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Abstract— Accurate terrain estimation is critical for au-
tonomous offroad navigation. Reconstruction of a 3D surface
allows rough and hilly ground to be represented, yielding faster
driving and better planning and control. However, data from
a 3D sensor samples the terrain unevenly, quickly becoming
sparse at longer ranges and containing large voids because
of occlusions and inclines. The proposed approach uses online
kernel-based learning to estimate a continuous surface over the
area of interest while providing upper and lower bounds on
that surface. Unlike other approaches, visibility information is
exploited to constrain the terrain surface and increase precision,
and an efficient gradient-based optimization allows for realtime
implementation. To model sensor noise over varying ranges, a
non-stationary covariance function is adopted. Experimental re-
sults are presented for several datasets, including groundtruthed
terrain and a large stereo dataset.

I. INTRODUCTION

Terrain estimation is a critical component of mobile robot
navigation, but accurate reconstruction of rough, hilly, and
cluttered terrain is very difficult. The distribution of data points
from a 3D sensor on a mobile robot decays rapidly away from
the scanner, and there may be large ground regions that return
no points at all. This variable resolution is inevitable as it is
due to discrete sampling, use of static scanning patterns, and
application to terrain whose geometry is unknown a priori.
Indeed, if the sampling density is dense enough, such as in
scanned 3D objects (Figure la) or regular enough, such as
on smooth roads (Figure 1b), then 3D reconstruction offers
less challenge. In rough outdoor terrain, however, complex
natural geometry, uneven ground, and inclines all exacerbate
the problem and make accurate terrain estimation difficult
(Figure 1c).

Variable distributions make terrain estimation very chal-
lenging, and many autonomous systems truncate their terrain
model to relatively short ranges or make do with a flat, 2D cost
map for this reason [7, 6]. Our approach exploits the visibility
aspect of laser scanning to improve the terrain estimate even
in sparse regions. Data points from a 3D sensor must be
visible to the sensor; i.e., the rays connecting sensor source
to data points must lie above the terrain surface. Thus, the
elevation function can be constrained by both the 3D points,
which must lie on the surface, and the sensor rays, which
must lie above the surface. This can be thought of as a space
carving approach, since it uses visibility information. The new
visibility constraints are incorporated in an reproducing kernel
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Fig. 1. Evenly sampled 3D objects (left) and laser scans on smooth roadways
(center) do not offer the same reconstruction challenges as scans of rough
terrain (right), which often have complex structure and very variable resolution
that decays rapidly with distance.

Hilbert space (RKHS) framework rather than a voxel-based
approach, yielding a continuous surface estimate with high
accuracy that smoothes noisy data.

Many approaches simplify the problem considerably by rep-
resenting the terrain as a flat cost map, but this is insufficient
for modeling offroad terrain because hills and rough ground
are not accurately represented, forcing the vehicle to drive at
very low speeds and make conservative decisions. However,
an explicit 3D model of the world, based on points and
triangulated meshes, is infeasible: this sort of representation is
very expensive, and mesh interpolation over complex terrain is
non-trivial. Elevation maps provide a simplification of the full
3D model, but cannot represent overhanging structures and are
limited to a fixed resolution by a discretized grid. If the terrain
is represented by a continuous elevation function, however,
then the effect of the ground on the vehicle can be more
precisely predicted, allowing for faster autonomous driving
and longer range planning. Modeling the terrain as a 3D
surface is difficult because of the sparse, uneven distribution
of 3D sensor data. Current methods use interpolation to create
a continuous mesh surface, but this can be very difficult if
the terrain is complex and the data is sparse. In our approach,
the 3D surface is modeled as an elevation function over a
2D domain. This surface is estimated using non-stationary
kernel functions, which allow non-linear, complex solutions.
The kernel functions are constrained by both positive and
negative information from the 3D sensor.

A non-stationary, isotropic kernel formulation provides flex-
ibility by varying the smoothness of the elevation function
according to the data density, the data uncertainty, or other



cues. Large lengthscale covariances may be desirable for
smoothing noisy data samples from long-range sensors or
for smoothly interpolating sparsely sampled regions. Where
data is accurate and plentiful, however, small covariances
are needed for accurate surface estimation. This dilemma,
which precludes the use of a fixed lengthscale covariance, is
unavoidable when reconstructing rough terrain from 3D data
that is unevenly sampled, as in the case of offroad, mobile
robots. We follow the formulation of researchers such as
Paciorek and Schervish, who use a non-stationary, spatially-
varying covariance to model climate data [12]. Rather than
learn the best covariances through Gaussian process models,
as Paciorek and Schervish do, we determine the lengthscales
by external cues, such as sensor distance and uncertainty
estimates. This is efficient and intuitive and allows realtime
terrain reconstruction.

