Bibliography
on Gaussian Process Models in Dynamic Systems Modelling
(1999-2019)
2019
Waqas Aftab, Roland Hostettler, Allan De Freitas, Mahnaz Arvaneh, Lyudmila
Mihaylova.
Spatio-temporal
Gaussian process models for extended and group object tracking with irregular
shapes.
IEEE Transactions on Vehicular Technology, Volume 68, Pages 2137–2151,
2019.
Ki Uhn Ahn, Sung Ho Park, Seungho Hwang, Sunkyu Choi, Cheol Soo Park.
Optimal
control strategies of eight parallel heat pumps using Gaussian process emulator.
Journal of Building Performance Simulation, Volume
12, Issue 5, Pages 650–662, 2019.
Olov Andersson, Per Sidén, Johan Dahlin, Patrick Doherty, Mattias Villani.
Real-Time Robotic Search
using Hierarchical Spatial Point Processes.
arXiv preprint arXiv:1903.10443, 2019.
Steven Atkinson, Nicholas Zabaras.
Structured
Bayesian Gaussian process latent variable model: Applications to data-driven
dimensionality reduction and high-dimensional inversion.
Journal of Computational Physics, , Volume 383, Pages 166-195, 2019.
César Lincoln C Mattos, Guilherme A Barreto.
A
stochastic variational framework for Recurrent Gaussian Processes models.
Neural Networks, Volume 112, Pages 54–72, 2019.
Thomas Beckers, Dana Kulić, Sandra Hirche.
Stable
Gaussian process based tracking control of Euler–Lagrange systems.
Automatica, Volume 103, Pages 390–397, 2019.
Matt Bender, Li Tian, Xiaozhou Fan, Andrew Kurdila, Rolf Müller.
Spatially
recursive estimation and Gaussian process dynamic models of bat flapping flight.
Nonlinear Dynamics, Volume 95, Pages 217–237, 2019.
Hirofumi Beppu, Ichiro Maruta, Kenji Fujitmoto.
A Study on
Solutions to Finite-Time Optimal Control Problems by Numerical Gaussian Processes.
In 2019 12th Asian Control Conference (ASCC), Pages 399–404, 2019.
Karl Berntorp.
Bayesian
Tire-Friction Learning by Gaussian-Process State-Space Models.
In 2019 18th European Control Conference (ECC), Pages 231–236, 2019.
Daniel Bergmann, Roman Geiselhart, Knut Graichen.
Modelling
and control of a heavy-duty Diesel engine gas path with Gaussian process regression.
In 2019 18th European Control Conference (ECC), Pages 1207–1213, 2019.
K Berntorp, K Hiroaki.
Bayesian
Learning of Tire Friction with Automotive-Grade Sensors by Gaussian-Process
State-Space Models.
IEEE 58th Conference on Decision and Control (CDC). IEEE, Pages 6681-6686, 2019.
Eric Bradford, Lars Imsland, Ehecatl Antonio del Rio-Chanona.
Nonlinear model predictive
control with explicit back-offs for Gaussian process state space models.
In 58th Conference on decision and control (CDC). IEEE, 2019.
Eric Bradford, Lars Imsland, Dongda Zhang, Ehecatl Antonio del Rio Chanona.
Stochastic data-driven model
predictive control using Gaussian processes.
arXiv preprint arXiv:1908.01786, 2019, also in Computers
& Chemical Engineering, 2020, Volume 139, 106844.
Alexandre Capone, Sandra Hirche.
Interval
Observers for a Class of Nonlinear Systems Using Gaussian Process Models.
In 2019 18th European Control Conference (ECC), Pages 1350–1355, 2019.
Ehecatl Antonio Del Rio-Chanona, Xiaoyan Cong, Eric Bradford, Dongda Zhang,
Keju Jing.
Review
of advanced physical and data-driven models for dynamic bioprocess simulation:
Case study of algae–bacteria consortium wastewater treatment.
