State-of-the-art in the proposed field of research and survey of the relevant literature ======================================================================================== In the context of soc fuel cells, building first principle models requires very precise knowledge about the soc microstructure, its porosity, electrode thickness, structure of the individual layers, and other factors (Zou, Manzie, and Nesic 2015). Models range from very simple calculations of the specific reactions, without detailed consideration of the cell microstructure and kinetics (Badur et al. 2018), detailed information on mass transport, heterogeneous chemistry and porous media transport (Kupecki et al. 2018) all the way to very detailed 2D-models for reversibly operated and industrial scale solid oxide cells (SubotiÄ et al. 2020). Various fault modes have profound influence on the behaviour of soc systems too. Typical cases include carbon depositions, sulphur poisoning, or nickel reoxidation on the anode side (Moçoteguy and Brisse 2013). These mechanisms can bring about the irreversible deterioration of the cellâs electrochemical and micro-structural performance, thus significantly shortening its life-time. For accurate implementation of the above listed approaches, accelerated and long term testing is usually needed. Such experiments allow very detailed chemical and electrochemical characterisations of soc systems. However, experimental investigations are time-consuming and expensive. There are very few published results in the field of soc. Researchers from FZ JĂźlich as one of the pioneers in the field of sofc among the first performed almost a decade long experiment (Blum et al. 2016). Similar results but more detailed analysis on almost 30,000 hours long experiment are also available (Menzler, Sebold, and Guillon 2017). In the area of soec, the available results are even scarcer (Yan et al. 2017; Tietz et al. 2012) In the above results, the characterisation of soc systems was almost exclusively done by fairly straightforward approaches such as polarisation curves, eis or drt. There have been only a limited number of cases addressing the actual non-linear nature of these systems (SubotiÄ et al. 2021, 2020) A logical continuation is the application of various data-driven techniques in order to characterise and predict the performance of soc systems. An overview of the published results in the field of soc systems is shown in Table `1 <#tab:soa>`__. It is clear that electrolyses, i.e. soecs and dual-mode (reversible soc) systems are underrepresented. .. container:: :name: tab:soa .. table:: List of publications of data-driven approaches for various soc systems +-------------+-------------+-------------+-------------+-------------+ | | SOEC | SOFC | catalyst | rSOC | +=============+=============+=============+=============+=============+ | control | | (Jurado | | | | | | 2003; X.