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Abstract: Gaussian processes (GP) models form an emerging methodology
for modelling nonlinear dynamic systems which tries to overcome certain
limitations inherent to traditional methods such as e.g. neural networks,
fuzzy models or local model networks.
The GP model seems promising for three reasons — first, smaller number of
training parameters, second, the variance of model’s output is automatically
obtained and third, various prior knowledge, e.g. linear local models, statical
characteristic, known hysteresis can be included in the model.
In the paper some of the possibilities of the prior knowledge incorporation
will be presented together with illustrative example.
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1 INTRODUCTION

While there are numerous methods for identification of linear dynamical systems from measured
data, e.g. (Ljung, 1999), nonlinear systems are more difficult to tackle. Usually nonlinear
systems are identified using models such as artificial neural networks (ANN), Takagi-Sugeno
fuzzy models (TSFM), local model networks etc. These models usually prove effective, but their
wider use is prevented by their drawbacks, namely model’s structure determination and training
of usually large number of parameters. In this paper the Gaussian processes prior model will
be used for dynamic systems modelling instead, as it has the possibilities to overcome these
drawbacks.

Gaussian processes model (GP model) is probabilistic, non-parametric black-box model compa-
rable to ANN or TSFM models. The output of the GP model is normally distributed, expressed
in terms of the mean and the variance. Mean value represents the most probable value of the
predicted output and the variance can be viewed as the measure of confidence in the predicted
mean. Obtained variance distinguishes the GP method from ANN or TSFM and can be used
as the quality measure of the model. The number of GP model’s (hyper)parameters is much
smaller than in the comparable ANN or TSFM, which reduces the problem of optimization.
Another potentially useful attribute of GP model is the possibility to incorporate prior knowl-
edge into the model. This knowledge can be in various forms, e.g. linear local models (Solak,
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et al., 2003; Kocijan and Leith, 2004), static characteristic, prior knowledge about the noise,
hysteresis (Ažman and Kocijan, 2005) etc. GP model has been popularized among machine
learning community through works of Rasmussen (1996) and Neal (1996), but was only recently
used for dynamic system identification, e.g. (Kocijan, et al., 2005).

The purpose of this paper is to briefly present the identification of dynamic systems with GP
model and to present the possibilities of prior knowledge incorporation. In the next section
the GP model and the identification of dynamic systems with GP model is illustrated. In
Section 3 the incorporation of the prior knowledge into the GP model is presented together
with illustrative example. Conclusion emphasizes the main points and concludes the paper.

2 INTRODUCTION TO DYNAMIC SYSTEMS IDENTIFICATION WITH
THE GP MODEL

2.1 Modelling with the GP model

Here the modelling with the GP model will only be briefly presented, for more detailed intro-
duction see e.g. (Wiliams, 1998).

The idea behind GP modelling is to place the prior directly over the function values instead of
parameterizing unknown function f(x). Consider the system

y(k) = f(x(k)) + ε(k) (1)

where ε(k) is a white noise with variance v0 and x is the vector of system’s inputs. To model
this system, the GP prior with covariance function

C(xi,xj) = v exp

[
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]
(2)

with unknown hyperparameters ΘΘΘ = [w1, . . . , wD, v]T is put on space of functions f(.), where δij

is Kronecker operator. This covariance function is common choice when we assume stationarity
of the system and smoothness of its output.

Based on a set of N training data pairs {xi, yi}N
i=1, gathered in D = X|y, we wish to find

the predictive distribution of y∗ corresponding to a new given input x∗. For this collection
of (presumably normal) random variables (y1, . . . , yN , y∗) we can write: (y, y∗) ∼ N (0,KN+1)
where KN+1 is the covariance matrix of the process generating outputs (y, y∗). The elements
of the covariance matrix KN+1 are the covariances between values of the function f(xi) and
f(xj), calculated using covariance function C(., .).

The covariance matrix of the process is:
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(3)
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This joint probability can be divided into a marginal and a conditional part. Hyperparameters
of the covariance function are optimized so they maximize the likelihood of the training data
D. The conditional part provides us with the (Gaussian) output distribution of the GP model
with mean µ(x∗) and variance σ2(x∗):

µ(x∗) = k(x∗)TK−1y (4)

σ2(x∗) = k(x∗)− k(x∗)TK−1k(x∗) + v0 (5)

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is the vector of covariances between training inputs

and the test input and k(x∗) = C(x∗,x∗) is the autocovariance of the test input.

2.2 Dynamical system identification

Presented GP model was originally used for modelling of static nonlinearities, but it can be
extended to model dynamical systems as well (Kocijan, et al., 2005). Our task is to model the
dynamical system (1), where x = [y(t− 1), . . . , y(t− L), u(t− 1), . . . , u(t− L)] is the vector of
regressors and be able to make n-step ahead prediction. One way to do n-step ahead prediction
is to make iterative one-step ahead predictions up to desired step n whilst feeding back the
predicted output.