Biotechnology and bioengineering, Volume 116, Pages 342–353, 2019.
Souvik Chakraborty, Rajib Chowdhury.
Graph-Theoretic-Approach-Assisted
Gaussian Process for Nonlinear Stochastic Dynamic Analysis under Generalized
Loading.
Journal of Engineering Mechanics, Volume 145, Pages 04019105, 2019.
Richard Cheng, Gábor Orosz, Richard M Murray, Joel W Burdick.
End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks.
Proceedings
of the AAAI Conference on Artificial Intelligence, Volume 33, Pages 3387-3395,
2019.
Maosi Chen, Zhibin Sun, John M Davis, Yan-An Liu, Chelsea A Corr, Wei Gao.
Improving
the mean and uncertainty of ultraviolet multi-filter rotating shadowband
radiometer in situ calibration factors: utilizing Gaussian process regression
with a new method to estimate dynamic input uncertainty.
Atmospheric Measurement Techniques, Volume 12, Pages 935–953, 2019.
Kuo Chen, Jingang Yi, Dezhen Song.
Gaussian
processes model-based control of underactuated balance robots.
In 2019 International Conference on Robotics and Automation (ICRA),
Pages 4458–4464, 2019.
Woojin Cho, Youngrae Kim, Jinkyoo Park.
Hierarchical
Anomaly Detection Using a Multioutput Gaussian Process.
IEEE Transactions on Automation Science and Engineering, 2019.
Sungjoon Choi, Kyungjae Lee, Songhwai Oh.
Robust
learning from demonstrations with mixed qualities using leveraged gaussian
processes.
IEEE Transactions on Robotics, Volume 35, Pages 564–576, 2019.
Kurt Cutajar, Mark Pullin, Andreas Damianou, Neil Lawrence, Javier González.
Deep Gaussian Processes for
Multi-fidelity Modeling.
arXiv preprint arXiv:1903.07320, 2019.
Atefeh Daemi, Hariprasad Kodamana, Biao Huang.
Gaussian
process modelling with Gaussian mixture likelihood.
Journal of Process Control, Volume 81, Pages 209–220, 2019.
Joe Deese, Chris Vermillion.
Recursive Gaussian
Process-based Adaptive Control: Theoretical Framework and Application to an
Airborne Wind Energy System.
In 2019 IEEE Conference on Control Technology and Applications (CCTA),
Pages 130–135, 2019.
Felix Ebert, Hans-Joachim Wuensche.
Dynamic
Object Tracking and 3D Surface Estimation using Gaussian Processes and Extended
Kalman Filter.
In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Pages
1122–1127, 2019.
Mahdy Eslamy, Khalil Alipour.
Synergy-Based
Gaussian Process Estimation of Ankle Angle and Torque: Conceptualization for
High Level Controlling of Active Robotic Foot Prostheses/Orthoses.
Journal of biomechanical engineering, Volume 141, Number 021002, 2019.
Jiameng Fan, Wenchao Li.
Safety-Guided Deep
Reinforcement Learning via Online Gaussian Process Estimation.
arXiv preprint arXiv:1903.02526, 2019.
R Fazai, M Mansouri, K Abodayeh, V Puig, M-I Noori Raouf, H Nounou, M Nounou.
Multiscale
Gaussian process regression-based generalized likelihood ratio test for fault
detection in water distribution networks.
Engineering Applications of Artificial Intelligence, Volume 85, Pages
474–491, 2019.
Radhia Fazai, Majdi Mansouri, Kamal Abodayeh, Vicenc Puig, Mohamed Selmi, Hazem
Nounou, Mohamed Nounou.
Multiscale
Gaussian Process Regression-Based GLRT for Water Quality Monitoring.
In 2019 4th Conference on Control and Fault Tolerant Systems (SysTol),
Pages 44–49, 2019.