-J. | | | | | | Wu et al. | | | | | | 2007; Huo | | | | | | et al. | | | | | | 2008; | | | | | | Hajimolana | | | | | | et al. | | | | | | 2013; | | | | | | Marchetti | | | | | | et al. | | | | | | 2011) S | | | +-------------+-------------+-------------+-------------+-------------+ | design | | (Nassef et | | | | parameter | | al. 2019; | | | | o | | Song et al. | | | | ptimization | | 2020; | | | | | | Bozorgmehri | | | | | | and Hamedi | | | | | | 2012; Yan | | | | | | et al. | | | | | | 2019) | | | +-------------+-------------+-------------+-------------+-------------+ | des | | (Le, | | | | ign/process | | Nguyen, and | | | | parameter | | Nguyen | | | | o | | 2019) | | | | ptimization | | | | | +-------------+-------------+-------------+-------------+-------------+ | fault | | (Wu and Ye | | | | detection | | 2016; Zhang | | | | | | et al. | | | | | | 2018; Pahon | | | | | | et al. | | | | | | 2016) | | | +-------------+-------------+-------------+-------------+-------------+ | mu | (Grondin et | | | | | lti-physics | al. 2012) | | | | | model | | | | | | enhancement | | | | | +-------------+-------------+-------------+-------------+-------------+ | performance | | (Xu et al. | | | | o | | 2020) S | | | | ptimization | | | | | +-------------+-------------+-------------+-------------+-------------+ | performance | (Zahadat | (Arriagada | (GĂźnay et | | | prediction | and | 2002; Marra | al. 2011) | | | | Milewski | et al. | | | | | 2015; Han | 2013; X.-j. | | | | | et al. | Wu et al. | | | | | 2019; Zhang | 2007; | | | | | et al. | Milewski | | | | | 2017) | and Ĺwirski | | | | | | 2009; | | | | | | Chaichana | | | | | | et al. | | | | | | 2011; | | | | | | Baldinelli | | | | | | et al. | | | | | | 2018; | | | | | | Chakraborty | | | | | | 2009; | | | | | | Entchev and | | | | | | Yang 2007; | | | | | | Sorrentino | | | | | | et al. | | | | | | 2014; | | | | | | Gebregergis | | | | | | et al. | | | | | | 2008; Chen, | | | | | | Chen, and | | | | | | Zhang 2019; | | | | | | Song et al. | | | | | | 2021) | | | +-------------+-------------+-------------+-------------+-------------+ | p | | (Dolenc et | | | | erformance/ | | al. 2017) | | | | degradation | | | | | | prediction | | | | | +-------------+-------------+-------------+-------------+-------------+ | process | | (Ahn et al. | | (Salehi and | | parameter | | 2019) S | | Gh | | o | | | | olaminezhad | | ptimisation | | | | 2018) | +-------------+-------------+-------------+-------------+-------------+ [tab:soa] Preliminary results ------------------- Members of both teams have a substantial track record in the field of soc electro-chemical characterisation (KĂśnigshofer, Pongratz, et al. 2021; HĂśber et al. 2021), modelling (Ĺ˝nidariÄ et al. 2021) and performing fault detection of various soc based systems (KĂśnigshofer, BoĹĄkoski, et al. 2021; Nusev et al. 2021). In the last year tug and jsi teams have carried out preliminary investigations on using various data driven techniques on soc systems. tug team members have successfully implemented vanilla deep-neural networks for modelling soc systems (MĂźtter 2021; SubotiÄ, Eibl, and Hochenauer 2021). The results show very good potential to predict sofc performance by modelling polarisation curves and eis characteristics. Additionally, the jsi team has addressed the issues of stochastic model parameters of lumped sofc models (Ĺ˝nidariÄ et al. 2021). Using the vb approach it was shown that the parameters of the resulting lumped model have indeed stochastic nature. As a result, each frequency point of the obtained impedance curves is described with its own posterior distribution that accommodates the underlying uncertainties (both measurement and systemâs). Despite these promising results, the issues of explainability and more importantly incorporating experts knowledge are still open issues. .. container:: references hanging-indent :name: refs .. container:: :name: ref-10.1016/j.applthermaleng.2019.114861 Ahn, Ji Ho, Min Jae Kim, Yeon Woo Cho, and Tong Seop Kim. 2019. âA Quadruple Power Generation System for Very High Efficiency and Its Performance Optimization Using an Artificial Intelligence Method.