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Abstract: In this paper, improved Bayesian Modelling and estimation of dynamic systems

is concerns by means of Bayesian mixture methodology: First, Bayesian Modelling has

been reexamined from the view of probabilistic mixture; Next, under the mixture modelling

framework, a novel type of mixture model, called ARMMAX, has been introduced and

studied. ARMMAX defines as a finite mixture of ARMAX having common ARX part.

Efficient estimation of ARMMAX model with fixed MA parts is provided as well by a

specific version of recursive quasi-Bayes estimation algorithm; Then, one possible idea

to Bayesian-related estimate single ARMAX under the general assumption of unknown

stochastic MA term is discussed.
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1 Introduction

ARMAX model – auto-regression (AR) with moving average noise (MA) and external input (X)
– is commonly used for description of linear stochastic systems. It is equivalent to the linear
state-space model that forms the corner stone of so-called modern estimation and control the-
ory. Therefore the problem of estimation of ARMAX has been an active research area and remains
as an issue which is not solved completely yet. Among the multitude of estimation variants of
ARMAX, it seems that an approximate minimization of prediction error (PE) method (Ljung,
1987), has become a golden standard. It is, however, oriented only to point estimation. Con-
sequently, information on precision of estimates and other tasks like structure estimation are
weakly supported. Moreover, PE is restricted on ARMAX models with strictly stable condition
of its MA part.

From Bayesian viewpoint, the difficulty to estimate ARMAX stems from the lack of sufficient
statistic with dimension smaller than the number of data. Peterka (1981a) relaxed the stability
restriction on MA part and provided real-time Bayesian estimation of ARX part when MA is
fixed. Essentially, he shown that LD factorization of the known correlation matrix acts as a
time-varying filter on the observed data. The filtered data are then used in standard Bayesian
estimation of ARX part. Consequently, its uncertainties are under the control, Bayesian structure
estimation can be used (Kárný and Kulhavý, 1988) , etc.

Unfortunately, the mentioned properties are reached under the impractical assumption that
MA part is known. A Bayesian comparison of hypothesis was ever proposed for relaxing this
assumption (Peterka 1989) to evaluates posterior probabilities on hypotheses that a specific MA

part is the best one in a finite set of candidates. This improvement gives, however, no guide how
to selects the candidates. Moreover, the posterior probabilities converge to a zero-one vector in
generic case, the quality of the original choice of candidates therefore is out of objective control.
The extensively Bayesian use of ARMAX thus is hindered because of the difficult MA term. One



of aim of the paper is to discuss the possible estimation of MA part so that make improvement
on Bayesian solution of ARMAX.

Meanwhile, the literature review and practical applications study have indicated that a single
model cannot deal with some complex problems, such as the issues of heterogeneity. As one of
options to be able to combine the features of different models, probabilistic finite mixtures have
become popular modelling tools in a widespread practical use (Titterington et al, 1985). This
has motivated us to open a wider overview of Bayesian modelling through probabilistic finite
mixture.

Under the mixture Bayesian modelling, we then have introduced and investigated a novel mixture
model, a finite mixture of ARMAX models with a common ARX part but different fixed MA

parts. We call it as ARMMAX model. ARMMAX model is richer than ARMAX model since it
assumes invariant deterministic ARX part but allows variations of the stochastic MA part. One
efficient estimation of ARMMAX with given MA parts is provided also by the proposed numerical
ARMMAX-QB algorithm with computational burden well comparable to that of single ARMAX.
The estimation provides a quantitative measure of descriptive quality of the ARMAX models
forming mixture components. Thus, several ARMAX models are estimated in parallel.

At the end, the possibility to estimate single ARMAX model with unknown MA term is then
presented. What is interested is that it shows that estimation of ARMAX is possible to be made
by mean of estimation of more complex ARMMAX. The basic idea is that difficult point estimation
of unknown MA part could be searched by multi-directional search (MDS) method (Torczon, 1989)
in ARMMAX ”algorithmic” parallel environment to produce a implementable algorithm so that
it generates a sequence of points, denoted as the best vertices of the simplex or defined by one
of the components in ARMMAX, that convergence to a critical point–ideally a ”true” MA part.
With the searched MA C-parameters, the rest Bayesian estimation of ARX part of ARMAX model
is relied on running several filters of Peterka (1981a) in parallel.