Mona Buisson-Fenet, Friedrich Solowjow, Sebastian Trimpe.
Actively Learning Gaussian
Process Dynamics.
arXiv preprint arXiv:1911.09946, 2019.
Trygve O. Fossum, Glaucia M. Fragoso, Emlyn J. Davies, Jenny E. Ullgren, Renato
Mendes, Geir Johnsen, Ingrid Ellingsen, Jo Eidsvik, Martin Ludvigsen, Kanna
Rajan.
Toward
adaptive robotic sampling of phytoplankton in the coastal ocean.
Science Robotics, Volume 4, Issue 27 2019.
Yixuan Geng, Shaoping Wang, Jian Shi, Weijie Wang.
Performance
Degradation Analysis of Doppler Velocity Sensor Based on Inverse Gaussian
Process and Poisson Shock.
In International Conference of Celebrating Professor Jinhua Cao's 80th
Birthday, Pages 161–175, 2019.
Mamikon Gulian, Maziar Raissi, Paris Perdikaris, George Karniadakis.
Machine
Learning of Space-Fractional Differential Equations.
SIAM Journal on Scientific Computing, Volume 41, Issue 4, Pages A2485-A2509, 2019.
Youqi Guo, Saroj Biswas, Lingfeng Wang.
Bilinear
Control of DC-DC Boost Converter in the Presence of Gaussian Disturbance of
Load.
In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE),
Pages 2365–2370, 2019.
Wei Guo, Tianhong Pan, Zhengming Li, Shan Chen.
Model
Calibration Method for Soft Sensors Using Adaptive Gaussian Process Regression.
IEEE Access, Volume 7, Pages 168436–168443, 2019.
Tim-Lukas Habich, Daniel Kaczor, Svenja Tappe, Tobias Ortmaier.
Online
Learning of the Inverse Dynamics with Parallel Drifting Gaussian Processes: Implementation
of an Approach for Feedforward Control of a Parallel Kinematic Industrial Robot.
In 2019 IEEE International Conference on Mechatronics and Automation (ICMA),
Pages 962–969, 2019.
Masashi Hamaya, Takamitsu Matsubara, Tatsuya Teramae, Tomoyuki Noda, Jun
Morimoto.
Design
of physical user–robot interactions for model identification of soft actuators
on exoskeleton robots.
International Journal of Robotics Research, 2019.
Jan Hauser, Daniel Pachner, Vladimír Havlena.
Gaussian
Process Based Model-free Control with Q-Learning.
IFAC-PapersOnLine, Volume 52, Pages 236–243, 2019.
Lukas Hewing, Elena Arcari, Lukas P Fröhlich, Melanie N Zeilinger.
On Simulation and Trajectory
Prediction with Gaussian Process Dynamics.
arXiv preprint arXiv:1912.10900, 2019.
Lukas Hewing, Juraj Kabzan, Melanie N Zeilinger.
Cautious
model predictive control using Gaussian process regression.
IEEE Transactions on Control Systems Technology, 2019.
Bin Hu, Guoshao Su, Jianqing Jiang, Jianlong Sheng, Jing Li.
Uncertain
prediction for slope displacement time-series using Gaussian process machine
learning.
IEEE Access, Volume 7, Pages 27535–27546, 2019.
Alessandro Davide Ialongo, Mark Van Der Wilk, James Hensman, Carl Edward
Rasmussen.
Overcoming
Mean-Field Approximations in Recurrent Gaussian Process Models.
arXiv preprint arXiv:1906.05828, 2019.
Sofia I Inácio, Joaquim AR Azevedo.
Ambient
Temperature Estimation Using WSN Links and Gaussian Process Regression.
In International Work-Conference on Artificial Neural Networks, Pages
52–62, 2019.
Dohyun Jang, Jaehyun Yoo, Clark Youngdong Son, H Jin Kim, Karl H Johansson.
Networked
operation of a UAV using Gaussian process-based delay compensation and model
predictive control.
