∗ z∗]T can be determined for prescribed input valuesu∗ by solving (1-2)
with ẋ = 0 which means the solution of an algebraic system of equations.

A necessary condition on the solvability of the system of equations above is that the number of
differential (algebraic) equations equals to the number of differential (algebraic) variables (degree of
freedom equals to zero), and the original DAE system has differential index 1.

2.3. Mechanism-wide local stability analysis of DAE process models

We investigate the effect of mechanisms (transfer, convection, reaction) on local stability using that
both (3) and (4) are broken down into additive terms of these mechanisms. Earlier results of Hangos
and Perkins (1997) show that transfer is a stabilizing term, because the eigenvalues of the matrix
Atrans are on the open left-half plane, and in case of constant mass holdups in each balance volume,
Kirchoff convection matrices ensure that convection may also be a stabilizing term.

Further mechanism-wide stability considerations of the locally linearized models in the above two
input variable cases are as follows.

1. Inlet intensive potential variables as inputs
The linearized model of (3) with the algebraic dependence (2) is in the following form:

ẋ =

Atrans + Boutconv +

(
∂QΦ

∂x
− ∂QΦ

∂z

(
∂h

∂z

)−1
∂h

∂x

)∣∣∣∣∣
(x∗,z∗)

 x + Binconvu (8)

Since the coefficient matricesAtrans, Binconv andBoutconv in Eq.(3) are constant matrices, the
algebraic dependence (2) only affects the transfer and source terms in the model and thus has a
major effect on the open loop stability of the system.

2. Flowrates as input variables
The linearized model of (4) with the algebraic dependence (2) is similar to the former case:

ẋ =

Atrans +

(
∂QΦ

∂x
− ∂QΦ

∂z

(
∂h

∂z

)−1 ∂h

∂x

)∣∣∣∣∣
(x∗,z∗)

x +

+
(

gconv1(x
∗, z∗) . . . gconvp(x

∗, z∗)
)

u (9)

The main difference is that convection is affected by the inputs therefore the state matrix of the
linearized model contains the transfer and source terms only.

3. CASE STUDY 1: A CONTINUOUS FERMENTATION PROCESS

A simple continuous fermentation process (for example in Takamatsuet al. (1975)) is used as a case
study with constant liquid volumeV . The liquid feed (F ), the temperature and all physico-chemical
properties are assumed constant. The state variables are the concentration of biomass (X) and of that
the substrate (S).
The control input of the system is the substrate feed concentrationSF which is an intensive potential
at the inlet as described in (3) and there is no transfer term. The reaction rate expression is given by
an algebraic equation for the reaction rater.

Ẋ = −F

V
X + r (10)

Ṡ = −F

V
S − 1

Y
r +

F

V
SF (11)

0 = µ(X, S)− r (12)



3.1. Stability of the simple fermenter

We will show that the stability of the model depends on the reaction kinetics only.
The linearized model of the fermenter is a special case of (8) with no transfer effect(Atrans = 0)

in the following form:[
Ẋ

Ṡ

]
=
([

−F
V 0
0 −F

V

]
+
[

∂r
∂X

∣∣
∗

∂r
∂S

∣∣
∗

− 1
Y

∂r
∂X

∣∣
∗ − 1

Y
∂r
∂S

∣∣
∗

])[
X

S

]
+
[

0
F
V

]
SF (13)

The state matrixA of the linearized model consists of the sum of the diagonal output convection term
(Boutconv) and the reaction term (Asource), where only the source term depends on the steady state.
SinceA is a matrix polynomial of the source term (A = −F

V
(Asource)

0+(Asource)
1) and the linearized

reaction term issingular because there is a single reaction term, then - according to Gantmacher
(1959) - the eigenvalues ofA can be computed easily:

λ(A)1 = −F

V
+ 0 = −F

V
, λ(A)2 = −F

V
+ trace(Asource)|∗ =

∂r

∂X

∣∣∣∣
∗
− 1

Y

∂r

∂S

∣∣∣∣
∗
− F

V
(14)

It leads to the stability condition
∂r

∂X

∣∣∣∣
∗
− 1

Y

∂r

∂S

∣∣∣∣
∗

<
F

V
(15)

3.2. Stability of the simple fermenter with different reaction kinetics

With five different reaction kinetic expressions (µ functions), the model exhibits different stability
properties. Investigation is performed by eigenvalue checking of the linearized models at the operating
point(s) in the following cases.

1. Constant characteristicsµ = K results in a linear time invariant (LTI) model which is globally
asymptotically stable. This case is the basis of all the following models, containing only the
effect of the differential variables.

2. The linear reaction rateµ = Kx gives also an LTI model with the operating point of biomass
wash-out, which is stable ifK < F

V
.

3. The simplest nonlinear, a bi-linear reaction rateµ = KSX causes two operating points: a
wash-out point and an other one.

4. With the monotonous nonlinear characteristicsµ = µmaxS
ks+S

X we similarly get to two operating
points.

