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Abstract: Lymphoscintigraphy is a sensitive diagnostic technique in nuclear medicine.
One of its principal applications is the investigation of upper limb lymphedema. Typi-
cally, only two or three snapshots of the distribution of the radioactive tracer in the limb
can be obtained, so that traditional inferences of important physiological indicators are
completely unreliable. In this paper, the Bayesian paradigm, exploiting available prior
information in conjunction with a simplified model of the diffusion dynamics, is used to
obtain new reliable quantitative evaluations applicable under routine.
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1 INTRODUCTION

The power of the Bayesian paradigm is evident in inference problems based on a few measure-
ments only. Nuclear medicine is a rich and important application domain where problems of
this type are the norm. Quantitative diagnostics for lymphedema of the upper limbs is a case
in point. The contributions of the paper are: (a) quantitative lymphoscintigraphy, unavailable
until now, is developed and tested; (b) standard Bayesian tools are shown to solve a surprisingly
wide range of real tasks; and (c) the modeling role of the Bayesian paradigm is underlined.

Secondary lymphedema—excessive arm swelling caused by a damaged lymphatic system—is
a frequently occurring side-effect of breast cancer treatment. It can be simply corrected when
diagnosed correctly at a early latent stage. Late stages are hard to cure and often lead to full
disability. Lymphoscintigraphy, i.e. imaging of the time-dependent dispersion of the injected
radionuclide, is the used frequently to complement clinical inspections (Svensson et al., 1999;
Pain et al., 2002). It visualizes the regional lymph drainage system in a sensitive and non-
invasive way. Structural and functional information is yielded at the injection depot, along the
extremity, and over regional lymph nodes. Qualitative morphologic inspection is sufficient for
late disease stages. Diagnostics for the critical early stage are poorly supported, with results
depending enormously on the skill of the inspecting expert. There have been efforts of scinti-
graphy quantification, since the partial results indicated better sensitivity in detection of latent
lymphedema (Weissleder and Weissleder, 1988). However, reliable quantitative evaluation is
currently missing. The main reason is that the condition of the patient, as well as economic and
time factors, allow only two or three scans of the extremities. A Bayesian attack appears to be
the only viable remedy.



2 LYMPHOSCINTIGRAPHIC DATA

In a standardized inspection, about 25MBq of 99MT¢-jabeled albumen is injected into intersti-
tial space of both hands. The scintigraphic images of the radio-tracer visualize the accumula-
tion and flow of the carried serum through the lymphatic system of the limb. Its time evolution
reflects the state of a patient’s lymphatic system.

One minute images are taken immediately after injection, then after about 30 and 180 minutes.
Correction for physical decay is made and regions of interest (ROI) specified. Fig. 1 shows
typical ROIs around the axillary nodes, the upper and lower halves of the arm respectively. Lo-
cal “calibrated’ relative activities for each image are computed as the total count over each ROI
normalized by the total count in the complete first image reflecting the administered activity.
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o

Fig. 1: Scintigraphic images of upper arm with the definition of regions.

3 APARAMETRIC SYSTEM MODEL

Let ¢ be the number of minutes since the administration time at ¢ = 0. Hence, real time is
7(t) = tA, A = 1 [min]. The actual sampling moments are 7 = (t1,...,ty). Their number
N is small. The relative amount of the injected tracer is a unit impulse, i.e. u, = 6(t) where
d(0) =1and d(t) = 0, for t # 0. The discrete-time scalar impulseresponse z; of the lymphatic
system at the chosen ROI, known as the time activity curve, is the relative integral count at time
7(t) over ROI pixels. Causality implies that 2, = 0 for ¢t < 0.

The dynamic model relating the sequences «; and z;, see Fig. 2(a), is chosen as a cascade of
first-order linear models, with a common parameter « for each of the d sections, and with a
single lumped gain parameter, b. It is chosen as a compromise between the complex distributed
nature of the lymphatic system and the need for a model with few unknown parameters. This
cascading of simple sections describes the gradual penetration of serum through the limb.

Binomial expansion of the system denominator leads to the difference equation:
d d )
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For u, = 4(t), x; is the impulse response of the lymphatic system observed at times ¢ at the
particular ROI. Its closed form solution (Oppenheim et al., 1999) is:

t+d—1
xt:b< * )at, t>0. (2
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Fig. 2: Modeling of scintigraphic time activity curves at a particular ROIs. (a) Input-output dynamic model
cascading identical first-order linear sections (g~ is the backward shift operator, ¢ ~'z; = x;_1); (b) its impulse
responses for various a, d (b normalized).