Our approach is further distinguished by its use of both
positive and negative information from the 3D sensor. The
points are assumed to lie on the terrain, thus giving positive
information about the surface at a number of finite locations.
The rays connecting the sensor location to each point impart
negative information, because these rays must lie above the
terrain. Of course, at times the sensor ray refracts through
glass, penetrates foliage, or passes through a tunnel - all
cases where the ray does not strictly lie above the terrain.
We are concerned with accurately reconstructing the load-
bearing surface, however, so sparse foliage can be considered
empty space. By constraining the terrain estimation to enforce
that the visibility rays must lie above the surface, thereby
“carving” the surface, we take advantage of the valuable
negative information that is usually ignored by 3D sensor
based algorithms.

In order to learn the terrain function, we propose a kernel-
based approach that models the surface as a hypothesis in a
reproducing kernel Hilbert space (RKHS). Using a kernel for-
mulation provides a principled means of optimizing a surface
function that can produce a highly nonlinear solution. In order
to pose the problem as an RKHS regression constrained by
visibility information as well as surface points, we incorporate
the space-carving constraint into the mathematical framework
and give a rule for functional gradient descent optimization,
yielding an efficient realtime program. The proposed method
is evaluated using LADAR datasets of rough offroad terrain.

II. RELATED WORK

Kernel-based surface estimation has been adopted by the
graphics community in recent years for modeling 3D scanned
objects [18, 24, 22]. These approaches fit radial basis functions
to scanned surface points, yielding an embedding function
f. The zero-set f~1(0) implicitly defines the surface. The
advantages of using radial basis functions to model the surface
of a scanned 3D object are that noise and small holes can
be dealt with smoothly, and multi-object interactions can be
efficiently computed. However, these approaches cannot be
directly applied to terrain data gathered from laser rangefinders
mounted on a mobile robot. Such data is dense and precise at

close range, but quickly degrades at longer ranges, where the
surface is sparsely and unevenly sampled. Given such data, an
implicit surface function is ill-constrained and often results in
a degenerate solution.

Explicit elevation maps are a standard approach for mod-
eling rough terrain for mobile robotics. There are many
strategies for building these maps, from mesh algorithms to
interpolation to statistical methods [4, 2, 13].

Burgard et al., following on the research done by Paciorek
and Schervish and Higdon et al. [12, 5], have successfully
applied Gaussian process regression to the problem of rough
terrain modeling, although their approach is computationally
expensive and has not been applied to large datasets [15, 14,
11]. Burgard’s research adapts Gaussian process regression
for the task of mobile robot terrain estimation by considering
issues such as computational constraints, iterative adaptation,
and accurate modeling of local discontinuity. Our approach
uses a kernel-based methodology as well, but we propose an
iterative algorithm that exploits both ray and point information
to fit basis functions to solve a system of constraints.

Using ray constraints, or visibility information, to improve a
3D surface model has rarely been proposed in mobile robotics.
Space carving algorithms, originally suggested by Kutulakos
and Seitz [9], use visibility information to produce a voxel
model from calibrated images of a scene (a survey of space-
carving approach can be found in [20]), but this strategy has
not been adopted by the 3D sensing community. Another
approach that exploited the visibility constraints was the locus
method of Kweon et al. [10]. These approaches produced
discrete maps, rather than continuous elevation functions, and
relied on unwieldy heuristics to ensure that the map had
desirable properties such as a watertight surface. In contrast,
the approach we propose exploits visibility information while
learning a continuous, bounded surface.

In addition, recent publications from several different re-
search groups have advanced the field of 2D and 3D map
construction in significant ways. In particular, Yguel et al.
proposed the use of sparse wavelets to model a 3D environ-
ment from range data [23], and Fournier et al. use an octree
representation to efficiently represent a 3D world model [3].