In 2019 International Conference on Robotics and Automation (ICRA),
Pages 9216–9222, 2019.
Juš Kocijan, Matija Perne, Primož Mlakar, Boštjan Grašič, Marija Zlata Božnar.
Hybrid
model of the near-ground temperature profile.
Stochastic Environmental Research and Risk Assessment, Volume 33,
Issue 11-12, Pages 2019–2032, 2019.
Nishanth Koganti, Tomohiro Shibata, Tomoya Tamei, Kazushi Ikeda.
Data-efficient
learning of robotic clothing assistance using Bayesian Gaussian process latent
variable model.
Advanced Robotics, Volume 33, Issue
15-16, Pages 800-814,
2019.
Alec Koppel.
Consistent
online gaussian process regression without the sample complexity bottleneck.
In 2019 American Control Conference (ACC), Pages 3512–3518, 2019.
Daniel R. Kowal, David S. Matteson, David Ruppert.
Functional
Autoregression for Sparsely Sampled Data.
Journal of Business
and Economic Statistics, Volume 37, Issue 1, Pages 97-109, 2019.
Ye Kuang, Tianshi Chen, Feng Yin, Renxin Zhong.
Recursive
Implementation of Gaussian Process Regression for Spatial-Temporal Data
Modeling.
In 2019 11th International Conference on Wireless Communications and Signal
Processing (WCSP), Pages 1–7, 2019.
Armin Küper, Steffen Waldherr.
Numerical Gaussian process
Kalman filtering.
arXiv preprint arXiv:1912.01234, 2019.
Benjamin D Lackey, Michael Pürrer, Andrea Taracchini, Sylvain Marsat.
Surrogate
model for an aligned-spin effective-one-body waveform model of binary neutron
star inspirals using Gaussian process regression.
Physical Review D, Volume 100, Number
024002, 2019.
Armin Lederer, Jonas Umlauft, Sandra Hirche.
Uniform Error Bounds for
Gaussian Process Regression with Application to Safe Control.
In: Advances in
Neural Information Processing Systems. Pages 657-667, 2019.
Junghoon Lee, Sehoon Oh.
Data-Based
Design of Inverse Dynamics Using Gaussian Process.
In 2019 IEEE International Conference on Mechatronics (ICM), Volume 1,
Pages 449–454, 2019.
Ling-Ling Li, Jin Sun, Ching-Hsin Wang, Ya-Tong Zhou, Kuo-Ping Lin.
Enhanced
Gaussian process mixture model for short-term electric load forecasting.
Information Sciences, Volume 477, Pages 386–398, 2019.
Ling-Ling Li, Xin-Bao Zhang, Ming-Lang Tseng, Ya-Tong Zhou.
Optimal
scale Gaussian process regression model in Insulated Gate Bipolar Transistor
remaining life prediction.
Applied Soft Computing, Volume 78, Pages 261–273, 2019.
Dalla Libera Alberto, Tosello Elisa, Pillonetto Gianluigi, Ghidoni Stefano,
Carli Ruggero.
Proprioceptive Robot
Collision Detection through Gaussian Process Regression.
In 2019 American
Control Conference (ACC), Pages 19-24,
2019.
Hongbin Liu, Chong Yang, Bengt Carlsson, S Joe Qin, ChangKyoo Yoo.
Dynamic
Nonlinear Partial Least Squares Modeling Using Gaussian Process Regression.
Industrial & Engineering Chemistry Research, Volume 58, Pages
16676–16686, 2019.
Jun Lu, Zhenfei Zhan, Daniel W Apley, Wei Chen.
Uncertainty
propagation of frequency response functions using a multi-output Gaussian
Process model.
Computers & Structures, Volume 217, Pages 1–17, 2019.
Xingliang Ma, Fuyou Xu, Bo Chen.
Interpolation
of wind pressures using Gaussian process regression.
