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Abstract: The contribution concerns with the problems related to approximate 
identification of stochastic systems modelled by Markov chains. Although Markov 
chains are easily identifiable and adaptable their use is restricted because of 
extremely large dimension of the sufficient statistic. We introduce the approach, 
which helps to overcome this drawback. The proposed algorithm for dimensionality 
reduction in Markov chains is based on kernel smoothing technique. The 
applicability of the suggested methodology is presented in the Matlab programming 
environment 
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1. INTRODUCTION 
 
Most processes met in practice are uncertain in the sense that it is not possible to determine 
exactly the future output values of the process. Markov chain (MC) is an important class of 
universal black-box models suitable for the description of non-linear stochastic systems. 
When using the most general parameterisation their estimation as well as control design is 
simple. High dimensionality is their only but significant drawback.  
 
Large variety of methodologies has been proposed to solve the dimensionality problem in 
parameterisation of MC (Kárný, et al., 1994; Pavelková, 1994; Hofreiter, 1997a; Hofreiter, 
1997b; Valečková, et al., 2001).  
 
In this paper we introduce the approach for dimensionality reduction, which uses the kernel 
smoothing technique (Hofreiter and Garajayewa, 2000). The proposed algorithm from the 
measured input-output data estimates parameters of transition probability matrix (TPM), 
which relate to the values of the so-called regression vector. These parameters are preserved 
and then used for the prediction of output signal. During the prediction time we (almost) 
always meet the situation, when the unknown regression vectors (which were not estimated 
before) have been occurred. In such a case the algorithm determines from the estimated TPM 
the set of neighbouring regression vectors, which are in close proximity to the measured 
unknown one. Then, according to the detailed description of their transition probabilities and 
distance information, the algorithm evaluates the resulting transition probability for the 
measured regression vector. By this way, the unknown row (regression vector) of TPM is 
     



estimated and the output prediction is determined. The result of this solution is considerable 
parameter reduction, which at least helps to overcome the mentioned above disadvantage of 
Markov chains. Furthermore, the proposed algorithm has been applied for one-step-ahead 
prediction of real ECG (Electro Cardio Gram) signal that is a basic instrument for a diagnosis 
of heart diseases in cardiology. Achieved results of this application confirm the feasibility of 
the proposed algorithm. 
 
 
2. ESTIMATION OF FULLY PARAMETERISED MC 
 
Bayesian estimation and prediction with fully parameterised MC is recalled. It introduces 
both the notation and the addressed problem. 
 
A sequence of observable random discrete states y S  is 
measured at discrete time t  on the inspected system. The value of y  should be 
predicted using the related past , i.e. the collection of the states measured up to time t  
enriched by prior information D  (including y ) . The 
relationship of y  and D t  is modelled by the first-order time-invariant parameterised MC 

.  denotes probability (probability density function, 
pdf) of ∗  conditioned on •  and Θ  is an unknown parameter. Note, that  is an 

 (transition probability) matrix. The complete information for constructing the desired 
predictor is contained in the predictive probability . Its evaluation needs the 
Bayesian parameter estimate (in a wide sense), i.e. the posterior pdf  (Peterka, 
1981). 
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The simplest Bayesian estimator and predictor with MC are obtained if the matrix of 
transition probabilities is taken as the unknown parameter 
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Note the alternative form that uses Kronecker symbol δ  simplifies derivation of the 
estimation and prediction results. Recall  for i  and  otherwise. 

 is the matrix of unknown transition probabilities. Its entry Θ  is the transition 

probability from the state  to the state i , i j . The definition 
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The advantageous conjugate prior pdf is considered: 
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It is specified by n  and the indicator  of the set | (0) 0i j >

∗

( , )χ ∗Θ Θ ∗Θ  equals to 1 on it and it 
is zero outside of Θ . 
 
Both the estimator and predictor can be expressed in terms of the sufficient statistic 

[2]
| | | 1 |

1

( ) ( ) (0) ( , ) ( , ) (0),  , ( , )
t

i j i j i j i jn t n t n y i y j n i j Y Y Yτ τ
τ

δ δ −
=

= + = + ∈ ≡∑ . Note that | ( )i j tn  

     



equals to the number of occurrences y i  observed for . The numbers 
 can be interpreted as occurrences registered for t . 
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In the Bayesian set-up prior information on Θ  has to be quantified by a prior pdf 

. The posterior pdf  is determined by the prior pdf, 
parameterised model and measured data through the Bayes formula 
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where ∝  means equality up to a normalising factor. 
 
Existence of conjugate prior pdf guarantees simplicity of the corresponding Bayesian 
estimate. It has exactly the same functional form 
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 is the multivariate beta function. It is defined with the 

help of  function ( ). 
 
Elementary rules for pdfs (Peterka, 1981) provide Bayesian predictor of the next state 
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The probability that y  follows y  is the relative frequency of this configuration observed in 
past. 
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3. KERNEL SMOOTHER FOR REDUCED PARAMETERISATION OF MC 
 
The previous relations for estimation of the parameters and prediction of the output show that 
the estimation of Markov chain consists just in simple counting. However, as the dimension 
of the sufficient statistic is extremely large even for medium dimension of a regression model 
and small cardinality of data-value sets the applicability of Markov chains is restricted. 
 