â *Applied Thermal Engineering* 168: 114861. https://doi.org/10.1016/j.applthermaleng.2019.114861. .. container:: :name: ref-10.1016/S0378-7753_02_00314-2 Arriagada, J. 2002. âArtificial Neural Network Simulator for Sofc Performance Prediction.â *Journal of Power Sources* 112 (1): 54â60. https://doi.org/10.1016/s0378-7753(02)00314-2. .. container:: :name: ref-10.1016/j.energy.2018.05.203 Badur, Janusz, Marcin LemaĹski, Tomasz Kowalczyk, PaweĹ ZiĂłĹkowski, and Sebastian Kornet. 2018. âZero-Dimensional Robust Model of an SOFC with Internal Reforming for Hybrid Energy Cycles.â *Energy* 158: 128â38. https://doi.org/10.1016/j.energy.2018.05.203. .. container:: :name: ref-10.3390/app9010051 Baldinelli, Arianna, Linda Barelli, Gianni Bidini, Fabio Bonucci, and Feride IskenderoÄlu. 2018. âRegarding Solid Oxide Fuel Cells Simulation Through Artificial Intelligence: A Neural Networks Application.â *Applied Sciences* 9 (1): 51. https://doi.org/10.3390/app9010051. .. container:: :name: ref-10.1002/ente.201600114 Blum, Ludger, L. G. J. de Haart, JĂźrgen Malzbender, Nikolaos Margaritis, and Norbert H. Menzler. 2016. âAnode-Supported Solid Oxide Fuel Cell Achieves 70 000 Hours of Continuous Operation.â *Energy Technology* 4 (8): 939â42. https://doi.org/10.1002/ente.201600114. .. container:: :name: ref-10.1002/fuce.201100140 Bozorgmehri, S., and M. Hamedi. 2012. âModeling and Optimization of Anode-Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm.â *Fuel Cells* 12 (1): 11â23. https://doi.org/10.1002/fuce.201100140. .. container:: :name: ref-10.1016/j.ijhydene.2011.10.051 Chaichana, Kattiyapon, Yaneeporn Patcharavorachot, Bhawasut Chutichai, Dang Saebea, Suttichai Assabumrungrat, and Amornchai Arpornwichanop. 2011. âNeural Network Hybrid Model of a Direct Internal Reforming Solid Oxide Fuel Cell.â *International Journal of Hydrogen Energy* 37 (3): 2498â2508. https://doi.org/10.1016/j.ijhydene.2011.10.051. .. container:: :name: ref-10.1016/j.energy.2009.02.012 Chakraborty, Uday Kumar. 2009. âStatic and Dynamic Modeling of Solid Oxide Fuel Cell Using Genetic Programming.â *Energy* 34 (6): 740â51. https://doi.org/10.1016/j.energy.2009.02.012. .. container:: :name: ref-10.1051/e3sconf/201911302010 Chen, Jinwei, Yao Chen, and Huisheng Zhang. 2019. âStudy on Fuel Utilization Dynamic Model of a Sofc-Gt Hybrid System Based on Deep Learning Technique.â *E3S Web of Conferences* 113: 02010. https://doi.org/10.1051/e3sconf/201911302010. .. container:: :name: ref-10.1016/j.enconman.2017.06.041 Dolenc, B., P. BoĹĄkoski, M. StepanÄiÄ, A. Pohjoranta, and Ä. JuriÄiÄ. 2017. âState of Health Estimation and Remaining Useful Life Prediction of Solid Oxide Fuel Cell Stack.â *Energy Conversion and Management* 148: 993â1002. https://doi.org/10.1016/j.enconman.2017.06.041. .. container:: :name: ref-10.1016/j.jpowsour.2007.04.015 Entchev, Evgueniy, and Libing Yang. 2007. âApplication of Adaptive Neuro-Fuzzy Inference System Techniques and Artificial Neural Networks to Predict Solid Oxide Fuel Cell Performance in Residential Microgeneration Installation.