Journal of Wind Engineering and Industrial Aerodynamics, Volume 188,
Pages 30–42, 2019.
Michael Maiworm, Daniel Limon, Rolf Findeisen.
Online Gaussian Process
learning-based Model Predictive Control with Stability Guarantees.
arXiv preprint arXiv:1911.03315, 2019.
Akitoshi Masuda, Yoshihiko Susuki, Manel Martínez-Ramón, Andrea Mammoli,
Atsushi Ishigame.
Application of Gaussian
Process Regression to Koopman Mode Decomposition for Noisy Dynamic Data.
arXiv preprint arXiv:1911.01143, 2019.
Janine Matschek, Tim Gonschorek, Magnus Hanses, Norbert Elkmann, Frank
Ortmeier, Rolf Findeisen.
Learning references with
Gaussian processes in model predictive control applied to robot assisted
surgery.
arXiv preprint arXiv:1911.10793, 2019.
Janine Matschek, Andreas Himmel, Kai Sundmacher, Rolf Findeisen.
Constrained Gaussian Process
Learning for Model Predictive Control.
arXiv preprint arXiv:1911.10809, 2019.
Jose Ramon Medina, Hendrik Börner, Satoshi Endo, Sandra Hirche.
Impedance-based
Gaussian processes for modeling human motor behavior in physical and non-physical
interaction.
IEEE Transactions on
Biomedical Engineering, Volume 66, Issue 9, 2499-2511, 2019.
Silvan Melchior, Felix Berkenkamp, Sebastian Curi, Andreas Krause.
Structured
Variational Inference in Unstable Gaussian Process State Space Models.
arXiv preprint arXiv:1907.07035, 2019.
Hossein Mohammadi, Peter Challenor, Marc Goodfellow.
Emulating
dynamic non-linear simulators using Gaussian processes.
Computational
Statistics and Data Analysis, Volume 139, Pages 178-196, 2019.
K. Moloi, A. A. Yusuff.
A
Support Vector Machine Based Fault Diagnostic Technique in Power Distribution
Networks.
In Proceedings - 2019 Southern African Universities Power Engineering
Conference/Robotics and Mechatronics/Pattern Recognition Association of South
Africa, SAUPEC/RobMech/PRASA 2019, Pages 229-234, 2019.
Rajdip Nayek, Souvik Chakraborty, Sriram Narasimhan.
A
Gaussian process latent force model for joint input-state estimation in linear
structural systems.
Mechanical Systems
and Signal Processing,
Volume 128, Pages 497-530, 2019.
Truong X Nghiem, Trong-Doan Nguyen, Viet-Anh Le.
Fast
Gaussian Process based Model Predictive Control with Uncertainty Propagation.
In 2019 57th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Pages 1052–1059, 2019.
Lukas Ortmann, Dawei Shi, Eyal Dassau, Francis J Doyle, Berno JE Misgeld,
Steffen Leonhardt.
Automated
Insulin Delivery for Type 1 Diabetes Mellitus Patients using Gaussian
Process-based Model Predictive Control.
In 2019 American Control Conference (ACC), Pages 4118–4123, 2019.
Ravi Kumar Pandit, David Infield.
Comparative
analysis of Gaussian Process power curve models based on different stationary
covariance functions for the purpose of improving model accuracy.
Renewable energy, Volume 140, Pages 190–202, 2019.
Ravi Kumar Pandit, David Infield, James Carroll.
Incorporating
air density into a Gaussian process wind turbine power curve model for
improving fitting accuracy.
Wind Energy, Volume 22, Pages 302–315, 2019.
Guofei Pang, Liu Yang,
George Em Karniadakis.
Neural-net-induced Gaussian process
regression for function approximation and PDE solution.
Journal of Computational Physics, Volume 384, Pages 270-288, 2019.
Parikshit Pareek, Hung D Nguyen.