2 Bayesian Modelling

To interact with the system, a description of the system properties, a model, is needed. Modelling
of relationships among a sequence of observations of systems is to provide a means to help us
to get better understanding about the interested complex systems. Here we shall first briefly
review the Bayesian modelling (Peterka, 1981b) and then discuss the mixture view of Bayesian
modelling in the next section.

Consider a stochastic system on which a time-oriented discrete data sequence d1, d2, · · · , dt, · · ·
are observed at discrete time instant t = 1, 2, · · · . The sequence of data observed on the system
up to time t is denoted by

d(t) = (d1, · · · , dt)

at each time instant t, data dt is composed of a pair of random variables: dt = (ut, yt), ut is
defined as a direct manipulated input to the system and yt is the output, i.e., response of the
system at time t to the past history of data d(t− 1) and current input ut.

From Bayesian viewpoint, all forms of uncertainty can be inherently quantified by means of
probability. Instead of being interpreted in terms of limits of relative frequencies or other objective
ways, in Bayesian inference the concept of probability is used to describe uncertainty about the
unknown random quantities, like input-output data, model parameters, hypotheses, etc. Here
by random, it means uncertainty rather than description of a process of observing a repeatable
event. With assuming the existence of the unknown parameter Θ, system model parameterized
by an finite set of parameter Θ is given by a set of conditional probability distributions

f(yt|d(t− 1), ut, Θ) (1)



to describe the dependence of the output yt on the known past history of input-output data
including the last input and unknown parameter set.

Usually if the output yt is a random continuous variable, it may be useful to introduce a related
random variable et as a difference between the output yt and its mean value conditioned on the
past history of the input-output process

et = yt − ŷt(d(t− 1), ut)

where ŷt(d(t− 1), ut) = E [yt|d(t− 1), ut] =
∫

ytf(yt|d(t− 1), ut)dyt. One of important properties
of the sequence et, t = 1, 2, · · · is its whiteness.

By means of the above relation, the system model then can be given in the form of a stochastic
equation

yt = ŷt(d(t− 1), ut) + et (2)

Further, if the normality (Gaussian type) of et is assumed and the conditional mean value ŷt

is expressed as a function of the past history of the input-output data through a finite set of
parameter, (1) can be specified as

f(yt|d(t− 1), ut, Θ) ∼ N (ŷt, r) (3)

where if the quantities of the stochastic noise, like standard derivation, are unknown, they should
be included into the parameter collection Θ of the studied system and estimated as well.

2.1 ARMAX models

Here we give the description of ARMAX model, since it is the basic model used in the paper.

If assume the mean value of output ŷt(d(t−1), ut) is a function of the entire past history of input-
output data, then to express the conditional mean ŷt through a finite number of parameters, it
has to be assumed that ŷt is defined recursively as following

1 +
n∑

i=1

ciŷt =
m∑

i=1

giyt−i +
m∑

i=0

biyt−i

where ŷ = ŷt(d(t−1), ut). For simplicity, a constant term is intentionally ignored, although such
a constant term usually can not be eliminated if the parameters are unknown.

Applying it into the stochastic equation (2), gives ARMAX model

yt = θ′ψt + vt (4)

with ai = ci−gi, ψ′t = [ut, yt−1, ut−1, · · · , yt−n, ut−n] is regression vector. θ = [b0, a1, b1, · · · , an, bn]
is the unknown parameter vectors. vt is a colored noise with zero mean and the finite correlation
span

E [vtv
′
t−i] = ri for i = 0, 1, · · · , n

= 0 for |i| > n

It can be considered as a moving average defined on the sequence of mutually uncorrelated white
noise {et}

vt =
n∑

i=0

ciet−i

Clearly, there is the relation ri = resi, i = 1, ..., n with c0 = 1, si =
∑n

k=i cick−i.

If the known past history of input-output is long enough so that the influence of initial conditions
ŷi(i = 1, · · · , n) may be negligible. With the normality of et, an ARMAX is fully parameterized
through the following parameter set Θ = {θ, re, c = [c1, · · · , cn]}.