In real cases, it is not possible to assume, that the transition probability matrix will be known 
for all possible previous states and current inputs, which define the values of the regression 
vector and therefore a complete model of the system cannot be obtained in straightforward 
way. Nevertheless, if the parameters of the transition probability matrix are known for the 
regression vectors, which are in close proximity to the measured one, then it is possible to 
estimate unknown parameters of the measured regression vector through a kernel smoother. 
 
Kernel smoother uses an explicitly defined set of local weights defined by the kernel to 
produce the estimate at each target value. Usually a kernel smoother uses weights that 
decrease in a smooth fashion as one moves away from the target point (Hastil and Tibshirani, 

     



1997; Härdle, 1990). The weight given to the j-th point in producing the estimate at  is 
defined by 
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where  is an even function decreasing in ( )d l   l

0

. The parameter λ  is the window-width, 
also known as the bandwidth and the constant c  is usually chosen so that the weights sum to 
unity. Epanechnikov kernel d l  ranks among popular kernels (Epanechnikov, 1969). Recall 

 for 
( )

2( ) (1 )d l l= ⋅ −2/4   l 1≤  and d l  otherwise. ( ) 0=
 
We may use this technique for estimation unknown parameters Θ ;  if some 
parameters 
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  is the for the first time observed value of the regression vector, r
  is the number of the known rows of the transition probability matrix  with the 

corresponding values of the regression vector in the set S , 
q Θ

r

 jz  is the j-th value of the regression vector, 
   v  denotes the absolute value of v , 
  is chosen bandwidth, λ
 
In such a case, the suggested algorithm estimates the parameters Θ ;  according to 
the following relation 
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Euclidean norm of the vector v . 
 
Described algorithm for output prediction does not require to know all parameters of the 
transition probability matrix  and therefore it preserves only parameters of the transition 
probability table relating to the values of the regression vector that has occurred by the actual 
time which radically reduces memory demands. 

Θ

 
 
4. APPLICATION 
 
Described in the section 3 dimensionality reduction methodology using kernel smoothing 
technique was applied for one-step ahead prediction of real ECG (Electro Cardio Gram) 
signal that is a basic instrument for a diagnosis of heart diseases in cardiology. In Fig. 1 is 
shown the fragment of ECG-output signal, which was used to illustrate the application of the 
suggested methodology. Sampling interval was 0.003 s 
 
Our task was to estimate Markov chain model and predict the output signal. Then, after 
applying the algorithm for parameter reduction in Markov chains, make a comparison of 
results and show the improvement of the prediction. 
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Fig. 1 Course of ECG output signal; t - discrete time 
 
As we wanted to use Markov chains for modelling and output prediction, the output value 
interval was divided into 34 parts. The discretised output set is thus S . The 
structure of regression vector was determined z t . 
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Fig. 2 demonstrates the course of output y  and the output prediction determined by the 
expected value Ey  of the output y  derived from the Markov model with the regression 
vector z . Results of this prediction were received before we applied suggested algorithm for 
the parameter reduction. Number of unknown regression vectors, which have occurred during 
the output prediction, is seventeen. In the Figure they are marked by symbol " . It is seen, 
that existence of unknown regression vectors cause inaccurate output prediction. 
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Fig. 2 Course of actual and predicted signals. 
Situation before applying algorithm for dimensionality reduction 

 
Improved results of the output prediction were received after we applied new suggested 
method, which is described in previous section. It is evident from Fig. 3, that mentioned 
previously algorithm is able to determine the set of neighbouring regression vectors, which 
are in close proximity to the measured unknown regression vector and according to the 

     



detailed description of their transition probabilities and distance information, the algorithm 
evaluates the resulting transition probability for the measured regression vector. By this way, 
the unknown rows of transition probability table are estimated and the output prediction is 
determined and improved. 
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Fig. 3 Course of output and predicted signals. 
Situation after applying algorithm for dimensionality reduction 

 
In the Fig. 4 is illustrated output prediction, where the time interval [45, 65] was enlarged on 
purpose to accentuate the quality of prediction using mentioned algorithm. 
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Fig. 4 Enlarged window time interval 45 - 65 s of Fig. 3 
 
To show the computation precision, the criterion of Mean Absolute Deviation (MAD) was 
chosen: 
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where  is the output prediction determined by the expected value of the output y . Fig. 5 
demonstrates the typical course of the MAD for algorithm with (the curve a) and without (the 
curve b) considering the neighbouring regression vectors for output prediction. 
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Fig. 5 Course of the MAD for algorithm with (curve a) and without  
(curve b) considering the neighbouring regression vectors 

 
 
5 CONCLUSION 
 
This contribution develops an approximate prediction methodology in order to combat the 
curse of dimensionality inherent in Markov chains. For this purpose Kernel smoothing 
technique has been used. The proposed algorithm from the measured input-output data 
estimates parameters of transition probability matrix (TPM), which relate to the values of the 
regression vector. These parameters are preserved and then used for the prediction of output 
signal. In case the unknown regression vectors have been occurred, algorithm determines 
from the estimated TPM the set of neighbouring regression vectors, which are in close 
proximity to the measured unknown one. Then, according to the detailed description of their 
transition probabilities and distance information, the algorithm evaluates the resulting 
transition probability for the measured regression vector. By this way, the unknown rows 
(regression vectors) of TPM are estimated and the output prediction is determined. 
Furthermore, the proposed algorithm has been applied for one-step-ahead prediction of real 
ECG (Electro Cardio Gram) signal that is a basic instrument for a diagnosis of heart diseases 
in cardiology. Achieved results of this application confirm the feasibility of the proposed 
algorithm. 
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