III. KERNEL-BASED REGRESSION FOR TERRAIN
ESTIMATION

Given a set of 3D points from a sensor mounted on a mobile
robot, we seek to estimate a continuous elevation function
f(z,y) = =z that both intersects the data points and does
not exceed the height of the rays connecting sensor and data
points. A 2D example, in which the elevation map intersects
the data points but violates the ray constraint, is shown in
Figure 2. The dataset S consists of n tuples, each with a
3D point (x;,y;,2;) and a corresponding 3D sensor location
(sx;, syi, $z;), which are summarized as a point x; = [z; v,
a height z;, and a line segment, or ray, connecting source and
point, which we denote by s;. The projection of s; on the XY
plane is denoted §;, and the function g;(-) is used to denote
the height of s; at a given point (g; = oo at every location
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Fig. 2. Visualization in 2D of the point- and ray-based constraints on a
terrain elevation function. The estimated surface must intersect the data points
(“sensor hits”) and lie below the visibility rays from the sensor. If there is a
violation of the ray constraint, a support kernel function is added at the most
violating point T.
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Fig. 3.

The Wu ¢2 1 function (6), shown with o of 0.5, 1, and 2.

that does not intersect §;). Given this data, we learn a function
that meets both a point-based constraint (3) and a ray-based
constraint (4):

Given S = {(x1,21,81), (X2, 22,82), ..., (Xn, Zn,Sn)} (1)
find f:R? >R 2)
s.t. f(xi) =2z Vxg, 3)
f(x) < gi(x) Vs, x. “)

In order to solve this problem for complex surfaces and
datasets, we use a kernel formulation whereby distances be-
tween points can be computed in a highly non-linear, high-
dimensional feature space without actually computing the
coordinates of the data points in that feature space, since any
continuous, symmetric, positive semi-definite kernel function
k(x;,x;) can be expressed as a dot product in a higher
dimensional space [1]. Thus the height function f(z,y) is a
hypothesis in RKHS and can be expressed by kernel expan-
sion:

fla,y) = f(x) =Y aik(x,xi), (5)
i=1

where k(-,-) is a radial basis function and « are learned
coefficients. An efficient, finite support kernel function k(- -)
that was suggested by Wu [17] (see Figure 3) is:

k(xi,%;) = k(p) = (1 — p)L(4 + 16p + 12p% + 3p%), (6)

where
i - x|
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g

and o is the lengthscale of the basis function. This kernel
function was chosen over other possible radial basis functions
because of the recommendations of Schaback [17] and the
empirical success of this kernel for surface estimation in [24].

A. Non-Stationary Kernel Formulation

The distance function given (0) is a stationary, isotropic
function. The lengthscale o is fixed and the covariance is
symmetrical, or isotropic, as in any radial basis function. In
order to allow the covariance to vary over the spatial domain,
a non-stationary kernel function can be used that is positive
definite. Such a kernel function was constructed by Higdon [5]
and developed and applied by others [12, 15, 14, 11] in several
contexts. The kernel is created by convolving two different
covariances centered at two spatial locations, and is positive
definite in any Euclidean space RP,p = 1,2, ... [12]:

Clxi, ;) = /m i ()ky, (w)du, )

where kx(-) is a kernel function centered at x and x;, x;, and
u are locations in PR2. In fact, a non-stationary correlation
function can be derived from any stationary isotropic correla-
tion function that is positive definite: If R(7) is an isotropic
correlation function positive definite on AP, p = 1,2, ..., then
Rys(+, ) is a non-stationary correlation function that is also
positive definite [12]:

Rns(xi,%x5) = Cij R(\/Qij)- 9

In this new function, x; and x; are associated with location-
dependent covariance matrices »_; and >/, Cj; is
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and Q);; is a quadratic form:

(10)

-1
) (Xi —Xj)T (11)

Applying this to the Wu polynomial kernel k(p) = (1 —
p)4(4+16p+12p +3p?) produces the non-stationary kernel
function

kns(xi,x;) = Cijk(1/Qij)-

The experiments and analysis in this paper use both the sta-
tionary, isotropic radial basis function 6 and the non-stationary
kernel function. Only isotropic covariances are used.

The introduction of spatially-varying kernels brings us to the
important question of how to estimate the lengthscale of a data
point. Paciorek and Schervish, using non-stationary covariance
functions to model climate data, estimate the covariances with
second, latent GPR that is learned using MCMC sampling,
resulting in a very high computational burden that is acknowl-
edged by the authors [12].

