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Abstract: The paper deals with Generalized Predictive Control for path control 
of the redundant parallel robots. It summarizes classical and square root minimization 
of the quadratic criterion and direct and two-step design of actuators respectively. 
As an example, the planar redundant parallel robot is used. Moreover, the paper 
presents several possibilities to use predictive algorithm for fulfillment of some 
additional requirements like actuator smoothing or antibacklash control. 
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1. INTRODUCTION 
 

The next development in industrial area is constrained by deficit of powerful machines 
with proportional dynamics and stiffness. At the same time, the new control techniques, 
which would be able to achieve higher accuracy with keeping of dexterity of the robot, 
are missing or, on the other hand, there is no interest for their real application in new machines. 
 
Promising way for mentioned problems can be utilization of new robot types based on parallel 
constructions (Neugebauer (ed.), 2002). Although these constructions raises new questions, 
especially in control area, their parallel character gives the possibility to significantly improve 
mechanical parameters of presently being-developed industrial machines (i.e. dynamics, 
stiffness, kinematic accuracy etc.). 
 
The aim of this paper is an investigation of one promising control approach - Generalized 
Predictive Control (GPC) (Ordys and Clarce, 1993; Böhm, et al., 2001a) as an example 
of high-level model-based control. This approach offers to achieve higher accuracy and 
at the same time effective cooperation of all actuators. Furthermore, it offers several possibilities 
to realize some additional requirements (Böhm, et al., 2001b), e.g.: smoothing of the actuator 
trends or fulfillment of antibacklash condition. 
 
The paper initially focuses on model description of the parallel structure, then continues 
with introduction of predictive control technique and finally shows simulation examples 
and discuses real-time utilization. 



 

 

2. DESCRIPTION OF THE ROBOT MODEL 
 
The robot (manipulator) is a multibody system, which can be described by Lagrange’s 
equations, in redundant case, of mixed type. These equations lead to the DAE system 
(the Differential - Algebraic Equations – combination of differential equations with algebraic 
constraints) in the following form: 
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where M is a mass matrix, s is a vector of physical coordinates (their number is higher 
than number of degrees of freedom /DOF/), ΦΦΦΦs is an overall Jacobian of the system, 
λλλλ are Lagrange’s multipliers, g is a vector of right sides, matrix T transforms the inputs u 
(n torques) into n drives and f(s(t)) = 0 represents geometrical constrains. 
 
The physical coordinates s consist of the independent coordinates x (Cartesian coordinates 
of the fix point of the cutting tool or gripper), drives’- actuators’ coordinates q1 and other 
auxiliary geometrical coordinates q2. 
 
Let us consider the possibility to transform the model (1) into independent coordinates x 
(Stejskal and Valášek, 1996). As follows, the DAE robot model is transformed 
to the ordinary differential model (ODE). It means that the Lagrange’s multipliers disappear 
and design of the robot control becomes considerably simpler. Then the final model 
of the robot system is the following: 
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It is very important to note, firstly, that the Jacobian matrix R is the basis of the null space 
of the overall Jacobian ΦΦΦΦs and thus it satisfies the expression 
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and, secondly, the Jacobian R can be decomposed into submatrixes Rq1, Rq2 and Rx = Ix . 
Submatrix Rq1 ( = (RTT)T) defines important relation between xq ��   and1  as 
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which will be useful in section dealing with design of control law in root form. R1 can be also 
obtained from geometrical relation q1(x): 
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3. CLASSICAL DESIGN OF CONTROL LAW 
 
The principal task of control of the robots is accomplishment of their movement along 
a planned trajectory (technological requirements). In some cases, it is very sophisticated 
and difficult for general control approaches like classical PID structures. Therefore, the new 
control approaches, which are being developed, are directly adjusted for concrete system 
(machine, robot). High-level controls, which use knowledge of the mathematical model 
e.g. equations (1, 2), represent suitable approach, which takes into account dynamic trend 
of the controlled system. In this way, it can better comply with mentioned requirements 
from technology. On the base of the dynamic model, equation (2), high-level controls 
globally optimize whole control process and can predict future actions. One of them is 
Generalized Predictive Control (GPC). 
 
The Predictive control (Ordys and Clarce, 1993; Böhm, et al., 2001a) is a multi-step control 
based on local optimisation of the quadratic criterion, where the linearized equation or state 
formula is used (i.e. only the nearest future control signal is evaluated). This approach admits 
combination of feedback~feedforward parts. 
 