As one of generally stable requirement of ARMAX representation, the zeros (roots) of C-polynomial
of MA term in ARMAX is needed to lie outside the unit circle, otherwise, as showed by the most
filters, it cannot produce optimal predictions. However, the condition can be relaxed as long
as the filter is constructed based on LD factorization of the covariance matrix by the filter of
Peterka (see Apendix).

3 Mixture view of Bayesian modelling

As a flexible probabilistic model, finite mixture has become a fruitful branch of Bayesian ap-
proach. Markov chain Monte Carlo methods make it easy to fit mixtures to Bayesian approach.
However a consistently overview of Bayesian modelling so far has not been well built yet. Several
different types of views are possible to be adopted to introduce mixture into Bayesian modelling.
Here we shall build such a wider mixture overview of Bayesian modelling along the traditional
way.

By general Bayesian modelling, to provide a system model is to specify a conditional probability
density function f(yt|d(t−1), ut,Θ). We then face a distribution approximation problem. Since
mixtures can be interpreted as universal approximators of probability density functions (Titter-
ington et al, 1985):

Provided the number of component densities is not bounded, certain forms of mix-
ture can be used to provide arbitrarily close approximations to a given probability
distribution

Thus it is conceptually straightforward to extend mixture to the above Bayesian modelling

f(yt|d(t− 1), ut, Θ) =
k∑

i=1

αif(yi,t|d(t− 1), ut, Θi) (5)

with mixture weights α = [α1, · · · , αk] satisfying αp ≥ 0, p = 1, · · · , k,
∑k

p=1 αp = 1. Θi is the
parameter set associated with the i-th component of the mixture while f(yi,t|d(t − 1), ut,Θi)
describes its the density. And the parameters Θ of the model is now the collection of all
components‘ parameters and mixing weights, Θ ≡

{
α = [α1, · · · , αk], {Θp}k

p=1

}
.

In practical, most often the condition k < ∞ is assumed, i.e. a finite mixture is in use. With
limitation on the number of components, it is not always able to arbitrarily closely approximate
a probability density functions by means of finite mixtures. In this sense, the mixture view of
Bayesian modelling can not substitute the general Bayesian modelling as long as finite mixture
is used.

To allow single component in mixture, i.e. k = 1, some general single models shall be derived
in similarly way as the traditional way. For example, with the assumptions i) There is only one
component k = 1; ii) The mean value of output ŷt(d(t − 1), ut) is a function of the entire past
history of input-output data, the mixture (5) is specified as a single ARMAX model.

With the number of components of mixture, k > 1, k < ∞, some more complex model structure
can be introduced, for example non-linearity. At present, the most research of mixture field
is mainly focused on extending the basic linear models classes to the corresponding mixtures
cases. In next section, we have introduced a new type of finite ARMAX mixture with common
ARX part in all ARMAX components.

4 ARMMAX model

Consider the mixture description(5), and assume:



i) There is more than one but finite components k > 1, k < ∞; ii) Each component of mixture
is described by one ARMAX; iii) There is a common deterministic ARX part in all ARMAX

components while the characteristics of the stochastic noise parts vary.

Then, it gives a novel type model class, we call it ARMMAX model. For a given dt at each time
instance t, the probability density function (pdf) of ARMMAX model is given as

f (yt|ut, d(t− 1), ΘARX , Θc, α) =
k∑

p=1

αpf(yt|ut, d(t− 1),ΘARX , Cp) (6)

with mixture weights αp ≥ 0, p = 1, · · · , k,
∑k

p=1 αp = 1.The individual components f(yt|ut, d(t−
1), ΘARX , Cp) are ARMAX models. If the normal ARMAX type mixture is used, each component
is described by the following filter regression (see Appendix)

f(yp,t|d(t− 1), ΘARX , Cp) = Nỹt(θ
′ψ̃p;t, rDt) (7)

Notice that one of important features of the model is that all components have the same pa-
rameters related to AR part ΘARX in common and different C-parameter for MA parts {Cp}k

p=1.
Thus ARMMAX model is parameterized by parameter set

{ΘARX ≡ (θ, r), α ≡ [α1, · · · , αk], Θc ≡ {Cp}k
p=1}

Basically, there are the following advantages to investigate ARMMAX models

• Flexibility in system description of a single deterministic dynamic driven by noise with
characteristics varying. ARMMAX describes well the cases when the common ARX part
has a physical meaning of interest. It meanwhile provides more freedom in describing
stochastic part of the input-output relationship.