â *Journal of Power Sources* 170 (1): 122â29. https://doi.org/10.1016/j.jpowsour.2007.04.015. .. container:: :name: ref-10.1109/TIE.2008.2009516 Gebregergis, A., P. Pillay, D. Bhattacharyya, and R. Rengaswemy. 2008. âSolid Oxide Fuel Cell Modeling.â *IEEE Transactions on Industrial Electronics* 56 (1): 139â48. https://doi.org/10.1109/tie.2008.2009516. .. container:: :name: ref-10.1016/j.cherd.2012.06.003 Grondin, D., J. Deseure, P. Ozil, J.-P. Chabriat, B. Grondin-Perez, and A. Brisse. 2012. âSolid Oxide Electrolysis Cell 3D Simulation Using Artificial Neural Network for Cathodic Process Description.â *Chemical Engineering Research and Design* 91 (1): 134â40. https://doi.org/10.1016/j.cherd.2012.06.003. .. container:: :name: ref-10.1016/j.ijhydene.2011.09.148 GĂźnay, M. Erdem, Fatma Akpinar, Z. Ilsen Onsan, and Ramazan Yildirim. 2011. âInvestigation of Water Gas-Shift Activity of PtâMoxâCeo2/Al2o3 (M = K, Ni, Co) Using Modular Artificial Neural Networks.â *International Journal of Hydrogen Energy* 37 (3): 2094â2102. https://doi.org/10.1016/j.ijhydene.2011.09.148. .. container:: :name: ref-10.1016/j.energy.2013.08.031 Hajimolana, S. A., S. M. Tonekabonimoghadam, M. A. Hussain, M. H. Chakrabarti, N. S. Jayakumar, and M. A. Hashim. 2013. âThermal Stress Management of a Solid Oxide Fuel Cell Using Neural Network Predictive Control.â *Energy* 62: 320â29. https://doi.org/10.1016/j.energy.2013.08.031. .. container:: :name: ref-10.1016/j.ijhydene.2019.09.055 Han, Jing, Xi Wang, Limei Yan, and Aida Dahlak. 2019. âModelling the Performance of an Soec by Optimization of Neural Network with Mpso Algorithm.â *International Journal of Hydrogen Energy* 44 (51): 27947â57. https://doi.org/10.1016/j.ijhydene.2019.09.055. .. container:: :name: ref-10.3390/pr9020348 HĂśber, Michael, Benjamin KĂśnigshofer, Philipp Wachter, Gjorgji Nusev, Pavle Boskoski, Christoph Hochenauer, and Vanja SubotiÄ. 2021. âHolistic Approach to Design, Test, and Optimize Stand-Alone Sofc-Reformer Systems.â *Processes* 9 (2): 348. https://doi.org/10.3390/pr9020348. .. container:: :name: ref-10.1016/j.jpowsour.2008.06.064 Huo, Hai-Bo, Xin-Jian Zhu, Wan-Qi Hu, Heng-Yong Tu, Jian Li, and Jie Yang. 2008. âNonlinear Model Predictive Control of Sofc Based on a Hammerstein Model.â *Journal of Power Sources* 185 (1): 338â44. https://doi.org/10.1016/j.jpowsour.2008.06.064. .. container:: :name: ref-10.1016/S0378-7753_03_00309-4 Jurado, Francisco. 2003. âPower Supply Quality Improvement with a Sofc Plant by Neural-Network-Based Control.â *Journal of Power Sources* 117 (1-2): 75â83. https://doi.org/10.1016/s0378-7753(03)00309-4. .. container:: :name: ref-10.1016/j.apenergy.2020.116372 KĂśnigshofer, Benjamin, Pavle BoĹĄkoski, Gjorgji Nusev, Markus Koroschetz, Martin Hochfellner, Marcel Schwaiger, :raw-latex:`\DJ`ani JuriÄiÄ, Christoph Hochenauer, and Vanja SubotiÄ. 2021. âPerformance Assessment and Evaluation of Soc Stacks Designed for Application in a Reversible Operated 150 kW rSOC Power Plant.â *Applied Energy* 283: 116372. https://doi.org/10.1016/j.apenergy.2020.116372. .. container:: :name: ref-10.1016/j.jpowsour.2021.229875 KĂśnigshofer, Benjamin, Gernot Pongratz, Gjorgji Nusev, Pavle BoĹĄkoski, Michael HĂśber, :raw-latex:`\DJ`ani JuriÄiÄ, Mihails Kusnezoff, et al. 2021. âDevelopment of Test Protocols for Solid Oxide Electrolysis Cells Operated Under Accelerated Degradation Conditions.