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AbstractIn this paper a principle of Gaussian process model based predictive control is de-scribed. Gaussian process models are recently utilised probabilistic non-parametricmodelling approach for black-box identi�cation of non-linear dynamic systems. Ito�ers more insight in variance of obtained model response, as well as fewer param-eters to determine than other models. The Gaussian processes can highlight areasof the input space where prediction quality is poor, due to the lack of data or itscomplexity, by indicating the higher variance of the predicted mean. This propertyis used in predictive control, where optimisation of control signal takes the varianceinformation into account. The predictive control principle is demonstrated on twosimulated examples of nonlinear systems.KeywordsModel based predictive control, Nonlinear control, Gaussian process models, Con-straint optimisation, pH process.1 IntroductionModel Predictive Control (MPC) is one of the most frequently met control algorithms inindustrial practice. These are computer control algorithms that use an explicit processmodel to predict the future plant response. According to this prediction in the chosenperiod, also known as prediction horizon, the MPC algorithm optimises manipulatedvariable to obtain optimal future plant response. The input of chosen length, also knownas control horizon, is sent into the plant and then the entire sequence is repeated againin the next time sample. The popularity of MPC is to a great extent owed to ability ofMPC algorithms to deal with constraints that are frequently met in control practice andare often not well addressed with other approaches. MPC algorithms can handle hardand rate constraints on inputs and states that are incorporated in the algorithms usually,but not always, via optimisation method.Linear model based predictive control approaches [12] have started appearing at thevery beginning of eighties and are tightly established in control practice (e.g. overview in[15]). Nonlinear model based predictive control (NMPC) approaches [1] start to appearabout ten years later and have also found their way into control practice (e.g. [16, 19]).There were a number of contributions in the �eld of nonlinear model based predictivecontrol dealing with issues like stability, eÆcient computation, optimisation, constraintsand others. Some recent work in this �eld can be found in [11].NMPC algorithms are based on various nonlinear models. Often are these modelsdeveloped as �rst principles models, but other approaches, like black-box identi�cation1



approaches are also popular. Various predictive control algorithms are based on neuralnetworks model e.g. [14], fuzzy models e.g. [2] or local model networks e.g. [6]. Thequality of control depends on quality of model and it is in common to all approaches totry to �nd a good process model, �rst principle or black-box, that will successfully predictprocess behaviour. New developments in NMPC approaches are coming from resolvingvarious issues: from faster optimisation methods to di�erent process model.The contribution of this paper is to describe a NMPC principle with a Gaussian pro-cess model. Gaussian process model is an example of a probabilistic non-parametric modelthat gives also the information about prediction uncertainties which are diÆcult to eval-uate appropriately in nonlinear parametric models. Gaussian processes approaches whichoriginated in statistics research are in many respects related to arti�cial neural networks,in terms of their application domain. Majority of work on Gaussian processes shown upto now considers modelling of static non-linearities. The use of Gaussian processes inmodelling dynamic systems is a recent development e.g. [3, 4, 9, 10] and some controlalgorithms based on such are described in [13, 5].The paper is organised as follows. Dynamic Gaussian process models are describedin the next section. Control algorithm principle is described in Section 3 and illustratedwith two examples in Section 4. Conclusions are stated at the end of paper.2 Dynamic Gaussian process modelsA Gaussian process is an example of the use of a exible probabilistic non-parametricmodel with uncertainty predictions. Its use and properties for modelling are given in [18].A Gaussian process is a collection of random variables which have a joint multivariateGaussian distribution: f(x1); : : : ; f(xn) � N (0;�), where �pq gives the covariance be-tween points xp and xq. Mean �(f(xp)), which can be removed (�(f(xp)) = 0), and covari-ance function �pq = Cov(xp; xq) determine a Gaussian process. Assuming a relationshipof the form y = f(x) between the inputs x and outputs y, we have