• Natural parallelism to check several ARMAX in parallel. ARMMAX can be interpreted as
a parallel realization of several ARMAX. It is the key property of ARMMAX we are going
to exploit when investigating the possibility of the estimation of ARMAX by means of
ARMMAX at the end of paper.

• Implementable algorithm (see next section) can be provided when MA parts are known
with Computational demand comparable to that of single ARMAX estimation.

ARMMAX is more flexible and richer for modelling unmeasured disturbances compared to a single
ARMAX model. It is intuitively obvious but it can be shown also formally as below.

Proposition 4.1 (Moments of ARMMAX model) For an ARMMAX model with a given se-
lection of C-parameters Θc = {Cp}p∈p∗, an equivalent single ARMAX model exists in terms of
the first moment. The equivalence does not hold with respect to variance.

Proof: Its is straightforward implied by the mixture definition, linearity of the expectation and identity
E[y2] = var[y] + E2[y].

For simplicity, the proof is only presented for the simple case k = 2. With a pair Θc = (C1, C2), the
filters generate the filtered data ψ̃p;t, ∆p;t, p ∈ {1, 2}, c.f. Appendix, Proposition 6.1. The mixing
weights are α = [α, 1−α], then the corresponding conditional expectation E[·|·] and variance var[·|·]
of the output yt are

E [yt|ut, d(t− 1), ΘARX , α,Θc] = α[θ′ψ̃1;t + ∆1;t] + (1− α)[θ′ψ̃2;t + ∆2;t] (8)

= θ′
(
αψ̃1;t + (1− α)ψ̃2;t

)
+ α∆1;t + (1− α)∆2;t

var [yt|ut, d(t− 1), ΘARX , α,Θc] = α(1− α)
(
θ′(ψ̃1;t − ψ̃2;t) + ∆1;t −∆2;t

)2
+

+ r (αD1;t + (1− α)D2;t) .



Smooth dependence of the filtered data vectors on Θc implies that a single equivalent C can be
found generating a single filtered data vector equivalent to the convex combination describing the
first moment. However, the dependence of the conditional variance on data obviously cannot be
neglected.

5 ARMMAX-QB Estimation

The possibility to use ARMMAX model is supported by a recent progress in estimation of finite
mixtures. The Quasi-Bayes (QB) estimation of mixtures with ARX components (Kárný et al
1998), throw light on how to estimate ARMMAX model based on the filter of Perterka. QB algo-
rithm is a slight extension of classical mixture-estimation algorithms (Titterington et al, 1985).
It has good properties, Bayesian motivation as well as predictable and feasible computational
complexity. Estimation of Gaussian ARMMAX model with fixed MA parts is solved by a specific
version of recursive quasi-Bayes (ARMMAX-QB) estimation algorithm.

The same as standard QB, we assume the existence of some discrete random pointers {pt}, pt ∈
p∗ = {1, 2, ... , k} to indicate the active component that takes the value p ∈ p∗ with the proba-
bility αp. Consider {pt} as the unmeasured data together with measured data {dt}, we have

Proposition 5.1 ( Joint Description ) Let the modelled system be described by ARMMAX

model (6) with individual normal ARMAX components having known MA parts Θc = {Cp}p∈p∗.
Considering the pointers{pt}, the joint pdf of data then can be described as following

f(yt, pt|ut, d(t− 1), ΘARX , α,Θc)
= f(yt|pt, ut, d(t− 1), ΘARX , α,Θc)f(pt|ut, d(t− 1), ΘARX , α,Θc) = Nỹp;t(θ

′ψ̃p;t, rDp;t)αpt .

by marginalization over pt, its marginal pdf does f(yt|ut, d(t − 1), ΘARX , α,Θc) give ARMMAX

model (6).