Two approaches to iterated one-step ahead prediction are possible using the GP model — in
first only the mean values of the predicted output are feed back to the input (“naive” approach),
in second the complete output distributions are feed back (“exact” approach). More on the GP
model simulation can be found e.g. in (Girard, 2004).

3 INCORPORATION OF PRIOR KNOWLEDGE INTO THE GP MODEL

Trained GP model carries information about observed system in two parts:

• input/output data D = X|y, describing the input/output behavior of the system and

• the covariance function which expresses the correlation between the data.

Therefor there are two possibilities for prior knowledge incorporation into the GP model. The
first possibility is to appropriately change the covariance function, so it expresses our different,
stronger prior believes about the system. This can mean different choice of covariance function
family or merely the change of the values of its hyperparameters. The second possibility is to
either change either add to the input/output data D.

3.1 Changing the covariance function

The role of the covariance function is to correlate the data constituting the GP model. Our
a-priori knowledge is expressed through the choice of the covariance function family. Function
(2) for example is the most widely used covariance function, as it represents common prior
believes like stationarity of the process and smoothness of the output and is fairly easy to use.
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However if it is known that the unknown system has some other attributes we would like to
express with covariance function like periodicity, some kind of non-stationarity or that there
are more processes affecting the unknown system, it could be useful to choose the covariance
function from different function family, see (Gibbs, 1997) or (Leith, et al., 2005) for the latter
case.

There is also a possibility that the noise present at the output of the system is not white
Gaussian. If we know the parameters of its dynamical model we can change the “noise part”1

of the covariance function accordingly as in (Murray-Smith and Girard, 2001).

3.2 Changing input/output data

The second possibility of prior information incorporation is to change the input/output data D
in which the behavior of the unknown system is contained in explicit form, i.e. system’s output
as the function of corresponding values of input regressors. There are several possibilities:

• A new regressor can be added to already present regressors, increasing the input dimension
of the model. Into this regressor additional information about every training data point
in data D is encoded, e.g. the state of hysteresis of the system for particular training
point xi|yi.

• Second, the new data points xi|yi can be added, reflecting some prior knowledge, e.g.
static characteristic, some boundary conditions. Another possibility is to change the
nature of the data in the input/output data D so that it represents derivative instead of
functional information. As the derivative of the GP remains a GP (Solak, et al., 2003)
this is allowed if we only appropriately change the covariance function for derivative data.
An example of data including the derivative information are linear local models.

• The data from several linear local models can be combined with “normal” data represent-
ing unknown system, i.e. data samples from system’s response. Such GP model could be
useful tool for combining local models as it can replace the local models with system’s
response samples in the regions, where the local models are hard to identify, e.g. in the
off-equilibrium regions of the dynamic system (Murray-Smith, et al., 1999). Another ad-
vantage of the linear local models incorporation is the reduction of the size of the GP
model, which could reduce the training time of the model.

3.3 GP model with incorporated linear local models – an example

In this section the possibility of linear local models incorporation will be presented on simple
example. Due to space limitations only the illustration of the concept will be given.

We would like to model following nonlinear dynamic system, given by Narendra and Parthasarathy
(1990) to make (for simplicity of illustration) one step-ahead prediction:

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (6)

1“Noise part” of the covariance function is the part reflecting the influence of the noise, e.g. v0δij in the case
of covariance function (2).
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where the interesting input region is in the vicinity of the centre [0, 0]. The training data for the
GP model has been composed of six local models on the equilibrium curve and eight samples
of system’s response to excitation signal in off-equilibrium regions. The comparison between
system’s (left) and model’s (right) response can be seen in Fig. 1. The error of the prediction
(left) and the predicted variance of the model (right) can be seen in Fig. 2. From figures it can
be concluded, that the prediction is good around equilibrium curve and slightly worse away
from it2. We can also observe the weaker confidence in prediction in regions represented with
less from the right figure in Fig. 2.
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Figure 1: The response of the system (left) and GP model (right)
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Figure 2: The error (left) and the variance of the prediction (right)

4 Conclusion

In this paper the dynamic system identification with GP model was briefly introduced. Some
of the potentially useful advantages of this method for identification over more traditional
approaches are: fewer number of parameters, the measure of confidence in prediction, easier

2The prediction of the GP model would improve if more training points were added.
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use and the possibility to include different kinds of prior knowledge into the model. Some
of different possibilities of prior knowledge incorporation were presented in the paper and the
incorporation of the linear local models was illustrated on simple example.

Future work should concentrate on finding the other and development of already known pos-
sibilities of prior knowledge incorporation and on finding suitable domain application for GP
model identification.
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