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Abstract: The proper work of model based controller such as LQG or GPC one
depends on its right setting expressed by so called tuning knobs. It is often difficult
to set these knobs well, mainly for non—experts, especially in MIMO case where the
number of knobs rapidly increases. Accurate tuning is hardly possible using trial
and error method. A sophisticated algorithm has to be developed for successful
use of these controllers. The classical methods for controller settings can not be
precise enough for this kind of systems and it is expected the controller function
can be improved considerably if they are better tuned.
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1 INTRODUCTION

The LQG controller design depends on several penalization variables called tuning knobs.
It is difficult to guess these variables directly, because they do not correspond to the
user’s requirements placed on the controller. The user usually defines the requirements
as constraints placed on the signals on the controlled system. The proper tuning knobs
setting fits the controller into the constraints. The constraints can be placed on system
input value, system input differences, overshoot or the time to reach a desired state. For
the task of tuning it is required to find a dependency of the controller quality on the
tuning knobs setting e.g. to calculate the system input range when particular values of
the tuning knobs are set.

The tuning, as a minimization of system constraints violation, is an optimization prob-
lem. Only the samples of the controller quality—objective function can be evaluated, no
gradients are available. For each sample a simulation must be performed.

The tuning would be easily solvable by standard optimization routines but the stochastic
nature of the simulation results moves the problem to a stochastic optimization.

The task of LQG controller quality and its tuning was concerned in (Rojicek, 1998).
Tuning was designed only for SISO system where simple optimization methods were
sufficient.

2 TUNING ALGORITHM

Tuning knobs are represented by parameters (). They express typically penalization
weights. For example in case of LQG controller the tuning knobs are coefficients in its
quadratic criterion, but user requirements express usually some constraints of system
quantities. For example value of an actuator input must not exceed some bounding



interval, there is a maximum value of output overshoot or maximum input difference is
limited.

For each value of a tuning knobs () we can evaluate an error in sense of user requirements
by creating a controller using given tuning knob values. Then a simulation of the closed
loop is performed. From results of the simulation, simulated data D, we can say how
much the requirements were violated. This violation is measured by a loss function
Z(D). Aim of the tuning is to make the loss function zero or at least minimal to satisfy
the requirements exactly or as much as possible. The proper choice of the loss function
is also important and will be discussed in this paper.

2.1 MODEL DESCRIPTION

Simulated model is a linear one, which can be completely estimated using available
Bayesian tools. The model is described using an outer model probability density function
(pdf) f(y|u, ¢, ©) where y is process output, u process input, ¢ is regressor vector and ©
describes model parameters. Quantity © is a random variable and its probability density
function f(©) is known as result of a previous identification process.

2.2 Loss function distribution

Data D composed of the system input—output quantities recorded during simulation
depends on tuning knobs settings ) and on model parameters pdf fo = f(©). Pdf of the
data can be written as

F(DIQ. fo) = [ £(DIQ.©)f(©).

Measure of the user requirement violation is a loss function Z (D) depending on data. Dis-
tribution f(Z|Q, fe) of the loss function can be formally found by transforming through
the mapping D — Z.

Our goal is to find best tuning knob setting. In the ideal situation there is a distribution of
tuning knobs f(Q|Z, fe) conditioned by loss function Z and distribution fg, which would
assign optimal tuning knob values to given loss function definition. In real situation it is
hardly possible to compute such pdf directly, because the relationship between the loss
function and tuning knobs is usually nonlinear and it is not possible to find it analytically.
So that, optimization of its characteristics is quite involved.

2.8 ADAPTIVE CONTROL SIMULATION ALGORITHM

Tuning will be performed by using an optimization technique. For the optimization we
need to get a real number instead of pdf. A function which maps the pdf to a real number
has to be used. It can be the expected value approximated as a sample mean. Other
advisable choice is such value, for which the user requirements satisfied are with given
probability.

A1l. Optimization algorithm

1. Let is available the initial information such as the identified data model pdf f(y|y), user
requirements, loss function Z, system parameter estimate © for adaptation, etc.

2. Set initial guess of the tuning knobs Q.
. optimization step :

A2. Adaptive simulation loop



(a) Set t = 1, initialize simulation, Z quantity and controller model estimate 6.
: simulation step :

(b) Sample data y; ~ f(y¢|ts)

(c) Update the loss Z. Exit the simulation loop A2, when the estimation of the loss Z
is representative.

(d) Update the estimate of model © using last sampled data
(e) Design controller K based on tuning knobs @ and model ©

(f) Set t =t + 1, generate new system input u; using the controller K and continue
with next simulation step

3. Exit the optimization algorithm with @ as a result, when Z(Q) satisfies optimality con-
ditions.

4. Select a new guess of ) and continue with optimization step.

The simulation loop is adaptive which means that the data are sampled from model
description including model parameters distribution f(©). Output quantity is sampled
from pdf f(y|v) = fo f(yl1,©)f(O). The controller is adapting to sampled data and
thus an adaptive control loop is simulated.