For design of predictive control law, the nonlinear model (2) must be linearized (Valášek 
and Steinbauer, 1999) and converted from continuous to discrete time. This described model 
transformation enables us to consider the classical discrete state formula in the following 
form: 
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where X is composed as T],[ xxX �=  and x agrees with equation (2). Furthermore 
for law derivation, the expression of new unknown output values x from topical state X 
is needed. The following lines imply this expression. 
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then the prediction of x is the following 
 

uGfx +=K             (7) 
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Now we can optimize the quadratic criterion. The criterion is optimized in instant k, with 
using predictions of x ( T

Nkk ][ 1 ++= xxx �
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where ε  is an operator of mean value, N is a horizon of prediction, x is a vector of outputs, 
w are desired values, λλλλ is a penalization of input and u is a vector of robot inputs. 
Considering the condition of optimization 
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for criterion (9), the resultant control law is 
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This control law (11) can be already used. It should be noted that only the first element u(k) 
from vector u is used. If penalization λλλλ is greater than zero, then the matrix GT

 G is regular 
for all cases, adequately actuated even for redundant cases. Theoretical case of zero penalization 
λλλλ with redundant robot can be solved by pseudoinversion (Lawson and Hanson, 1974). 
 
4. DESIGN OF CONTROL LAW IN SQUARE ROOT FORM 
 
This chapter aims on derivation of control law for different configuration of elements 
in mathematical model (2), which needs matrices with smaller dimensions. Moreover, 
if the penalization is positive, the computation also holds the redundant properties (if exist). 
It can be also used for accomplishment of additional control requirements. 
 
Furthermore, in this chapter, the advantages of the square root optimization of quadratic 
criterion (9) are used, marked out by compact notation and good preparation for operations 
with huge matrices. 
 
Let us proceed from nonlinear differential model (2) and from its simplified form: 
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where new vector FM represents new fictitious input to the system so called general forces. 
 
In equation (12) we can apply the same procedures of linearization (Valášek and Steinbauer, 
1999), discretization and use the same composition of prediction formula (chapter 3, 

uGfx +=� , (7)) for future output values. 
 



 

 

The quadratic criterion (9) ( ( ) ( ) }{ uλλuwxwx TTT
kJ +−−=

��εεεε  ) can be rewritten in the root 
form as a product of matrices 
 

[ ]
JJu

wx
λ0
01

λ0
01uwx T

TT
kJ

=






 −











−= ][,][ �

�

               (13) 

 
Now we can work only with root of the criterion 
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and consecutively we look for such action u, which minimizes root form (14, 15), i.e. we 
look for u, in order to minimize the norm |J|. If we annul the root of criterion (14), we will 
obtain system of equation (15) with more rows than columns (over-determined system). 
 
For computation, the triangular-orthogonal decomposition [6] is used. It reduces excess rows 
of the matrix A [(2·N·n) x (N·n)] and elements of vector b [2·N·n] (n is a number 
of DOF) into upper triangle R and shorter vector c1 according to the following scheme: 
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Vector cz is a loss vector. Its Euclidean norm |cz| is equal to root of quadratic criterion; scalar 

J  ( i.e. J = cz
Tcz ). 

 
For solution, we need only the upper part of the system of equations (16), which can be 
simply solved in view of the vector of actuators u by backward-run procedure. 
 
Obtained actuators represent fictitious generalized force effects u, from which only the first 
subvector (for k instant) u(k) = FM is used. It must be recomputed, according to substitution 
in equations (12), to really used actions (drives): 
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with the same meaning of matrices R and T as in the system of differential equations (12). 
System (17) generally expresses deficient rank equation system (lower number of rows than 
columns i.e. than unknown real inputs - actions). There is again possibility to use pseudo-
inverse of the matrix RTT there. 
 



 

 

5. EXAMPLES AND CONCLUSIONS 
 

This section shows different actuators’ trends for different control requirements, applied to 
planar redundant parallel robot (Fig. 1), for one selected trajectory. 
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Fig. 1. Scheme and laboratory model of the parallel robot. 
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Fig. 2. Example of one planned trajectory with its kinematic characterizations. 
 

     (a) 
 

     (b) 
 

Fig. 3. Trends of four actuators unlimited (a) and limited (b) by antibacklash condition 
(sampling Ts = 0.01s; max. error 1 µm; penalization λ = 10-12; horizon N = 10). 

 

 
 

Fig. 4. Smoothing of the actuators trends for trajectory from Fig. 2. 
(sampling Ts=0.01s; max. error 2.02 mm; penalization λ = 5·10-8; horizon N = 10). 
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The second, square root approach is more suitable for real application (Fig. 5  and  Fig. 6), 
because it represents less mathematical operations than classical approach. At present, it is 
tested on real laboratory model with the same structure as in Fig. 1. From result viewpoint, 
the both approaches, classical and square root algorithms, are identical. 
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Fig. 5. Time history of real-time run of Predictive Control. 

(horizon N = 10, penalization λ = 10-10,Sampling Ts = 0.01 s; slow trajectory) 
 

 
Fig. 6. Qualitative characterizations of real-time run of Predictive Control. 

The last figure (Fig. 6) shows trends of errors. The errors are higher than in simulative case, 
because the real robot system includes drives and gears, which are not directly considered 
in mathematical model (2). 
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