A rich signal ensemble is generated by the proposed parametric model. It successfully cap-
tures the stable, slowly-decaying, non-oscillatory nature of the lymphatic system responses at
a particular ROI with only three free parameters. In particular, the order parameter, d, allows a
rich set of candidate curves to be explored, including those exhibiting a convex nature. Typical
normalized curves are illustrated in Fig. 2(b).

The time activity curve, evaluated at the observation moments 7(¢), ¢ € T, is gathered into the
N-vector X = (x4, T4,,---,74, )" (U denotes transposition). Hence:

ti+d—1

X =bAy, Ap; = ( ;

>ati,i:1,...,N,19:(a,d)T. (3)

Noisy samples v, of the time activity curves are observed. As emphasized in Section 2, mea-
surements, y;, are normalized, aggregated counts for the ROI at time ¢. Individual counts have
a Poisson distribution, but aggregation permits the overall noise effect to be approximated well
by additive zero-mean normal noise e,, i.e. y; = x; + ¢;. Infrequent sampling implies that mea-
surements are approximately independent. The variance r of noise e, can be assumed (approx-
imately) constant. Thus, the probability density function (pdf) for the /NV-vector of observations

Y = (yb Ya,e0y ytN)Tv Is:
1
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|| - || denotes the Euclidean norm. The observation model is parameterized by the quadruple
© = (a,b,d,r). The pdf p(Y'| 7, ©) depends on the set of actual observation times, via 7.

4 PRIOR INFORMATION AND BAYESIAN ESTIMATION

Parameters © are unknown, and require prior distributions to be elicited. The variance, r, is
a property only of the measurement process.Thus, for its estimation, data from various ROIls
and patients can be used. The remaining three parameters are strictly local to the ROI and
the patient. They have to be estimated using two or three measurements. This is impossible
without prior information, which is rich in this case. This is the key advantage of the Bayesian
paradigm in the inference of diagnostically significant quantities from the sparse data. The
prior information is expressed through intervals of a priori possible ©, given with comments

in the following list:
e a =v; (0 < a < 1)— the inspected responses are stable and non-oscillatory; the

interval is shrunk to reflect practically observed slow accumulation dynamics (typically
a =1, € (0.9,0.999)); specific values depend on model order.

ed=1, (1 <d<d~ 6)— the parameter describes the penetration rate through
the limb and modifies the curve shape; the current experience indicates that 6 is the
conservative upper bound of the model order.



e b (0 < b < by)— the response is non-negative and cannot exceed the applied input
uo = 1 (the maximum by as a function of ¥ is evaluated numerically).

er (105 < r < 10%) — the range corresponds with interval (0.5%, 25%) of the
noise in the observed signal; smaller values of r are more probable due to averaging
over ROIs; the variance is a priori independent of other parameters. This range can be
gradually improved by processing of many sets of ROI data.

The mixed-type prior distribution p(©) can be written as a product of conditional distributions
in accordance with the relationships in the above list:

p(®) = pla,b,d,r) = p(bla, d, r)p(ald)p(d)p(r) = p(b]9, r)p(ald)p(d)p(r).
The variance r is included in the first factor to simplify evaluations.

The unknown continuous parameter a = 1J; enters the observation model in a nonlinear way (2).
To get a feasible solution, it has been discretized. The polynomial dependence on « indicates
that the influence of a decays exponentially. This motivates selection of a uniform grid on
exp(a). The order d is naturally a discrete-valued quantity. A uniform pf on the a priori
expected range is selected. In both cases, the uniform distribution is justified via the principle
of insufficient reason (Jeffreys, 1985).

The remaining pdfs on continuous-valued b and r are expressed in conjugate form (Berger,
1985). This flexible choice simplifies evaluations. For the gain b, the Gaussian pdf is conjugate.
Thus:
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where wy > 0 and by determine this prior. The expected range of b gives by = 0.5by, wy =
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b,/ (47), where 7 is a conservative estimate of the measurement variance r leading to a relatively
flat constructed prior pdf. The adopted choice corresponds to one standard deviation on both
sides of the mean. The conjugate prior for estimation of » > 0 is:

p(r) = (“ . 2>5)0'55 D1 (0.56) r2% 1 exp (_u> |

2 2r

['(+) is the Euler gamma function This pdf is parameterized by ¢ > 0 and § > 0. It has
expectation ¢ and varlance . Use of the Gaussian approximation of this pdf and the physical
confidence interval, with half-W|dth equal to one standard deviation, give the choice § = 7, ¢ =
3 x 107, # = 10~°. A more resolved choice is unnecessary as the interval serves only as an
initial conservative guess for specification of the prior pdf on 4. It also initializes the estimation
of , which can be improved with each patient.