Probabilistic robust
small-signal stability framework using gaussian process learning.
arXiv preprint arXiv:1910.01588, 2019.
Narendra Patwardhan, Zequn Wang.
Reinforcement Learning for
Robotics and Control with Active Uncertainty Reduction.
arXiv preprint arXiv:1905.06274, 2019.
Juraj Peršić, Luka Petrović, Ivan Marković, Ivan Petrović.
Spatio-Temporal Multisensor
Calibration Based on Gaussian Processes Moving Object Tracking.
arXiv preprint arXiv:1904.04187, 2019.
Kyriakos Polymenakos, Alessandro Abate, Stephen Roberts.
Safe Policy Search
Using Gaussian Process Models.
In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, Pages 1565–1573, 2019.
Kyriakos Polymenakos, Luca Laurenti, Andrea Patane, Jan-Peter Calliess, Luca
Cardelli, Marta Kwiatkowska, Alessandro Abate, Stephen Roberts.
Safety
Guarantees for Planning Based on Iterative Gaussian Processes.
arXiv preprint arXiv:1912.00071, 2019.
Iakov Polyak, Gareth W. Richings, Scott Habershon, Peter J. Knowles.
Direct quantum
dynamics using variational Gaussian wavepackets and Gaussian process regression.
Journal of Chemical
Physics, Volume 150, Issue 4, Number 041101 2019.
Yaqub Aris Prabowo, Bambang Riyanto Trilaksono.
Collision-Free
Coverage Control of Swarm Robotics Based on Gaussian Process Regression to
Estimate Sensory Function in non-Convex Environment.
International Journal on Electrical Engineering & Informatics, Volume
11, Issue 1, 2019.
Sebastian Riedel, Freek Stulp.
Comparing semi-parametric
model learning algorithms for dynamic model estimation in robotics.
arXiv preprint arXiv:1906.11909, 2019.
Michael Ringkowski, Oliver Sawodny.
Gaussian Process
Based Multi-Rate Observer for the Dynamic Positioning Error of a Measuring
Machine.
In 2019 18th European Control Conference (ECC), Pages 627–632, 2019.
Riccardo Sven Risuleo, Giulio Bottegal, Håkan Hjalmarsson.
Modeling
and identification of uncertain-input systems.
Automatica, Volume 105, Pages 130–141, 2019.
Riccardo Sven Risuleo, Fredrik Lindsten, Håkan Hjalmarsson.
Bayesian
nonparametric identification of Wiener systems.
Automatica, Volume 108, Pages 108480, 2019.
Diego Romeres, Devesh K Jha, Alberto DallaLibera, Bill Yerazunis, Daniel
Nikovski.
Semiparametrical
gaussian processes learning of forward dynamical models for navigating in a
circular maze.
In 2019 International Conference on Robotics and Automation (ICRA),
Pages 3195–3202, 2019.
Anne Romer, Sebastian Trimpe, Frank Allgöwer.
Data-driven
inference of passivity properties via Gaussian process optimization.
In 2019 18th European Control Conference (ECC), Pages 29–35, 2019.
Hikaru Sasaki, Takamitsu Matsubara.
Multimodal Policy
Search using Overlapping Mixtures of Sparse Gaussian Process Prior.
IEEE International Conference on Robotics and Automation, Pages 2433-2439, 2019.
Mahdi Sharifzadeh, Alexandra Sikinioti-Lock, Nilay Shah.
Machine-learning
methods for integrated renewable power generation: A comparative study of
artificial neural networks, support vector regression, and Gaussian Process
Regression.
Renewable and Sustainable Energy Reviews, Volume 108, Pages 513–538,
2019.
Manuel Schürch, Dario Azzimonti, Alessio Benavoli, Marco Zaffalon.
Recursive
Estimation for Sparse Gaussian Process Regression.
arXiv preprint arXiv:1905.11711, 2019.
Avishai Sintov, Andrew S. Morgan, Andrew Kimmel, Aaron M. Dollar, Kostas E.