â *Journal of Power Sources* 497: 229875. https://doi.org/10.1016/j.jpowsour.2021.229875. .. container:: :name: ref-10.1016/j.apenergy.2018.09.092 Kupecki, Jakub, Davide Papurello, Andrea Lanzini, Yevgeniy Naumovich, Konrad Motylinski, Marcin Blesznowski, and Massimo Santarelli. 2018. âNumerical Model of Planar Anode Supported Solid Oxide Fuel Cell Fed with Fuel Containing H2s Operated in Direct Internal Reforming Mode.â *Applied Energy* 230: 1573â84. https://doi.org/10.1016/j.apenergy.2018.09.092. .. container:: :name: ref-10.1155/2019/7828019 Le, Minh-Vien, Tuan-Anh Nguyen, and T.-Anh-Nga Nguyen. 2019. âModeling and Optimization of the Bscf-Based Single-Chamber Solid Oxide Fuel Cell by Artificial Neural Network and Genetic Algorithm.â *Journal of Chemistry* 2019: 1â9. https://doi.org/10.1155/2019/7828019. .. container:: :name: ref-10.1115/1.4003976 Marchetti, A., A. Gopalakrishnan, B. Chachuat, D. Bonvin, L. Tsikonis, A. Nakajo, Z. Wuillemin, and J. Van herle. 2011. âRobust Real-Time Optimization of a Solid Oxide Fuel Cell Stack.â *Journal of Fuel Cell Science and Technology* 8 (5). https://doi.org/10.1115/1.4003976. .. container:: :name: ref-10.1016/j.jpowsour.2013.04.114 Marra, Dario, Marco Sorrentino, Cesare Pianese, and Boris Iwanschitz. 2013. âA Neural Network Estimator of Solid Oxide Fuel Cell Performance for on-Field Diagnostics and Prognostics Applications.â *Journal of Power Sources* 241: 320â29. https://doi.org/10.1016/j.jpowsour.2013.04.114. .. container:: :name: ref-10.1016/j.jpowsour.2017.11.025 Menzler, Norbert H., Doris Sebold, and Olivier Guillon. 2017. âPost-Test Characterization of a Solid Oxide Fuel Cell Stack Operated for More Than 30,000 Hours: The Cell.â *Journal of Power Sources* 374: 69â76. https://doi.org/10.1016/j.jpowsour.2017.11.025. .. container:: :name: ref-10.1016/j.ijhydene.2009.04.068 Milewski, JarosĹaw, and Konrad Ĺwirski. 2009. âModelling the Sofc Behaviours by Artificial Neural Network.â *International Journal of Hydrogen Energy* 34 (13): 5546â53. https://doi.org/10.1016/j.ijhydene.2009.04.068. .. container:: :name: ref-10.1016/j.ijhydene.2013.09.045 Moçoteguy, Philippe, and Annabelle Brisse. 2013. âA Review and Comprehensive Analysis of Degradation Mechanisms of Solid Oxide Electrolysis Cells.â *International Journal of Hydrogen Energy* 38 (36): 15887â15902. https://doi.org/10.1016/j.ijhydene.2013.09.045. .. container:: :name: ref-mutter MĂźtter, Felix. 2021. âArtificial Neural Network Modeling and Genetic Algorithm Optimization of Process Parameters of Solid Oxide Fuel Cell Systems.â Masterâs thesis, Inffeldgasse 25/B, 8010 Graz, Austria: Graz University of Technology. .. container:: :name: ref-10.1016/j.renene.2019.01.072 Nassef, Ahmed M., Ahmed Fathy, Enas Taha Sayed, Mohammad Ali Abdelkareem, Hegazy Rezk, Waqas Hassan Tanveer, and A. G. Olabi. 2019. âMaximizing Sofc Performance Through Optimal Parameters Identification by Modern Optimization Algorithms.â *Renewable Energy* 138: 458â64. https://doi.org/10.1016/j.renene.2019.01.072. .. container:: :name: ref-10.1016/j.jpowsour.2021.229491 Nusev, Gjorgji, Bertrand Morel, Julie Mougin, :raw-latex:`\DJ`ani JuriÄiÄ, and Pavle BoĹĄkoski. 2021. âCondition Monitoring of Solid Oxide Fuel Cells by Fast Electrochemical Impedance Spectroscopy: A Case Example of Detecting Deficiencies in Fuel Supply.â *Journal of Power Sources* 489: 229491. https://doi.org/10.1016/j.jpowsour.2021.229491. .. container:: :name: ref-10.1016/j.ijhydene.2016.06.143 Pahon, E., N. Yousfi Steiner, S. Jemei, D. Hissel, M. C. PĂŠra, K. Wang, and P. Moçoteguy. 