Burgard et al. use isotropic covariance functions, which
only vary in lengthscale for terrain reconstruction in [15].
The lengthscale parameter is estimated from the 3D data by
computing the elevation gradient from the local neighborhood
around the covariance function. A related approach estimates
non-isotropic covariance functions directly from the local
gradients in the 3D data [11].

(12)



Since we are interested in the problem on terrain re-
construction performed on a mobile robot, we estimate the
lengthscale based on the sensor uncertainty for a particular
data point. Thus, as the distance from the sensor increases, the
accuracy decreases, and the data density drops. Accordingly,
the lengthscale increases, affording more support and smoother
reconstruction. Given the uncertainty of a sensor with respect
to range, o(x) is a function that estimates a lengthscale for a
single data point.

B. Optimization by Subgradient Descent

To find f € H that meets both point-based constraints
and ray-based constraints, we form the following convex
optimization problem:

1 N
i=1

where r(f, g;, X;, z;) penalizes both point and ray constraints.
Instead of optimizing an infinite set of linear constraints, i.e.,
the constraint that each ray must lie above the surface, we
optimize a single non-linear constraint and use a max function
to find the most offending point in the projection of each ray.
The cost function 7(f, g;, X;, z;) is thus:

() = 5 max(0, max(f ()~ ()" + 5 (£ i) =) (14)

To solve the optimization problem above, which contains
linear and non-linear constraints (because of the max opera-
tion), we use a functional gradient descent approach that relies
on subgradients to tackle non-differentiable problems. Using
a stochastic gradient method allows fast online performance
which is critical for real-world application. Online subgradient
kernel methods have been successfully applied to several
problems [16].

The subgradient method iteratively computes a gradient-
like vector which is defined using a tangent to the lower
bound at a particular point of the non-differentiable func-
tion. There is a continuum of subgradients at each point of
non-differentiability, but only one subgradient, which is the
gradient, at differentiable points. A detailed examination of
the subgradient method can be found in the original work
by Shor [19]. Online gradient descent with regret bounds for
subgradient methods was developed by Zinkevich [25].

To learn using functional gradient descent, the function is
updated with the negative of the (sub)gradient stepped by a
learning rate 7:

8£(ftvgtaxtvzt)

fror = fe—m of (15)

Since f is a hypothesis in RKHS,

aE(f(Xt)éfgh - Zt) = r/(f(xt)vgt’ Xty Zt)k(xt7 X) + )‘f
(16)
We rely on the kernel expansion of f (Eq. 5) to derive
an efficient stochastic update, following the example of [8].
Following this stochastic approach, basis functions are added

iteratively, and at the same time the weights of previously
added basis functions are decayed. The number and location
of the basis functions is not identical to the training points,
and the final number of basis functions may be greater or less
than the sample size. Thus, at time ¢, a new basis function
may be added at location x; with coefficient

ar = =1’ (f(Xe), 9es Xt 2t), (17)
and the existing coefficients are decayed:
a; = (1 —m\)a; for i < t. (18)

For our optimization problem, the gradient of r has 2 com-
ponents, for the different constraints in the loss function, so
up to 2 basis functions are added with different coefficients.
If f(x;) # z, then the added basis function is centered at
x;, with coefficient oy = —n;(f(x; — 2;). The second basis
function is added at the most violating location along ray s;,
if one exists. We compute T = argmax, (f(x) — gi(x)) by
line search on ray s;, and if X > 0 then a basis function is
added at X with a coefficient oz 1 = =1 (f(X) — 6:(X).
The algorithm is also described in Alg. 1.

C. Uncertainty Bounds

Uncertainty attribution is very valuable for a mobile robot
in rough terrain. A terrain estimate coupled with an uncer-
tainty bound is much more powerful than a terrain estimate
alone, because the planning and behavior of the robot will
be affected. Velocity may be modified, exploration behaviors
changed, and safety measures enacted based on the uncertainty
attributes. In some circumstances, the upper bound of a region
induces a tight lower bound on the slope of the actual terrain,
which can be used to identify non-traversable steep slopes,
even if there are no data points in that region. In other words,
the slope of an interior chord of the upper bound is a lower
bound on the slope of the actual terrain, if the highest elevation
of the chord is equal to the local maxima of the terrain under
the chord. Thus lethal regions may be located entirely on basis
of the upper bound, as long as the upper bound is pinned to the
actual surface by at least one data point, an insight described
by [7] and provable by application of the mean value theorem.
This scenario is depicted in Figure 4: the slope of chord AB
is a lower bound on the maximum slope of the underlying
terrain, because at point A the chord and the terrain are both
at local maxima.