The Bayesian estimator (Berger, 1985; Peterka, 1981) combines the observation model p(Y'|©)
(4), the quantified prior information p(©) and the relative activities, ', measured over a ROI at
sampling moments 77, into the posterior pdf:
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p(O|T,Y) =

The normalizing constant C', independent of measured values Y and measurement moments 7,
is uniquely implied by the normalization of pdfs. The predictive pdf p(Y'|7") in the denominator
is used for determining a good set of sampling time indices, 7. Introducing the normalized



quantities, By = /wyAy and By = by /+/wy, the predictive pdf is expressed up to another
normalizing constant, ¢, as follows:

p(9) (|| Byl|2+1)"*
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Note that the posterior pdf, p(©|7,Y"), is non-zero on the grid of the a priori allowed values of
v = (a,d). Correspondingly, the summation in (6) runs over these values only.

5 INFERENCE OF DIAGNOSTICALLY SIGNIFICANT QUANTITIES

The posterior pdf, p(©|7,Y), is the start-point for computing posterior properties of unknown
parameters (or functions thereof), several of which have clinical significance.

5.1 Estimation of the Expected Time-Activity Curve, X

Construction of this curve has been the principal motivation for the modeling and estimation
techniques described here. It follows from (1), (2) that X is a deterministic function of the
unknown parameters, ©. The distribution of the ensemble of possible X is therefore a (highly
non-linear) function of the posterior pdf p(©|7,Y"). From a clinical perspective, the expected
value E[X |7, Y] is the most important characteristic of the response of the lymphatic system
at some ROI, and can be calculated directly from (3), (5):

X =E[X|T,Y] = Z/X(ﬁ, b)p(V, b, r|T,Y) dbdr = ZAg/bp(ﬂ, BT, Y)db.  (7)
] ]

The integral in (7) can be found in analytic form, and thus the numerical evaluation reduces to
a simple summation over the grid of a priori allowed values of ). The covariance matrix of X
is computed similarly.

Time-activity curves for all ROIs in one limb are shown in Fig. 3. The expected value X is
drawn, together with an envelope formed by intervals with widths equal to the marginal stan-
dard deviations. Similar intervals for noisy measurements Y are also included. The probability
with which the time-activity curve is expected within this range can be evaluated. Even without
this, the time-index of the maximum of the time-activity curve provides important qualitative
information about the inspected lymphatic system.

5.2 Estimates of Model Parameters and Derived Quantities

It is expected that the parameter estimates can be used in clinical staging of lymphedema.
Point or interval estimates of the elementary time constant « and the chain length d are intu-
itively good indicators of accumulation kinetics. They are described by the marginal posterior
distribution p(J]Y) = p(a, d|Y).

As well other derived quantities can be useful, e.g. residence time (e.g. Hefmanska et al.,
1998; Stabin, 1996) is widely accepted in nuclear medicine as a quantitative global charac-
teristic of accumulation kinetics. With the adopted scaling, the residence time in minutes is
found as the area under the time-activity curve £(a,d,b) = Y2, A, with A = 1[min]. This
sum converges for the considered stable elementary models with 0 < a < 1. Again the ex-
pected residence times and standard deviations, are the most instructive characteristics of the
pdf p(&|T,Y) (see Fig. 3). Further research into clinical significance of various quantities is
underway.
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Fig. 3: Example of time-activity curves and residence times estimation. Each graph corresponds to a different
ROI. The circles denote measured data. Bold solid lines represent X, the time-activity curves, dashed lines their
uncertainty (mean=std). Dotted lines represent uncertainty intervals for responses with noise, defined in the
same way. Y-axes give % values. Estimates of the expected residence times for each ROI, and their standard
deviation o, are provided in the final quadrant of the figure.

5.3 Sdection of Appropriate Sampling Times S

This task is critical as the number of measurements is restricted in routine practice. Thus, it
is desirable to advance beyond the current empirical choice of standardized sampling times.
A collection of patients, measured more frequently than is the clinical norm, has provided the
experimental data needed for Bayesian inference of an optimal sampling grid.

Let us consider a sub-selection S C 7 = (¢4, ..., ty) of sampling times for all patients within
the considered over-sampled experimental set. Then, the predictive pdf conditioned on data
with indices in S, p(Y[S) = [p(Y[O)p(Oly:, t € S)dO , can be evaluated using all data
measured on the patient. By definition, the patient-specific characteristics are independent.
Thus, the product of the quantities over the whole set )’ of patient measurements provides the
observation model needed for estimating the unknown optimal sub-selection S of sampling
times. A choice of the prior distribution p(S) (typically, uniform over available choices) and
Bayes’ rule provide the posterior distribution over the candidates S, and decision theory yields
the optimal choice (Gebousky and KFiZzova, 2000). It reduces to the maximum a posteriori
(MAP) probability estimate of S if the posterior distribution p(S|Y) is peaked enough. The
results presented below indicate that this simplification is tenable.