Cov(yp; yq) = C(xp; xq),where C(:; :) is some function with the property that it generates a positive de�nite co-variance matrix. This means that the covariance between the variables that representthe outputs for cases number p and q is a function of the inputs corresponding to thesame cases p and q. In general, a stationary Gaussian process, which means that it de-pends only on the distance between points in the input space1), can be e�ectively usedfor identi�cation of static nonlinear regression model which is described below.Consider a set of N D-dimensional vectors containing noisy input dataX = [x1;x2; : : : ;xD] and a vector of output data y = [y(1); y(2); : : : ; y(N)]T representingthe static system. The aim is to construct the model, namely function f(�) depending onX and y, and than at some new input vector x� = [x1(N + 1); x2(N + 1); : : : ; xd(N + 1)]�nd the distribution of the corresponding output y(N + 1). The model is determined1Points close together are more correlated than points far apart { a smoothness assumption.2



according to f(:), X and y and not on parameter determination within �xed model struc-ture. That is why this is a probabilistic non-parametric approach. The probability ofhypothesis f(x�) according on data set X and y can be written asp(f(x�) j X;y) = p(y j f(x�;X))p(f(x�))P (y j X) (1)p(y j f(x�;X)) is the conditional likelihood of model and represents model output inthe form of mean and variance. p(f(x�)) represents prior knowledge contained in themodel. Based on the covariance function, the parameters - the so called hyperparameters- of which are determined from training set X;y, the a posteriori value y(N + 1) can bedetermined.An appropriate covariance function has to be chosen for model identi�cation. Anychoice of the covariance function, which will generate a non-negative de�nite covariancematrix for any set of input points, can be chosen. A common choice isC(xp; xq) = v1 exp "�12 DXd=1 wd(xpd � xqd)2# + v0 (2)where v0; v1; wd; d = 1; : : : ; D are hyperparameters of covariance functions and D is theinput dimension. Other forms of covariance functions suitable for di�erent applicationscan be found in [17], however it is necessary to point out that selection of covariancefunctions suitable for robust generalisation in typical dynamic systems applications isstill an area open for research. Given a set of training cases the hyperparameters ofthe covariance function � = [w1 : : : wD v0 v1]T should be learned (identi�ed). There is ahyperparameter correponding to each regressor `component' so that, after the learning, if ahyperparameter is zero or near zero it means that the corresponding regressor `component'has little impact and could be removed.Covariance functions hyperparameters are obtained from training set by maximisationof the likelihood p(f(x�) j X;y). Since the analytic solution is very diÆcult to obtainother approaches are in place. The description of one possible approach follows.Calculation of model output is straightforward for a given covariance function. It canbe seen from equation (1) that posteriori probability depends on hyperparameters throughlikelihood p(y j f(x�);X). Its logarithm can be derived analytically.L(���) = log(p(y j f(x�;X)) = �12 log(j K j)� 12yTK�1y � N2 log(2�) (3)where y is the N � 1 vector of training targets and K is the N � N training covariancematrix.The partial derivative of equation (3) for hyperparameters �i is@L(���)@�i = �12trace�K�1 @K@�i� + 12yTK�1 @K@�iK�1y (4)3



The approach where hyperparameters are obtained with minimisation of negative valueL is known as maximum likelihood method. Any optimisation method can be used forthe described minimisation. Nevertheless, it has to be kept in mind that the approach iscomputationally relatively demanding since inverse covariance matrix has to be calculatedin every iteration.MCMC (Markov Chain Monte Carlo) approaches to numerical integration [17] providean alternative to optimisation.The described approach can be easily utilised for regression calculation. Based ontraining setX a covariance matrixKN of orderN�N is determined. As already mentionedbefore the aim is to �nd the distribution of the corresponding output y(N + 1) at somenew input vector x� = [x1(N + 1); x2(N + 1); : : : ; xD(N + 1)]T . This means that for newinput vector x�, a new covariance matrix KN+1 or order (N + 1)� (N + 1) is calculatedin form KN+1 = 26666424 KN 35 24k(x�)35�k(x�)T � �k(x�)�
377775 (5)where k(x�) = [C(x(1);x�); : : : ; C(x(N);x�)]T is the N � 1 vector of covariances betweenthe test and training cases and k(x�) = C(x�;x�) is the variance of the new test case.A prediction at point y(N + 1) is also a Gaussian process. For a new test input x�,the predictive distribution of the corresponding output is ŷ(N+1)jx� � N (�(x�); �2(x�))with �(x�) = k(x�)T K�1 y (6)�2(x�) = k(x�) � k(x�)T K�1 k(x�) + v0 (7)