Upper and lower bounds can be learned using the kernel-
based terrain estimation method that has been proposed. At
time 0, the surface estimate is initialized by a positive or
negative offset corresponding to the globally maximum or
globally minimum expected elevation (in our experiments,
+5 meters and -5 meters were the “priors” used to initialize
the upper and lower bounds). The subsequent learning is
identical to the original algorithm: ray and point constraints
are applied to fit the surface by training a kernel function with
stochastic gradient-based learning. The outcome is an upper
bound surface and a lower bound surface. The three learning
processes can be run in parallel on a distributed system.
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Fig. 4. An upper bound on the terrain gives a lower bound on the slope
of the terrain under certain circumstances. For an interior chord to the upper
bound (AB) whose maximum point is coincident with the maximum point
on the terrain surface under the chord (at A in the illustration), the slope of
the chord is a tight lower bound on the actual slope of the underlying terrain.

D. Online Algorithm and Implementation

The algorithm looks at every data point given, although
basis functions may not be added if there are no point or
ray violations (see Algorithm 1), and not every data point
need be used for reconstruction (at very close range, where
the data density is highest, the points may be sampled or a
reconstruction may be not be necessary using this method).
Since the algorithm is stochastic and iterative in nature, data
can be continually added to the training set and the learning
will smoothly adapt to the additional information. This is a
valuable characteristic for a autonomous navigation system to
have, since new data is continuously arriving from sensors.
The algorithm can be run as a series of epochs, so that each
point is considered multiple times and the learning rate is
decayed as the reconstruction progresses. Another paradigm,
suitable for mobile robots, assumes that in normal circum-
stances each piece of ground will be scanned multiple times
as the robot advances. In this case, each point is only observed
once and the learning rate is kept fixed (see Algorithm 2).

Another effect of the stochastic, iterative nature of the pro-
posed method is that the learning process can be viewed as an
anytime algorithm which can be run whenever computational
resources and data are available and which does not require the
algorithm to terminate in order to access and use the terrain
estimate. The upper and lower bounds can be computed in
parallel with the surface estimate and thus fit into the anytime
algorithm formulation. This quality is particularly beneficial
for realtime navigation systems that constantly modulate their
velocity and trajectory based not only on an estimate of the

terrain ahead but also on the uncertainty of that estimate.
Input: Training set S (points (Nx3) and sources (Nx3))
Output: Surface f: R? - R
while Not Converged do
foreach Point x; do
Calculate f(x;);
if f(Xi) # 2 then
Add basis x; = x;;
With weight oy = —n,(f(x; — 2;);
incr t;
end
Calculate T = argmax, (f(x) — g:(x));
if X > 0 then
Add basis x; = X;
With weight oy = —nm:(f(X) — ¢:(X);
incr t;
end
foreach Basis x;,j <t do
| Decay weight o; = (1 — A7)y
end

end

end
Algorithm 1: Online algorithm using subgradients. The first
test (f(x;) # z;) tests for violation of the point constraint,
and the second test detects violation of the ray constraint.

Input: Training set S (points (Nx3) and sources (Nx3))
Output: Surface f: R? — R
while Point x; € S do
Calculate f(x;);
if f(Xl) 7é z; then
Add basis x; = x;;
With weight oy = —n (f(x; — 2;);
incr t;
end
Calculate T = argmax, (f(x) — g:(x));
if X > 0 then
Add basis x; = X;
With weight oy = —n:(f(X) — gi(X);
incr t;
end

end

Algorithm 2: Online algorithm using subgradients and a
fixed learning rate. The first test (f(x;) # z;) tests for
violation of the point constraint, and the second test detects
violation of the ray constraint.