Simulation loop can contain a sequential stopping rule for deciding on Z representative-
ness to reduce computational demands.

2.4 Optimization

An optimization method generating the guesses of () for tuning algorithm has to be
chosen. It is possible to use deterministic quasi—-Newtonian methods with a bit artifi-
cial modification of simulation loop to reduce randomness. Other suitable methods are
nondeterministic optimization methods such as stochastic approximations or evolution
algorithms. Nondeterministic methods are expected to provide more objective results,
because a real noisy environment can be used in the simulation.

3 CONTROLLER TUNING

The only controller used to illustrate the tuning is LQG controller. However methods
used for tuning are general and extension to other types of control should be easy.

LQG controller is designed to minimize a quadratic criterion which penalizes deviations
from desired state. Quadratic criterion J can be defined

t+T
Jo=Y (0l + @B, + .+ anle)

T=t

The T is optimization horizon, weights ¢, are nonnegative real numbers and real linear
functions l,,, depends on input and output quantities y; and u;, including their past given
by a regression vector. They measure particular deviations from a desired state. The
measures [ called penalizations can be of different kind. Setting of weights ¢, is up to
designer of the LQG controller. This weights are the tuning knobs which we will try to
tune automatically.

Some typical forms of the quadratic criterion are described below.



3.1 Reference tracking

The simplest design of the LQG controller, in sense of its criterion, is to keep the output
on its desired set point 4™ while the input should be close to its reference value u™'.
Penalizations are then chosen to penalize the tracking error

By = (v —y™)? (1)
and to penalize difference of the input from its reference value

Ly = (uy — u™)? (2)

Penalization weights ¢; and ¢, have to be set to represent optimal trade off between
tracking error and actuator effort.

3.2 Limated increments

Another useful penalization is to limit increments of input as, for example, when the
actuator is not able to open valve arbitrarily fast. The appropriate penalization is

[ = (ue — )’ (3)

The difference penalization can be extended to approximate higher order derivatives in a
similar way.

4 USER REQUIREMENTS AND LOSS FUNCTION

User requirements can be generally expressed using the loss function which should be
minimized or should be below some critical value for optimal controller tuning. The first
case is useful for minimizing the output error value for example. The second case is used
to keep the constraints on system quantities, for instance limited input values etc.

4.1  Constraints placed on system quantities

Constraints placed on system quantities stem from physical system properties, like max-
imum and minimum value of the quantities, or they they reflect the user idea of good
system behavior.

Constraints can be placed on all quantities of the system like input u;, output y; or state
¢¢—1. And also on functions of these quantities like input increments Au; = u; — uy_q,
which is a function of the u; and ¢;_;.

Constraints are expressed as a set C of allowed values of selected quantities. The C is
subset of cartesian product of all domains of constrained quantities.

For example, constraints are placed on system input and its increments and the system
has two dimensional input. Constrained system quantities, and their functions, are wu;,,
Ugy, Aury and Augy. Let all these quantities be real numbers. Then the constraint set C
is subset of space R*

Cc R

Elements of Euclidian space R* will be denoted by ¢, and they have following meaning

c= (U1;t, Uyt Alyy, AUz;t) € R (4)



Let the set of the mutually depended constraints C,, be given on inputs
(Ul,UQ) € Cu C R2

Dependent constraints means the bounding set of one element of input u; depends on the
value of other element of input u;. An example of dependent constraint is when C, is a
circle.

4.2 Loss function

Let the loss function be defined as a probability of the constrained quantities vector ¢
being outside the set C.

The pdf of considered quantities is often Gaussian and therefore it is not possible to
satisfy the constraint exactly, because such optimum lies in infinity of the penalization
domain.

Let pe be a sufficient probability of a constraint C satisfaction, given by user. When
the constraints are satisfied with equal or higher probability, we say they are satisfied in
probabilistic sense.

It is useful to substract the sufficient probability pe from the loss function Z measuring
the probability of constraints violation. Then is the loss zero when the constraints are
just sufficiently satisfied.

The criterion is then defined

Z=PlegC)—pe=1-[ f(e)dc—pc (5)

ceC

where f(c) is marginal pdf of the constrained quantities. Optimization have following
form

o =A in (£ + 6

Qo = Arg min (2(Q)) (6)
where (o) = max(0, ). The optimum need not be unique and therefore @, is generally
a set.

If value of the minimum of Z is positive, the constraints are not satisfied in probability
sense and the optimum is just its best approximations. If it is known that it is possible
to satisfy the constraints, there exists a penalization with a non—positive loss and the
optimum set ), can be defined simply by

Qo ={Q € Q" : Z(Q) <0} (7)
The loss function Z depends on the controller tuning variables and on the stochastic noise
realization. The loss is approximated using the simulation

number of steps where ¢ € C

~ " total simulation length — e

4.3 Second layer optimality criterion

The optimality criterion based on the set of constraints C gives a set (), of the optimal
tuning values. It is not easy to find the whole set, especially when using simulation. The
solution of this problem is to define other loss function, say Z5, which will choose the
best, and if possible unique, tuning knob value ),, from the set ),. The optimal tuning
knob value @),» is then



Qo2 = Arg géiQno Z5(Q) (8)

The simplest useful example of this second layer loss function is the mean tracking error
Zy = Elly —y™|?
as it reflects the original control aim.