5. A qualitatively different nonlinear non-monotonous reaction rate function isµ = µmaxS
k1+S+k2S2 X,

which induces two real operating points (apart from the wash-out point). These three points
have the usual stability property pattern (two stable and the other unstable).This case indicates
that the lack of monotonicity is the one which drives the stability pattern and can result in
multiple real operating points.

Local stability properties of the models with different reaction kinetics are summarized in Table 1.

As an important conclusion,the convective term alone is stable independently of the steady state,
moreover it may stabilize the effect of the source term.



Table 1. The effect of reaction kinetics

Reaction kinetics Model type Eigenvalues∗ Stable if
r = K linear time invariant −F

V
, − F

V
unconditionally

r = KX linear time invariant −F
V

, K − F
V

K < F
V

r = KSX nonlinear input affine (1)−F
V

, S∗
F K − F

V
(1) S∗

F K < F
V

with operating points (1),(2) (2)−F
V

, − S∗
F K + F

V
(2) S∗

F K > F
V

r = µmaxS
ks+S

X nonlinear input affine (1)−F
V

,
S∗F µmax

ks+S∗F
− F

V
(1) S∗F µmax

ks+S∗F
< F

V

with operating points (1),(2) (2)−F
V

, λM (2) λM < 0

r = µmaxS
k1+S+k2S2 X nonlinear input affine (1)−F

V
, λL1 (1) λL1 < 0

with operating points (1),(2),(3) (2)−F
V

, λL2 (2) λL2 < 0
(3)−F

V
, λL3 (3) λL3 < 0

∗whereS∗
F is the value ofSF at the operating point,

R =
µmaxV−F±

√
(F−µmaxV )2−4k1k2F 2

2k2F
, λM = −µmax(µmaxV 2S∗F−2V FS∗F−FksV )+F 2(ks+S∗F )

ksµmaxV 2 ,

λL1 =
µmaxS∗F

k1+S∗F +k2S∗F
2 − F

V
, λL2,L3 =

(R−S∗F )(k2F (F−µmaxV )R+µ2
maxV 2−2F 2k1k2−2µmaxV F+F 2)

µmaxk1V 2 .

4. CASE STUDY 2: A CASCADE OF HEAT EXCHANGERS

A countercurrent heat exchanger will be considered in this section, which is modelled as a cascade of
K simple heat exchanger cells leading to a lumped parameter system. Constant volumes and physico-
chemical properties are assumed in every balance volume. The volumetric flowrates of hot and cold
liquid streams arevh andvc. The dynamics of the system is described by the intensive form of the
energy balance equations of both sides for every cell (Thk

andTck
, k = 1 . . . K), and the algebraic

variables (Zk, k = 1 . . . K) describe the transfer effect:

Ṫck
=

vc

Vc
(Tck+1

− Tck
) +

1
cpcρcVc

Zk (16)

Ṫhk
=

vh

Vh
(Thk−1

− Thk
)− 1

cphρhVh
Zk (17)

0 = UA(Thk
− Tck

)− Zk (18)

The potential input variables of the system are the volumetric flowrates (vh and vc) and the inlet
temperatures (Th0 andTcK+1

).

4.1. Stability of the heat exchanger model

It is proved by Hangos and Perkins (1997) that in case of constant physico-chemical properties, pres-
sure and mass holdups in each balance volumes, the convection term is stable in asymptotic sense,
and the transfer is also stable in Lyapunov sense.

Two cases will be considered according to the input specifications.

1. If the input specification contains the flowratesu = [vc vh]
T and the inlet temperatures are

constants then the resulted model is bilinear in the input term. The state term islinear, and
contains the effect of the transfer only, thereforeA = Atrans. This matrix is block diagonal
consisting of identical2×2 diagonal blocksADk. These blocks are singular withrank(ADk) =
1 determining the eigenvalues ofA:

λ(ADk)1 = 0, λ(ADk)2 = trace(ADk) = −(
UA

cpcρcVc
+

UA

cphρhVh
) < 0 (19)

therefore the system is globally on the boundary of stability.



2. With input specification containing the inlet temperaturesu = [TcK+1
Th0 ]

T and constant
flowrates the state space model of the system is linear. The state matrix is in the form of
A = Aconv + Atrans with Atrans being the same as in the first case.A = Aconv is a Kir-
choff convection matrix (see Hangos and Perkins (1997)) with its eigenvalues being nega-
tive, thusA = Aconv is a negative definite matrix. SinceAtrans is negative semi-definite,
A = Atrans + Aconv is negative definite therefore the system is globally asymptotically stable.
In conclusion:convection has a globally stabilizing effect on the system.

5. CONCLUSION

Local asymptotic stability of lumped process systems modelled by DAE models is investigated in
this paper using local linearization and eigenvalue checking. The effect of algebraic constitutive
equations influencing the source as well as the transfer term in the differential conservation balances
is considered. Case studies are used to systematically show the influence of algebraic equations on the
open loop local stability of process systems using illustrative examples of a continuous fermentation
process model and a countercurrent heat exchanger.
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