Since there is common ARX part in all components, the probability of current system represented
by p-th component is now depended on its MA parameter {Cp}

αp(d(t− 1), {Cp}k
1) = f(pt = p|d(t− 1), {Cp}k

1) (9)

The distribution on probabilistic vector α = [α1, · · · , αk] is usually specified as Dirichlet pdf
f(α|d(t− 1)) = Diα(κ),

Diα(κt−1) ≡
k∏

p=1

α
κp;t−1−1
p

Γ(κp;t−1)
Γ




k∑

p=1

κp;t−1


 , κp;t−1 > 0,

with Γ(x) =
∫∞
0 zx−1 exp(−z) dz, x > 0.

If we assume the pdf on unknown parameters ΘARX of the ARX part of the components in the
conjugate GiW (Gauss-inverse-Wishart) form,

GiWΘ(V, ν) ≡ r0.5(−ν+na+2)

I(V, ν)
exp

{
− 1

2r
tr

(
V [−1, θ′]′[−1, θ′]

)}

where na is the order of AR part and I(V, ν) is the normalising integral.

Thus we have

f (ΘARX , α|d(t− 1), Θc) = GiWΘARX
(Vt−1, νt−1)Diα(κt−1) (10)

where individual ARMA normal component can be described through the filter (15) (see Ap-
pendix) and efficiently evaluated.



Then according to joint description (9), the assumption (10) and Bayes rule, it gives

f(ΘARX , α, pt|d(t),Θc) (11)

= GiWΘARX


Vt−1 +

∑

p∈p∗
δp,ptΨ̃p;tΨ̃′

p;t, νt−1 + 1


 Diα


κt−1 +

∑

p∈p∗
δp,pt [0, . . . , 0︸ ︷︷ ︸

p−1

, 1, 0, . . .]′


 .

where the Kronecker symbol δp,pt =

{
1 if p = pt

0 otherwise

To preserves the above assumed form (10), let us approximate δp,pt by its expectation wp;t

δp,pt ≈ wp;t ≡ E [δp,pt |d(t), Θc] ∝ I
(
Vt−1 + Ψ̃p;tΨ̃′

p;t, νt−1 + 1
)

(κp;t−1 + 1). (12)

Then the followings proposition is given

Proposition 5.2 (Quasi-Bayes estimation of ARMMAX model) Under natural condition
of control (Peterka, 1981b), consider ARMMAX model (6) with individual components having
known MA parts Θc = {Cp}p∈p∗, and assume at the time t− 1 prior pdf on unknown parameters
ΘARX = [θ, r] of the common ARX part of all components (15) in the conjugate GiW form and
that of α in Dirichlet form,

f (ΘARX , α|ut, d(t− 1), Θc) = GiWΘARX
(Vt−1, νt−1)Diα(κt−1)

Then, the posterior at time t is approximately preserved in the same form

f(ΘARX , α|ut+1, d(t),Θc) = GiW (Vt, νt)Di(κt)

with the associated statistics updated according to the recursions

Vt = Vt−1 +
∑

p∈p∗
wp;tΨ̃p;tΨ̃′

p;t, νt = νt−1 + 1, κp;t = κp;t−1 + wp;t.

where wp,t are approximates (12). Ψ̃p;t is the filtered data vectors generated by the filters (16)
determined by C = Cp, p ∈ p∗. k filters run in parallel to generate them. After new data item
dt is observed, their predictive ability is checked and expressed by approximated weights wp,t.

Proof: The exact updating with unknown value δp,pt uses the normal filtered ARX version of the
ARMAX model (15), the form of the GiW pdf and the Bayes rule applied under the natural conditions
of control.

Marginalization over ΘARX and α giving the weight wp;t exploits the predictive Student pdf and the
elementary property of Dirichlet pdf stating that Diα(κ) E[αp|κ] ∝ κp.

The final updating is implied directly by the adopted approximation of δp,pt .