Bekris, Abdeslam Boularias.
Learning a State
Transition Model of an Underactuated Adaptive Hand.
IEEE Robotics and
Automation Letters,
Volume 4, Issue 2, Pages 1287-1294, 2019.
Jeremy G Stoddard, Georgios Birpoutsoukis, Johan Schoukens, James S Welsh.
Gaussian
process regression for the estimation of generalized frequency response
functions.
Automatica, Volume 106, Pages 161–167, 2019.
Jo Takano, Toshiaki Omori.
Gaussian Process
Dynamical Autoencoder Model.
In Proceedings of the 2019 3rd International Conference on Intelligent
Systems, Metaheuristics & Swarm Intelligence, Pages 45–49, 2019.
Lukas Pöhler, Jonas Umlauft, Sandra Hirche.
Uncertainty-based
Human Motion Tracking with Stable Gaussian Process State Space Models.
IFAC-PapersOnLine, Volume 51, Pages 8–14, 2019.
Alberto Viseras, Dmitriy Shutin, Luis Merino.
Robotic Active
Information Gathering for Spatial Field Reconstruction with Rapidly-Exploring
Random Trees and Online Learning of Gaussian Processes.
Sensors, Volume 19, Pages 1016, 2019.
Wil OC Ward, Mauricio A Álvarez.
Variational
bridge constructs for approximate Gaussian process regression.
arXiv preprint arXiv:1901.01727, 2019.
William J Wilkinson, Paul E Chang, Michael Riis Andersen, Arno Solin.
Global Approximate
Inference via Local Linearisation for Temporal Gaussian Processes.
2019.
Daan Wout, Jan Scholten, Carlos Celemin, Jens Kober.
Learning
Gaussian Policies from Corrective Human Feedback.
arXiv preprint arXiv:1903.05216, 2019.
Fang Xie, Wenjie Hong, Wenming Wu, Kangkang Liang, Chenming Qiu.
Current
Distribution Method of Induction Motor for Electric Vehicle in Whole Speed
Range Based on Gaussian Process.
IEEE Access, Volume 7, Pages 165974–165984, 2019.
Yiwei Liao, Jiangqiong Xie, Zhiguo Wang, Xiaojing Shen.
Multisensor Estimation
Fusion with Gaussian Process for Nonlinear Dynamic Systems.
Entropy, Volume 21, Pages 1126, 2019.
Tailang Yan, Zhiliang Wu, Wenwen Wang, Lei Meng, Zhongxia Xiang.
A
Gaussian Process Regression Approach to Cooperative Sampling by Underwater
Gliders.
In IFToMM World Congress on Mechanism and Machine Science, Pages
2421–2428, 2019.
Ali Younes, Aleksandr I Panov.
Toward
Faster Reinforcement Learning for Robotics: Using Gaussian Processes.
In Artificial
Intelligence. Springer, Cham. Pages 160-174, 2019.
Yan Zeng, JianTao Yang, Cheng Peng, Yuehong Yin.
Evolving
Gaussian Process Autoregression based Learning of Human Motion Intent Using
Improved Energy Kernel Method of EMG.
IEEE Transactions on
Biomedical Engineering, Volume 66, Issue 9, Pages 2556-2565, 2019.
Yan Zeng, Jiantao Yang, Yuehong Yin.
Gaussian
Process-Integrated State Space Model for Continuous Joint Angle Prediction from
EMG and Interactive Force in a Human-Exoskeleton System.
Applied Sciences, Volume 9, Pages 1711, 2019.
Chao Zhai.
Dynamic Security Assessment
of Small-Signal Stability for Power Systems using Windowed Online Gaussian
Process.
arXiv preprint arXiv:1911.10459, 2019.
Fan Zhang, Antoine Cully, Yiannis Demiris.
Probabilistic
Real-Time User Posture Tracking for Personalized Robot-Assisted Dressing.