One of the benefits of the proposed approach is that it can
deliver an accurate, continuous, bounded terrain reconstruction
in realtime. The choice of a gradient-based optimization strat-
egy, plus a compact kernel function that allows fast nearest
neighbor searching (through use of a kd-tree) to perform
the kernel expansion, permit this level of efficiency. The
experiments described in this paper were conducted on a 2.2
GHz computer using a non-optimized C++ implementation.
The timing results are promising; datasets with 10,000 points
are reconstructed within a second, and datasets with over 1
million points are processed in a few seconds. From this
preliminary evaluation, we conclude that deployment on a full



realtime navigation system would be feasible.

IV. EVALUATION AND ANALYSIS

Tests of the proposed method were conducted in order to
evaluate the effectiveness of the approach on both artificial and
natural datasets, and to demonstrate the convergence proper-
ties. In addition, a groundtruth dataset was constructed using
tripod-based surveying equipment, and the resulting data was
used to evaluate the accuracy of the reconstruction. Finally, we
apply the algorithm, using the non-stationary kernel function,
to a large stereo dataset. Mean squared error is calculated
by comparing the elevation of a set of test points with the
predicted surface elevation:

1

MSE(Stest) = Etest = — Z (f(xi) — Zi)27 (19)

1=1..p
where Sgegt is a set of p test points x; with known elevations
Zi.

A. Evaluation: Sinusoid Data (2D)

A synthetic dataset was used to develop and test the
proposed method. Data points were sampled irregularly over
a sine function, using an exponentially decaying point density
and eliminating points that were not visible from a source
point, yielding 400 samples (see Figure 5a). The samples were
divided into training and test sets, and testing showed that
the algorithm converged and that the space-carving kernels
improved the surface estimate. Figure 5b shows the surface and
bounds after the first learning epoch and 5c shows the surface
after convergence. In addition, a single point was added to the
dataset during learning to demonstrate the online capability of
this method (Figure 5d).

B. Evaluation: Offroad Natural Terrain Data

The approach described in the previous section has been
implemented in Matlab and tested on an outdoor scene using
data from the 360° HDL-64 ladar scanner, manufactured by
Velodyne and installed on Boss, the Carnegie Mellon entry in
the 2008 DARPA Urban Challenge [21]. The left and right
images in Figure 6 show a slightly narrowed view of one
dataset. Note that the data is very dense within a few meters
of the sensor, but quickly degenerates to a sparse, uneven
distribution. The terrain in this dataset is extremely rugged,
composed of uneven piles of rubble.

The results of reconstructing the terrain are shown in
Figure 7, and 2D cross sections of the bounded estimate
are shown in Figure 8. The surface was estimated using a
training set of 10,000 points (shown as a point cloud in
Figure7d), and another set of 5000 points was partitioned for
testing. The algorithm was also tested with over one million
points to demonstrate computational efficiency. The stochastic
algorithm converged after 8 epochs, and a total of 21,392 basis
functions were used. To compute the upper and lower bounds,
the same training data was learned with an initial surface
height of +5 and -5 meters at time 0. The terrain estimate
is shown in Figure 7a, the lower bound is shown in 7b, and
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Fig. 5. a: An synthetic dataset containing irregularly sampled points on a
2D sine function. The density of points decreases exponentially with distance
from the sensor. Points not visible to a sensor were removed. b: The estimated
surface, plus low and high bounds, after 2 learning epochs. ¢: The estimated
surface, plus low and high bounds, after convergence (12 epochs). Note the
effect of ray constraints on the upper bound. d: A single point (shown in
blue) was added interactively to demonstrate the ability of the algorithm to
adapt to new data online.

Fig. 6. Left and right views of one of 5 rough terrain datasets used for
evaluation of the algorithm.
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Fig. 7. 3 estimated surfaces, using elevation priors of 0 meters (a.), 5 meters
(b.), and -5 meters (c.). Using high and low elevation priors gives uncertainty
bounds on the estimated surface. The training set point cloud is shown in d.

TABLE I
ERROR RATES ON FIVE OFFROAD DATASETS.

Dataset  No Visibility Info ~ With Visibility Info
1 0.059 0.014
2 0.045 0.025
3 0.120 0.035
4 0.098 0.096
5 0.061 0.065

the upper bound is shown in 7c. The surfaces are similar where
data is dense, but the upper and lower bound pull away as the
data becomes sparse at the edges of the region shown, and
also in the front center of the region, where the robot was
occluding the ground.