As showed above, the assumption that all components have the the common AR part parameters
implies that we shall update a single extended information matrix V for all components through
all filtered data vectors weighted by wp,t instead of updating one extended information matrix
for each component individually.
The estimation requires about 2n2

ARX + kn(2n + nARX) flops so that the computational burden
increases linearly with the number of components k. The dimension nARX of the ARX part is
often much larger than the order n of MA. Since a single common ARX part is estimated, the
computational complexity connected with estimation of ARMMAX model is slightly larger than
that needed for estimation of a single ARMAX model.



6 Discussions and Conclusions

Now let us discuss the possibility of Bayesian-related estimation of ARMAX by means of ARMMAX.

Consider an ARMAX and assign a prior pdf f(C) to the possible candidates C’s of the ”true” MA

part. Observations d(t) then correct it to the posterior pdf f(C|d(t)) through the Bayes rule.
Under the natural conditions of control, it reads

f(C|d(t)) ∝
t∏

τ=1

f(yt|ut, d(t− 1), C)f(C) ≡ L(d(t), C)f(C). (13)

For any fixed C, the value of the introduced likelihood function L(d(t), C) is simply product of
values of the predictive pdf. Formally, the posterior pdf can be used for estimating the unknown
C. Problem is that L(d(t), C) can be evaluated value-wise only. Peterka (Peterka, 1989) made
the formula (13) usable by restricting the competing C’s to a finite set. The posterior pdf then
serves for selecting the most promising ones among them. No rule was, however, given how to
select the finite set of suitable competitors. Numerical maximization procedures offer themselves
for generating the most interesting competitors around the maximum of the posterior pdf.

For simplicity, we restrict ourselves to uniform prior pdf on C and search for the candidates in
a neighborhood of

Arg max
{C}

f(C|d(t)) = Arg max
{C}

L(d(t), C). (14)

it amounts to nonlinear programming and numerical analysis. Since efficient evaluation of the
gradient is inhibited by the complex nature of the likelihood L(d(t), C), we have to restrict
ourselves to derivative-free search methods. Meanwhile, we have to respect the fact that each
evaluation of the objective function L(d(t), C) coincides with a run of least squares estimation
over the whole data set so that it is expensive in a way to evaluate the objectives. This seems
to exclude Monte-Carlo-based maximization. Moreover, the optimized likelihood function may
be multi-modal with quite sharp but smooth modes. Thus, we can rely at most on continuous
differentiability of L(d(t), C) with respect to C.

The mentioned facts reduce the set of options more or less to simplex type methods. They
evaluate values of the optimized function at vertices of a simplex that is iteratively modified.
The Nelder-Mead simplex is their most popular example. It lacks, however, convergence proof.
Multidirectional search (MDS) (Torczon, 1989) is a simplex-based search method for parallel
machines with convergence analysis basis and robustness with respect to errors in function
evaluation (Torczon, 1991). These favorite properties are achieved by keeping a fixed shape
of simplex that is moved through the search space. Low demands of on prior knowledge of
the maximized function and guaranteed convergence are paid by a rather slow convergence,
especially, in the terminal phase of the optimization when MDS behaves like a gradient method.
We resort to MDS procedure for generating suitable candidates of MA C-parameters around
maximizing arguments of the likelihood L(d(t), C) in a way that is implementable even for a
higher dimensional cases.

Meanwhile, possibility to check k ARMAX in parallel in one ARMMAX gives us a chance combine
it with the MDS to produce the parallel search procedure implementable on a single-processor
machine. The main idea is that unknown MA C-parameters could be searched by MDS in ”al-
gorithmic” ARMMAX parallel environment to generate a sequence of points that convergence
to a critical point–ideally a ”true” MA part. More exactly, by estimating ARMAX whose C-
parameters form simplex recommended by the MDS method, we evaluate quality of several com-
petitive ARMAX models in parallel. Moreover, likelihood values assigned to individual component
can be interpreted as approximations of the values the likelihood L(d(t), Cp) corresponding to
single ARMAX given by Cp.

Determining the number of components of mixture, one of important issues of in most mixture
analysis, is out of question for our ARMMAX in the context of (MDS), since it is the same as the



number of vertices in the used simplex of MDS search and defined by the order of MA part of
ARMAX. Although a general mixture of ARMAX without the assumption of common ARX part
can provides such kind of parallelism as well, the associated computational burden keep us from
it. With estimating a single common ARX part, ARMMAX can be estimated with computational
demands close to those needed for estimation of a single ARMAX model.