For k-step ahead prediction we have to take account of the uncertainty of futurepredictions which provide the 'inputs' for estimating further means and uncertainties. Wecan use a Gaussian approximation to the uncertainty of inputs. The predictive distributionof the corresponding output at the random input x� is N (m(x�); v(x�)) where m(x�) andv(x�) are approximations of �(x�) and �2(x�).m(x�) = Ex� [�(x�)]� k(�(x�)TK�1y (8)v(x�) = Ex� [�2(x�)] + varx�(�(x�))� �2(�(x�)) + trace��x� �12 @2�2(x�)@x�@x�T jx�=�(x�) +@�(x�)@x� jx�=�(x�) @�(x�)@x� jTx�=�(x�)��(9)For more detailed derivation see [3]. 4



Gaussian processes can, like neural networks, be used to model static nonlinearitiesand can therefore be used for modelling of dynamic systems if delayed input and outputsignals are fed back and used as regressors. In such cases an autoregressive model isconsidered, such that the current output depends on previous outputs, as well as onprevious control inputs.x(k) = [y(k � 1); y(k � 2); : : : ; y(k � L); u(k � 1); u(k � 2); : : : ; u(k � L)]Ty(k) = f(x(k)) + � (10)Where k denotes consecutive number of data sample. Let x denote the state vectorcomposed of the previous outputs y and inputs u up to a given lag L and � is white noise.We wish to make k-step ahead predictions. Currently, in the framework of Gaussianprocesses, this has been achieved by either training the model to learn how to make k-step ahead predictions, so called direct method, or by simulating the system which meansrepeated one-step ahead predictions up to k - so called iterative method. That is, at eachtime step, by feeding back the mean prediction also called estimate of the output and itsvariance. This corresponds toy(k) = f(ŷ(k � 1); ŷ(k � 2); : : : ; ŷ(k � L); u(k � 1); u(k � 2); : : : ; u(k � L)) (11)where ŷ denotes the estimate.The iterative approach is preferred to the direct method because it provides us withpredictions for any k-step ahead, unlike the direct method which is only valid for thek-step ahead points.Using the model (10) and assuming the data is known up to time step i the predictionof y at k + i is computed viax(k + i) � N 0B@264m(x(k + i� 1))...m(x(k + i� L)375 ;264 v(x(k + i� 1)) + v0 � � � cov(y(k + i� 1); u(k + 1� L))... ... ...cov(u(k + i� L); y(k + 1� 1)) � � � v(x(k + i� L)) + v0 3751CAy(k + i) � N (m(x(k + i)); v(x(k + i)) + v0) (12)where the point estimates m(x(k+ i� j)); j = 1; : : : ; L are computed using equation (8)and variances v(x(k+i�j)); j = 1; : : : ; L associated to each ŷ are computed using equation(9). It is worthwhile noting that derivatives of mean and variances can be calculated instraightforward manner. For more details see [3].As can be seen from the presented relations the obtained model does not describe onlythe dynamic characteristics of non-linear system, but at the same time provides also in-formation about the con�dence in these predictions. The Gaussian process can highlightsuch areas of the input space where prediction quality is poor, due to the lack of data orits complexity, by indicating the higher variance of the predicted mean.
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3 Controller synthesisPredictive control principle (Figure 1) can be sumarised as follows:� Prediction of system output signal y(k + j) is calculated for each discrete sample kfor a large horizon in future (j = N1; : : : ; N2). Predictions are denoted as ŷ(k+ jjk)and represent j-step ahead prediction, while N1 and N2 determine lower and upperbound of prediction horizon. Lower and upper bound of output signal predictionhorizon determine coincidence horizon, within which a match between output andreference signal is expected. Output signal prediction is calculated from processmodel. Predictions are dependent also on control scenario in the future u(k +jjk); j = 0; : : : ; Nu � 1, which is intended to be applied from a moment k onwards.� Reference trajectory is determined r(k + jjk); j = N1; : : : ; N2, which determinesreference process response from present value y(k) to the setpoint trajectory w(k).� Vector of future control signal (u(k + jjk); j = 0; : : : ; Nu � 1) is calculated by min-imisation of objective function in a way that predicted error between r(k+ jjk) andŷ(k+jjk; j = N1; : : : ; N2. Structuring of future control samples can be used in someapproaches.� Only �rst element u(kjk) of the optimal control signal vector u(k+jjk); j = 0; : : : ; Nu�1 is applied.In the next sample a new measured output sample is available and the entire describedprocedure is repeated. This principle is called receding horizon strategy.