The @, is subset of the (),. Even if it contains more elements then one, the “size” of
the Q.o set is reduced and gives the best choice according to criterion Z,. This second
layer loss function Z,, is easy to evaluate once we have the simulated data available.

5 TUNING AS AN OPTIMIZATION

Tuning aiming at the best tuning knobs values is an optimization problem. It is a
constrained optimization where the objective function is the second layer criterion (8)
and the user requirement constraints (6) placed on the system quantities are mapped to
the constraints of the optimization problem.

The loss function is evaluated using Monte Carlo method, therefore a stochastic opti-
mization method is used.

5.1 Stochastic approximations

Stochastic approximations as an optimization method fit well the considered tuning prob-
lem without the problems which arises from use of the deterministic optimization.

The stochastic optimization task is

minimize £Z(Q) where @Q € Q" (9)

The stochastic approximations uses the steepest descent direction method and the step
size is the norm of approximated gradient g, multiplied by a gain a; which is decreasing
function of the iteration count k. The iteration step is

Qi1 = Qr — arJr(Qk) (10)

The gradient gi(Qy) is approximated using finite differences

Z(Qp + cxei) — Z(Qr — crey)
2Ck

9ri(Qr) = (11)

where e; denotes a unit vector in the i-th direction and gain ¢, decreases with increasing
iteration count.

The convergence rate of the stochastic approximations method is slow compared to the
deterministic algorithms. There is a modification to the classical stochastic optimization
method called Simultaneous Perturbation Stochastic Approximations (SPSA) which ap-
proximates the gradient using just two loss function evaluations, regardless the dimension

of the problem.

(Q) = Z(Qk + ckde)C;de(Qk — cpdy,)

where dj, is a random direction perturbation vector, see (Spall, 1999). The SPSA method
is fast enough for solving our problem.

(12)

Precision of the approximated optimum is not too high, but for purpose of tuning con-
troller is sufficient even quite rude approximation.
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Fig. 1: Typical shape of the loss functions

Gains The gain sequences ay and ¢ in equations (9), (11) and (12) are chosen according
to (Spall, 1998) as

ap = af/(A+k+1)" (13)
ce = cf/(k+1) (14)

The universal recommended values for exponents are a = 0.602 and v = 0.101, see
(Spall, 1998). The choice of the constants a, A and ¢ depends on the mean gradient size,
desired approximate iteration step size and variance of the loss function.

There was used a modification for the problem of controller tuning. The optimization
algorithm is similar to (10), but the step size does not depend on norm of the gradient,
but just on the gain sequence a;. The optimization step is

91(Qr)
Qr+1 = Qk — Gy~ (15)
19k (@)
This seems to be necessary, because of the shape of the loss function defined for controller
tuning. It changes its gradient size significantly around the solution and therefore it is
better to do not depend on its size.

5.2 Loss function transformation

The convergence rate of stochastic approximations method depends on the gradient prop-
erties of loss function. A typical shape of loss functions embodies a large gradient size
close to the origin and it is nearly flat in regions far from the origin. The example of loss
functions for SISO LQG controller with the quadratic criterion

J =y + qu?

is shown on figure 1.

The large differences in the slope of the both loss functions makes problems for the
stochastic approximations. It is known that these methods converges slowly in regions
with small gradient and they can diverge in regions with high gradient. Both of these
situations can happen in this case. When the iteration of the optimization algorithm
reaches the point with high gradient, it makes a big step far from the origin, where the
gradient is very small. The step size is then negligible and the optimization stops there.

The solution to this problem was set the step size independent on the gradient size. Only
direction of the gradient is used. Step size is decreasing according to the gain sequence
ay of the optimization method.
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Fig. 2: The loss functions in logarithmic scale

The constant step makes problems near the axis origin, where it can be too big, to be
able to find the solution. To solve this problem the optimization is performed in the
logarithmic scale, where the loss functions are more regular near the origin, see figure 2.

6 CONCLUSIONS

Proposed methods of the controller tuning follow up with the previous work (Rojicek,
1998). The main extension of this approach is tuning of MIMO controller. Other im-
provements of the tuning algorithm are in newly proposed tuning loops configuration and
use of the non—deterministic methods for the optimization. It admits, moreover, to make
tuning of a truly adaptive controller.

The whole process of Bayesian system identification, simulation and control design is
implemented in Matlab toolbox Designer 2000 described in (Bucha et al., 1998). This
toolbox will be used for many tasks in tuning algorithms and results of this work will be
in future also included in new version of Designer 2000.
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