2016. âSolid Oxide Fuel Cell Fault Diagnosis and Ageing Estimation Based on Wavelet Transform Approach.â *International Journal of Hydrogen Energy* 41 (31): 13678â87. https://doi.org/10.1016/j.ijhydene.2016.06.143. .. container:: :name: ref-10.1007/s40095-018-0269-5 Salehi, Zahra, and Iman Gholaminezhad. 2018. âMulti-Objective Modeling, Uncertainty Analysis, and Optimization of Reversible Solid Oxide Cells.â *International Journal of Energy and Environmental Engineering* 9 (3): 295â304. https://doi.org/10.1007/s40095-018-0269-5. .. container:: :name: ref-10.3390/en13071621 Song, Changhee, Sanghoon Lee, Bonhyun Gu, Ikwhang Chang, Gu Young Cho, Jong Dae Baek, and Suk Won Cha. 2020. âA Study of Anode-Supported Solid Oxide Fuel Cell Modeling and Optimization Using Neural Network and Multi-Armed Bandit Algorithm.â *Energies* 13 (7): 1621. https://doi.org/10.3390/en13071621. .. container:: :name: ref-10.1016/j.ijhydene.2021.03.132 Song, Shaohui, Xingyu Xiong, Xin Wu, and Zhenzhong Xue. 2021. âModeling the Sofc by Bp Neural Network Algorithm.â *International Journal of Hydrogen Energy* 46 (38): 20065â77. https://doi.org/10.1016/j.ijhydene.2021.03.132. .. container:: :name: ref-10.1016/j.egypro.2014.01.032 Sorrentino, M., D. Marra, C. Pianese, M. Guida, F. Postiglione, K. Wang, and A. Pohjoranta. 2014. âOn the Use of Neural Networks and Statistical Tools for Nonlinear Modeling and on-Field Diagnosis of Solid Oxide Fuel Cell Stacks.â *Energy Procedia* 45: 298â307. https://doi.org/10.1016/j.egypro.2014.01.032. .. container:: :name: ref-SUBOTIC2021113764 SubotiÄ, Vanja, Michael Eibl, and Christoph Hochenauer. 2021. âArtificial Intelligence for Time-Efficient Prediction and Optimization of Solid Oxide Fuel Cell Performances.â *Energy Conversion and Management* 230: 113764. https://doi.org/https://doi.org/10.1016/j.enconman.2020.113764. .. container:: :name: ref-10.1039/D0SE01914C SubotiÄ, Vanja, Philipp Harter, Mihails Kusnezoff, Teko W. Napporn, Hartmuth Schroettner, and Christoph Hochenauer. 2021. âIdentification of Carbon Deposition and Its Removal in Solid Oxide Fuel Cells by Applying a Non-Conventional Diagnostic Tool.â *Sustainable Energy & Fuels* 5 (7): 2065â76. https://doi.org/10.1039/d0se01914c. .. container:: :name: ref-10.1016/j.apenergy.2020.115603 SubotiÄ, Vanja, Norbert H. Menzler, Vincent Lawlor, Qingping Fang, Stefan Pofahl, Philipp Harter, Hartmuth Schroettner, and Christoph Hochenauer. 2020. âOn the Origin of Degradation in Fuel Cells and Its Fast Identification by Applying Unconventional Online-Monitoring Tools.â *Applied Energy* 277: 115603. https://doi.org/10.1016/j.apenergy.2020.115603. .. container:: :name: ref-10.1016/j.ijhydene.2020.07.165 SubotiÄ, Vanja, Thomas Thaller, Benjamin KĂśnigshofer, Norbert H. Menzler, Edith Bucher, Andreas Egger, and Christoph Hochenauer. 2020. âPerformance Assessment of Industrial-Sized Solid Oxide Cells Operated in a Reversible Mode: Detailed Numerical and Experimental Study.â *International Journal of Hydrogen Energy* 45 (53): 29166â85. https://doi.org/10.1016/j.ijhydene.2020.07.165. .. container:: :name: ref-10.1016/j.jpowsour.2012.09.061 Tietz, F., D. Sebold, A. Brisse, and J. Schefold. 2012. âDegradation Phenomena in a Solid Oxide Electrolysis Cell After 9000 H of Operation.