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Figure 1: Predictive control principle6



Nonlinear model predictive control as it was applied with Gaussian process model canbe in general described with block scheme depicted in Figure 2.
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Figure 2: Block diagram of model predictive control systemA moving-horizon minimisation problem of the special form [12]minU(k) [r(k + P )� ŷ(k + P )]2 (13)subject to: var ŷ(k + P ) � kv (14)j U(k) j � kih (15)j _U(k) j � kir (16)j x(k) j � ksh (17)j _x(k) j � ksr (18)where U(k) = [u(k) : : : u(k + P )] is input signal, P is the coincidence point (the pointwhere a match between output and reference value it is expected) and inequalities from(14) to (18) represent constraint on output variance kv, input hard constraint kih, inputrate constraint kir, state hard constraint ksh and state rate constraint ksr respectively.The optimisation algorithm, which is constraint nonlinear programming, is solved ateach sample time over a prediction horizon of length P , for a series of moves which equalsto control horizon. In our case control horizon was chosen to be one and to demonstrateconstraint on variance the rest of constraints was not taken into the account. Nevertheless,all this modi�cations does not change the generality of solution, but they do a�ect thenumerical solution itself.The process model is a Gaussian process. Some issues of interest with the appliedNMPC are:EÆcient numerical solution Nonlinear programming optimisation algorithm is verydemanding for computation. Various approximations and other approaches exist to7



decrease computational load, mainly for special cases, like linear process models orspecial objective functions.The computational load necessary for optimisation can be decreased easily with theincorporation of prediction derivation (and variance) into optimisation algorithm.When using Gaussian process models the prediction and variance derivation can becalculated easily.Stability At present no stability conditions have been derived for Gaussian processes asa representative of probabilistic non-parametric models.Robustness This issue has a major impact on applicability of algorithm in practice. Thefact that the process model contains the information about the model con�denceenables controller to optimise the manipulative variable to "avoid" regions where thecon�dence in model is not high enough. This possibility itself makes the controllerrobust if applied properly.Alternative ways of how NMPC with Gaussian process models can be realised are asfollows.Di�erent objective function Used objective function (13) is just one of possible ones.It is well know that selection of objective function has a major impact on the amountof computation.Optimisation problem for ���U(k) instead of U(k) This is not just change of formal-ism, but also enables other forms of NPC. One possibility is a DMC controller withnonlinear model, e.g. [2] - a frequently used principle, that together with appro-priate objective function enables problem representation as a least squares problemthat can be solved in one iteration. This is, as in the case with other special casesimpli�cations, not a general case solution.Soft constraints Using constraint optimisation algorithms is very demanding for com-putation and soft constrains, namely weights on constrained variables in objectivefunction, can be used to decrease the amount of computation. More on this topiccan be found in [8, 20].Linear MPC It is worth to remark that even though this is a constrained nonlinearMPC problem it can be used in its specialised form as a robust linear MPC.
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4 Illustrative examples4.1 The �rst order non-linear process4.1.1 Process descriptionThe described approach is illustrated with control of system that is described with equa-tion _y = � tanh(y + u3) (19)with output signal y and input signal u. The output signal was disturbed with the whitenoise of variance 0.0025 and zero mean. Data sampling time, determined according tosystem dynamics, was selected to be 0.5 units.4.1.2 Model identi�cationInput signal was generated by a random number generator with normal distribution andrate of 3 units in the range between -1.3 and 1.3 The number of input signal samplesdetermines dimensions of covariance matrix. To avoid excessive computation time it issensible to choose number of samples to be no more than a couple of hundred samples.In our case 200 samples have been used for identi�cation.Input, output signal and these two signals delayed for one sample were chosen asregressors. The selected model can therefore be written in the formy(k + 1) = f(y(k); u(k)) (20)where function f(�) represents Gaussian process model as a two dimensional regressionmodel. Since the system in equation (19), as well as its discrete equivalent, have orderone it is reasonable to expect that the identi�ed model would also be of the system order,because the order of model spans from the order of identi�ed system itself. Some extraidenti�cation runs with model structure of higher order were also pursued and results con-�rmed that choice of the �rst order structure is the most optimal. The covariance function(2) was used for the model identi�cation and the maximum likelihood framework was usedto determine the hyperparameters. The optimization method used for identi�cation ofGaussian process model was in our case a conjugate gradient with line-searches [17] dueto its good convergence properties. The following set of hyperparameters was found:��� = [w1; w2; v0; v1] = [0:1312; 0:2948; 6:2618; 0:0045] (21)where hyperparameters w1 and w2 allow a weight for each input dimension.The process (19) was identi�ed in the region that can be �gured out from responseon Figure 3. Validation signal was also generated by random number generator with9