5.4 Comparison of Accumulation on Both Limbs

Comparison of the responses of a particular patient’s limbs is a very useful diagnostic aid,
since, often, it is known that one limb is healthy, and it can act as a control for evaluation of
the other limb. It implies the need for a quantitative comparison of a small set of scintigra-
phic images, a task which is hopeless without a Bayesian treatment. The problem is formal-
ized as a test of the hypothesis, Hy, that the accumulation characteristics on both limbs are
the same: i.e. that they can be described by a single common model. The alternative, H,
is defined as the need to model both limbs independently. The Bayesian decision is H =
arg minge(my m,y 27 Z({ D1, Do}, H, H;)p(H;| Dy, D). The loss function, Z, depends gener-
ally on the data, D, and D, for the respective limbs. Z > 0 isa (2, 2) table, typically with zero
diagonal entries. Positive entries reflect medical and economic consequences of a bad selection.



ROI Time intervals [min]
7, =(30,50) I, =(55,95) 5= (115,150) Z, = (175,220)

Forearm ° °
Upper arm .
Axilla . .

Table 1: Optimization results of a pair of measurement moments for ROIs (e denote optima).

Bayes’ rule and the formulation of the hypotheses imply p(H|D1, Ds) o p(D;, Dy|H)p(H)
where:

Hy:p(D1, DolHo) = | p(Di[©)p(D:l©)p(©)d0

H, 3P(D1;D2|H1) = /@ p(D1|@1)p(@1)d@1 /@‘ p(D2|@2)p(@2)d@2.

Then, H = Hy—i.e. the hypothesis of limb equality is accepted—if:

Z({Dla DZ}; HOJ Hl)

Ho|Dy, Do) > P '
p(Ho| Dy, Dy) Z({D1, Do}, Hy, H) + Z({D1, Dy}, Hy, Hy)

(8)

6 EXPERIMENTAL RESULTS AND CONCLUSIONS

The methodology described above has been experimentally evaluated in all respects. It has
been confirmed, for instance, that the pair of measurement times preferred in routine clinical
practice (Section 2) has the highest posterior support among the possibilities available from the
over-sampled grid (Section 5.3). The choice of the pair of sampling moments on the model
quality is significant (Gebousky and KfiZzova, 2000). Optimization of the sampling moment
pair is therefore essential.

The measurement times differ from patient to patient in the experimental set. Hence, they were
grouped into sets of similar values, and measurement intervals rather than individual measure-
ment moments were assessed. The available intervals, together with optimization results over
22 patients, are summarized in Table 1. The choice was straightforward since the posterior dis-
tribution, p(S])), was strongly peaked. Table 1 shows that the delayed data are important for
the upper arm and axilla. This corresponds to their increasing distance from the injection site.
A compromise in the choice of time intervals has to be made if it is not clear which regions
are important for staging the disease. The combination {Z,,Z,} seems to be the best in this
respect.

Meanwhile, the estimates of time activity curves have been welcomed by physicians as a useful
semi-quantitative aid for judging hand-staging.

Good results have been achieved in quantitative comparison of the upper limb pairs. Ta-
ble 2, giving results for 7 = .95 in (8), illustrates them on the screening tests (Barret and
Swidell, 1981) for forearms of 14 patients. Limb equality was judged by a nuclear medicine ex-
pert via visual evaluation of the raw (non-reduced) scintigraphic images (ViD decisions). Clin-
ician, who was treating the patients, made an independent judgement (CD decisions). Medical
decisions serve for practical evaluation of the quantitative test (8) (QD decisions). Comparing
correspondence of QD and ViD with CD, the proposed test alone gives better results then ViD
(sensitivity 100% vs. 66%, specificity 80% both). These results are taken as preliminary, since
the amount of available patient data is limited, and definite clinical conclusions are incomplete.



(a) CD vs. QD (b) CD vs. ViD

Clinical Quantitative test (QD)  Clinical Visual sc. test (ViD)
difference (CD) T+ T difference (CD) S+ S—

ct 9 0 ct 6 1

c- 1 4 c- 3 4

Table 2: Comparison of clinical decision (CD) with via the proposed the proposed Bayesian test(QD) and visual
(Vid) decision on forearm equality. C' */C~ denotes the cases when the limbs are taken as the same/different from
the clinical (CD) viewpoint. ST, S~ and T, T~ denote corresponding values for SD and QD respectively. The
number of cases belonging to the individual groups are quoted in the table.

Taking into account the discrepancies between experts, as well as the fact that non-committal
prior information was used in the proposed Bayesian hypothesis test, the high degree of corre-
spondence with the conclusions of both physicians is impressive. It underlines the enormous
benefit of the Bayesian approach in lymphoscintigraphy.
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