â *Journal of Power Sources* 223: 129â35. https://doi.org/10.1016/j.jpowsour.2012.09.061. .. container:: :name: ref-10.1016/j.jpowsour.2016.04.080 Wu, XiaoJuan, and Qianwen Ye. 2016. âFault Diagnosis and Prognostic of Solid Oxide Fuel Cells.â *Journal of Power Sources* 321: 47â56. https://doi.org/10.1016/j.jpowsour.2016.04.080. .. container:: :name: ref-10.1631/jzus.2007.A1505 Wu, Xiao-juan, Xin-jian Zhu, Guang-yi Cao, and Heng-yong Tu. 2007. âNonlinear Modelling of a Sofc Stack by Improved Neural Networks Identification.â *Journal of Zhejiang University-SCIENCE A* 8 (9): 1505â9. https://doi.org/10.1631/jzus.2007.a1505. .. container:: :name: ref-10.1016/j.jpowsour.2007.12.036 Wu, Xiao-Juan, Xin-Jian Zhu, Guang-Yi Cao, and Heng-Yong Tu. 2007. âPredictive Control of Sofc Based on a Ga-Rbf Neural Network Model.â *Journal of Power Sources* 179 (1): 232â39. https://doi.org/10.1016/j.jpowsour.2007.12.036. .. container:: :name: ref-10.1016/j.egyai.2020.100003 Xu, Haoran, Jingbo Ma, Peng Tan, Bin Chen, Zhen Wu, Yanxiang Zhang, Huizhi Wang, Jin Xuan, and Meng Ni. 2020. âTowards Online Optimisation of Solid Oxide Fuel Cell Performance: Combining Deep Learning with Multi-Physics Simulation.â *Energy and AI* 1: 100003. https://doi.org/10.1016/j.egyai.2020.100003. .. container:: :name: ref-10.1016/j.electacta.2017.11.180 Yan, Y., Q. Fang, L. Blum, and W. Lehnert. 2017. âPerformance and Degradation of an Soec Stack with Different Cell Components.â *Electrochimica Acta* 258: 1254â61. https://doi.org/10.1016/j.electacta.2017.11.180. .. container:: :name: ref-10.1016/j.enconman.2019.111916 Yan, Z., A. He, S. Hara, and N. Shikazono. 2019. âModeling of Solid Oxide Fuel Cell (Sofc) Electrodes from Fabrication to Operation: Microstructure Optimization via Artificial Neural Networks and Multi-Objective Genetic Algorithms.â *Energy Conversion and Management* 198: 111916. https://doi.org/10.1016/j.enconman.2019.111916. .. container:: :name: ref-10.1016/j.ijhydene.2015.04.042 Zahadat, Pouya, and Jaroslaw Milewski. 2015. âModeling Electrical Behavior of Solid Oxide Electrolyzer Cells by Using Artificial Neural Network.â *International Journal of Hydrogen Energy* 40 (23): 7246â51. https://doi.org/10.1016/j.ijhydene.2015.04.042. .. container:: :name: ref-10.1016/j.electacta.2017.08.113 Zhang, Caizhi, Qinglin Liu, Qi Wu, Yifeng Zheng, Juan Zhou, Zhengkai Tu, and Siew Hwa Chan. 2017. âModelling of Solid Oxide Electrolyser Cell Using Extreme Learning Machine.â *Electrochimica Acta* 251: 137â44. https://doi.org/10.1016/j.electacta.2017.08.113. .. container:: :name: ref-10.1016/j.apenergy.2018.10.113 Zhang, Zehan, Shuanghong Li, Yawen Xiao, and Yupu Yang. 2018. âIntelligent Simultaneous Fault Diagnosis for Solid Oxide Fuel Cell System Based on Deep Learning.â *Applied Energy* 233-234: 930â42. https://doi.org/10.1016/j.apenergy.2018.10.113. .. container:: :name: ref-10.1016/j.apenergy.2021.117101 Ĺ˝nidariÄ, Luka, Gjorgji Nusev, Bertrand Morel, Julie Mougin, :raw-latex:`\DJ`ani JuriÄiÄ, and Pavle BoĹĄkoski. 2021. âEvaluating Uncertainties in Electrochemical Impedance Spectra of Solid Oxide Fuel Cells.â *Applied Energy* 298: 117101. https://doi.org/10.1016/j.apenergy.2021.117101. .. container:: :name: ref-10.1109/tcst.2015.2502899 Zou, Changfu, Chris Manzie, and Dragan Nesic. 2015. âA Framework for Simplification of Pde-Based Lithium-Ion Battery Models.â *IEEE Transactions on Control Systems Technology* 24 (5): 1594â1609. https://doi.org/10.1109/tcst.2015.2502899.