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4.2 pH process4.2.1 Process descriptionA simpli�ed schematic diagram of the pH neutralization process taken from [7] is given inFigure 8. The process consists of an acid stream (Q1), bu�er stream (Q2) and base stream
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Figure 8: The pH neutralization system scheme(Q3) that are mixed in a tank T1. Prior to mixing, the acid stream enters the tank T2which introduces additional ow dynamics. The acid and base ow rates are controlledwith ow control valves, while the bu�er ow rate is controlled manually with a rotameter.The e�uent pH (pH) is the measured variable. Since the pH probe is located downstreamfrom the tank T1, a time delay (Td) is introduced in the pH measurement. In this study,the pH is controlled by manipulating the base ow rate. A more detailed description ofthe process with mathematical model and necessary parameters is presented in [7].The dynamic model of the pH neutralization system shown in Fig. 8 is derived usingthe conservation equations and equilibrium relations. The model also includes valve andtransmitter dynamics as well as hydraulic relationships for the tank outlet ows. Mod-elling assumptions include perfect mixing, constant density, and complete solubility of theions involved. The simulation model of pH process, which was used for necessary datageneration contains therefore various non-linear elements as well as implicitly calculatedfunction which is value of highly non-linear titration curve.4.2.2 Model identi�cationBased on responses and iterative cut-and-try procedure a sampling time of 25 seconds wasselected. The sampling time was so large that the dead-time mentioned in the previoussection disappeared. 14



The chosen identi�cation signal of 400 samples was generated from a uniform randomdistribution and rate of 50 seconds.Obtained hyperparameters of the fourth order Gaussian process model were:��� = [w1; w2; w3; w4; w5; w6; w7; w8; v0; v1]= [0:6648; 0:1063; 0:0024; 0:0007; 0:0002; 0:0275; 0:0046; 0; 0:0045; 2:339] (22)where hyperparameters from w1 to w4 denote a weight for each output regressor, from w5to w8 denote a weight for each input regressor, v0 is estimated noise variance and v1 isthe estimate of the vertical variance.The region in which the model was obtained can be seen from Figure 9. A very good
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from the current output value. Results of unconstrained control are given in Figures 10and 11.
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the response can be optimised with constrained control. Results can be seen in Figures12 and 13.
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5 ConclusionsModel Predictive Control is industrially attractive and frequently applied because it han-dles hard constraints, usually on input and output signals. The principle of Model Predic-tive Control based on Gaussian process model was presented in the paper and illustratedwith two examples. In the presented examples constraint on model variances was included.This can be complimented also with other constraints when necessary.Use of Gaussian process models makes possible to include information about the trustinto model depending on the region. Incorporating this information enables a design ofrobust controller that will optimise action according to the validity of model.However, a distinction has to be made between information contained in Gaussianprocess about trust into model and model quality that depends on data used for identi�-cation.Nevertheless, it was shown that using Gaussian process models o�ers an attractivepossibility for control design that results in a controller with a higher level of robustnessdue to information contained in the model.The principle shown in the paper is quite general and several modi�cations that ac-celerate computation can be used and are planned to be derived in the future.AcknowledgementThis work was made possible by EC funded Multi-Agent Control Research Training Net-work HPRN-CT-1999-00107.References[1] Allg�ower F., Badgwell T.A., Qin S.J., Rawlings J.B., Wright S.J., Nonlinear predic-tive control and moving horizon estimation - an introductory overview, In: Frank,P.M (Edt.), Advances in control: highlights of ECC'99, Springer, 1999, 391-449.[2] Fisher M., Schmidt M., Kav�sek-Biasizzo K., Nonlinear predictive control based on theextraction of step response models from Takagi-Sugeno fuzzy systems, Proceedingsof ACC, Albuquerque, 1997.[3] Girard A., Rasmussen C.E., Murray-Smith R., Multi-step ahead prediction for nonlinear dynamic sytems - A Gaussian Process treatment with propagation of the un-certainty, NIPS 2002 conference, 2002.19
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