The above discussion has open a way to deal with the improved Bayesian estimation and predic-
tion of standard single ARMAX system under the general assumption of unknown stochastic MA

term. However to develop the practical efficient implementable solution of ARMAX following the
proposed idea, it needs both more elaborated work on the implementation of optimization and
further exploring the power of mixture. They will be the subject of future work. In particular,
the stronger theoretical support on parallelism of ARMMAX is preferably provided, since the
parallelism to check several ARMAX in parallel is the key property we are going to exploit when
use ARMMAX in the estimation of ARMMAX. If the proposed idea shall be proven work well on
ARMAX, then it is possible be further applied to the case of output error models.
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Appendix

Estimation and prediction of ARMAX model with known MA part

Consider ARMAX model, if its MA part C-parameters are known, then the covariance matrix G of the
noise wt is Toeplitz matrix with rsi, si =

∑n
k=i cick−i, c0 = 1 on i-th sub- and super-diagonals, i ≤ n.

Consider LD decomposition of the covariance G = rLDL′, where L is a lower triangular matrix with unit
diagonal and D = diag[D1, D2, . . . , Dt] is a diagonal matrix with positive diagonal entries Dτ , τ = 1, . . . , t.
The factors L, D are functions of MA parameters. Their entries can be evaluated recursively as follows

D1 = s0, L1,2 = s1D
−1
1 , D2 = s0 − L2

1,2D1

and for τ = 3, 4, .., and i = n, n− 1, ..., 1 with nτ = min(n, τ)

Li,τ =

(
si −

nτ∑

k=i+1

Lk,τDτ−kLk−i,τ−i

)
D−1

τ−i, Dτ = s0 −
nτ∑

k=i+1

Lk,τDτ−kLk,τ . (15)

The recursive evaluation requires to store n + 1 numbers.

Using this decomposition, Peterka (1981a) proved the following Proposition.

Proposition 6.1 (Relationship of ARMAX with known MA to ARX model) Using the filter (15),
the probability density function (pdf) of the normal ARMAX model (4) equals to the pdf describing ARX

model defined on filtered data (marked by )̃

f(yt|ut, d(t− 1), ΘARX , C) = Nyt(µt, rDt) = (2πrDt)
−0.5 exp

[
− (yt − µt)2

2rDt

]
(16)

µt = θ′ψ̃t +
nt∑

i=1

Lt,iỹt−i

︸ ︷︷ ︸
∆t

, nt = min(n, t)

ỹ1 = y1, ỹt +
nt∑

i=1

Lt,iỹt−i = yt, ψ̃t +
nt∑

i=1

Lt,iψ̃t−i = ψt, ψ̃1 = ψ1.

ARX model is parameterized by the unknown parameters ΘARX = (θ, r) and acts on the filtered data
vector Ψ̃ = [ỹ, ψ̃′]′ obtained by passing the observed data vector Ψ = [y, ψ′]′ through the filter determined
by L, D entries.

The number of flops needed for filtering per single data sample is about n(2n+na), where na is dimension
of regression vector and n is the order of MA part.



The time-evolution of the filter, specified by {Lt,i}, and {Dt}, coincides with a spectral factorization of
the MA-part. Consequently, no restriction on stability of the spectral factor determined by C is imposed.
The time variations take place in spite of the fact that the noise covariance G is time invariant. The
variations are data independent and are driven only by the time-invariant MA parameters. The evaluation
of the filter is computationally cheap but the variations hinder the attempts to estimate the unknown
C-parameters recursively. These simple properties are vital when we address the case of unknown C.

The transformation of the ARMAX model to ARX model allows us to use effectively Bayesian estimation
that can be performed in real-time as the general functional recursion reduces to updating of fixed
dimensional sufficient statistics. Note that the updating of the extended information matrix Vt, together
with the degrees of freedom νt forming sufficient statistics for estimation of ΘARX , is equivalent to well-
known recursive least squares. The updating is often poorly conditioned and its L′DL decomposition has
to be updated in order to counteract the induced numerical troubles (Peterka, 1981b).
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