Looking at the results in 2D sections, as in Figure 8, allows
a graphical depiction of the upper and lower bounds, the esti-
mate, and the training points. In this figure, four cross sections
of the surfaces shown in Figure 7 are shown, corresponding to
the bisections overlaid on the training points in Figure 9. The
blue regions in the 2D plots show the uncertainty between the
estimated surface and the upper bound on the surface, and the
pink regions show the negative uncertainty. The upper bound
is often much tighter than the lower bound because of the ray
constraints that give additional constraint on the upper bound,
but do not impact the lower bound. In areas where no data at
all is given over an area larger than the maximum lengthscale
of the kernel (5 meters, in this case), the surface estimate will
be at 0 and the upper bound and lower bound will be at 5
and -5 meters respectively, since 0, 5, and -5 are the elevation
priors set for the surface and the bounds.

C. Contribution of Visibility Information

To evaluate the contribution of the ray constraints gained
from the laser visibility information, five offroad datasets are
used. For each dataset, a surface is estimated with and without
ray constraints and the mean squared error of a withheld
test set is calculated. Ideally, the test set would be uniformly
sampled on a grid across the terrain. Instead the test samples
are from the same distribution as the training set, which
effectively masks the benefit of the ray constraints by not
testing in the sparsest areas where the ray constraints have
the greatest effect.

Despite this bias, the results given in Table I and Figure 10
confirm the benefit of using visibility information. Using the
ray constraints helps substantially on all datasets but one, in
which the margin between the two results is very slim. The
datasets that are not aided as much by the ray constraints are
both flatter terrain, where the potential gain from the visibility
information is less because the data is evenly distributed. The
convergence of the online algorithms for each data set is
plotted in Figure 11.

Inclines are terrain types that are smooth yet problematic
for LADAR systems, typically producing very sparse returns
because of the high angle of incidence. However, due to that
same grazing angle, the ray information is extremely helpful.
To elucidate the point, an examination of the surfaces learned
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Fig. 8. Various cross sections of the estimated surface from Figure 7 are

shown. Upper and lower bounds for the surface are found by combining the
surface estimates obtained with different initial elevations. The location of the
cross sections in the dataset are shown in Figure 9.

Fig. 9. The locations of the cross sections shown in Figure 8.
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Fig. 10. The performance of the method on a rough terrain dataset. The mean
squared error, computed on the test set after convergence of the algorithm, is
recorded for increasing sample sizes. The use of ray constraints decreases the
error rate at every sample size. Final error rates are given for other datasets
(see Table I). Unfortunately, the test data is from the same distribution as the
training set, so the benefit of using visibility information is somewhat masked.

for a downhill slope with and without visibility constraints is
given. In Figure 12a., the slope is shown (the incline is 30
meters long with a downward slope of roughly 5°). In 12b.,
the distribution of training data over the test terrain is shown.
The data density is very high at the top of the hill, directly in
front of the vehicle, and on the embankment at the side of the
incline, but almost non-existent toward the bottom of the hill.
12¢. and 12d. show the terrain estimation with and without
visibility information. The incline surface is poorly estimated
unless the visibility information is used.

Convergence of algorithm over 6 epochs
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Fig. 11.  This graph shows the stable convergence of each natural terrain
dataset over 6 epochs.
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The laser hits become very sparse if the terrain inclines downward, as for this sloped driveway (a, b). If the visibility information is not used, the

surface is incorrectly estimated (c). When the visibility information is used to constrain the surface, the estimate is far better on the sloping drive (d).

Fig. 13.  Multiple close range scans were taken of the area using the
Leica ScanStation2, then aligned using the spherical fiducials (right). The
overlapping scans produced a dense, uniform pointcloud suitable for use as a
groundtruth dataset.

V. GROUNDTRUTH EVALUATION

For precise evaluation of the method, a groundtruth dataset
was compiled using surveying equipment. Several scans, from
multiple vantages, were taken of a rocky, rough hillside using a
Leica ScanStation2, then aligned using spherical fiducials (see
Figure 13). The resulting point cloud, containing one million
points after uniform sampling, was dense and regular, with no
voids or significant error.

After alignment, several subsets were extracted from the
pointcloud, representing different individual scans. Each sub-
set was spherically subsampled to reflect the usual distribution
of a 3D sensor mounted on a moving vehicle.

Reconstructing the terrain using the proposed method ap-
plied to the single-view subsets was done to understand the
accuracy of the algorithm for estimating elevation as well as
uncertainty across the region of interest. Visual comparison
of the uncertainty values and the errors on the reconstructed
surface clearly shows that areas of high uncertainty are well-
aligned with areas that actually have higher error (see Fig-
ure 14). The third scatter plot shows the distribution of data
points in the same region (the sensor is positioned at the top
center of the surface). Similar to a precision-recall graph, the
plots in Figure 15 show the effect of thresholding the output
(based on uncertainty) on the overall error as well as on the
number of remaining grid cells. The error falls steeply as the
uncertainty threshold is lowered, while preserving the majority
of the cells. An optimum threshold for a target environment
can be chosen by this sort of analysis.

The effects of fixed vs. non-stationary lengthscales and the
visibility constraint were also assessed using the groundtruth
dataset. Gaussian noise, in elevation only, was added to the
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Fig. 14. Visual comparison of the uncertainty values and the errors on the
reconstructed surface clearly shows that areas of high uncertainty are well-
aligned with areas that actually have higher error. The third scatter plot shows
the distribution of data points in the same region (the sensor is positioned at
the top center of the surface for all 3 plots).

groundtruth datasets, and surfaces were reconstructed to com-
pare the accuracy of the algorithm when visibility constraints
are used and when non-stationary lengthscales are used. Fixed
lengthscales were chosen by computing the lengthscale that
gave the minimum combined error over multiple datasets
and noise conditions. Variable lengthscales were computed
according to a piecewise linear function on the distance of
the 3D point from the sensor:

J(Xi) = mln(m\ |S’L| |27 Lmaz)7

where s; is the ray connecting the sensor and 3D point x;,
m is a constant scaling factor, and L,,,, is a fixed maximum
lengthscale. The results, shown in Figure 16, clearly show that
variable lengthscales and visibility information yield a more
accurate reconstruction.

VI. APPLICATION TO DENSE STEREO DATA

The fully online reconstruction algorithm was applied to a
sequence of dense stereo point clouds to verify the perfor-
mance of the method on stereo data taken from a moving
vehicle. The dataset comprised 6 million points from 800
black and white stereo pairs with a baseline of 30 cm. Since
3D stereo data has a different uncertainty model than laser
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Fig. 15.  Top: Comparing the uncertainty and error values over a changing
threshold shows that the mean error falls steeply as the threshold is lowered.
Bottom: Plotting the number of grid cells remaining after pruning with
decreasing thresholds shows that the majority of points are retained.

Elevation Error on Groundtruthed Dataset
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Fig. 16. Comparison of algorithms on increasingly noisy data using
groundtruth elevation values for measurement of error.

range scanner data, a quadratic lengthscale function was used
to determine the covariance of each data point added to the
kernel function. Thus, lengthscale increases quadratically with
the distance of the 3D point from the camera, saturating at a
fixed maximum value:

U(Xi) = mln(m‘ |SZ| |§7 Lmaac)v

where s; is the ray connecting the sensor and 3D point x;,
m is a constant scaling factor, and L, is a fixed maximum
lengthscale. Upper and lower bounds give a measure of the
spatial uncertainty across the surface, allowing us to prune the

surface in places where the uncertainty is over a threshold.
The results are shown in Figure 17. It appears that the
lengthscale does not change dramatically over the extent of
the reconstruction, but this is due to the natural refinement
of the surface, using smaller and smaller lengthscales, as the
vehicle receives data from the same area at closer and closer
range.

VII. CONCLUSION

Reconstruction of rough terrain using 3D sensor data is
highly challenging because of the variable distribution of
points in the region of interest that is a result of fixed scanning
patterns and complex terrain geometry. Our proposed approach
uses visibility information to carve the surface and produces
not only a terrain estimate but also uncertainty bounds. We
formulate the learning problem as an RKHS optimization and
derive a subgradient-based stochastic solution, which gives
computational efficiency, allows data to be added online, and
makes the approach an anytime algorithm. A non-stationary
kernel function can be used to model the sensor error as a
function of distance. The evaluation, on synthetic, natural, and
groundtruthed data, clearly demonstrates the effectiveness of
the approach and the utility of the space carving visibility
information.

The next phase of this project will incorporate color imagery
into the terrain estimation algorithm. The data can be fused
using calibration, and the higher resolution, longer range color
data can be used to increase both the precision and the range
of the terrain model.
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