IEEE Transactions on
Robotics, Volume 35, Issue 4, Pages 873-888, 2019.
Jing Zhao, Jingjing Fei, Shiliang Sun.
A Variant of Gaussian Process
Dynamical Systems.
arXiv preprint arXiv:1906.03647, 2019.
Yuxin Zhao, Carsten Fritsche, Gustaf Hendeby, Feng Yin, Tianshi Chen, Fredrik
Gunnarsson.
Cramér–Rao Bounds for
Filtering Based on Gaussian Process State-Space Models.
IEEE Transactions on Signal Processing, Volume 67, Pages 5936–5951,
2019.
Baobing Zhang, Zhengwen Huang, Babak H Rahi, Qicong Wang, Maozhen Li.
Online
semi-supervised multi-person tracking with gaussian process regression.
In MATEC Web of
Conferences, Volume 277, Number 01003,
2019.
Zhendong Zhang, Lei Ye, Hui Qin, Yongqi Liu, Chao Wang, Xiang Yu, Xingli Yin,
Jie Li.
Wind
speed prediction method using Shared Weight Long Short-Term Memory Network and
Gaussian Process Regression.
Applied Energy, Volume 247, Pages 270–284, 2019.
Xueying Zheng, Xiaogang Deng.
State-of-Health
Prediction For Lithium-Ion Batteries With Multiple Gaussian Process Regression
Model.
IEEE Access, Volume 7, Pages 150383–150394, 2019.
2018
Atte Aalto, Lauri Viitasaari, Pauliina Ilmonen, Jorge Goncalves.
Continuous
time Gaussian process dynamical models in gene regulatory network inference.
arXiv preprint arXiv:1808.08161, 2018.
Tarmo Äijö, Christian L. Müller, Richard Bonneau.
Temporal
probabilistic modeling of bacterial compositions derived from 16S rRNA
sequencing.
Bioinformatics, Volume 34, Issue 3, Pages 372-380, 2018.
Syed Huzaif Ali, Mehrdad Heydarzadeh, Serkan Dusmez, Xiong Li, Anant S. Kamath,
Bilal Akin.
Lifetime Estimation of
Discrete IGBT Devices Based on Gaussian Process.
IEEE Transactions on
Industry Applications,
Volume 54, Issue 1, 395-403, 2018.
Volkan Aran, Mustafa Unel.
Gaussian Process
Regression Feedforward Controller for Diesel Engine Airpath.
International
Journal of Automotive Technology, Volume 19, Issue 4, Pages 635-642, 2018.
Luis Omar Avila, Mariano De Paula, Ernesto Carlos Martinez, Marcelo Luis
Errecalde.
Robust
insulin estimation under glycemic variability using Bayesian filtering and
Gaussian process models.
Biomedical Signal Processing and Control, Volume 42, Pages 63–72, 2018.
Philipp Batz, Andreas Ruttor, Manfred Opper.
Approximate
Bayes learning of stochastic differential equations.
Physical Review E, Volume 98, Issue 2, Number 022109, 2018.
Thomas Beckers, Sandra Hirche.
Gaussian
Process based Passivation of a Class of Nonlinear Systems with Unknown Dynamics.
In 2018 European Control Conference (ECC), Pages 1257–1262, 2018.
Thomas Beckers, Jonas Umlauft, Sandra Hirche.
Mean Square
Prediction Error of Misspecified Gaussian Process Models.
In 2018 IEEE Conference on Decision and Control (CDC), Pages 1162–1167,
2018.
Daniel Bergmann, Michael Buchholz, Jens Niemeyer, Jörg Remele, Knut Graichen.
Gaussian
Process Regression for Nonlinear Time-Varying System Identification.
In 2018 IEEE Conference on Decision and Control (CDC), Pages 3025–3031,
2018.
Johanna Bethge, Bruno Morabito, Janine Matschek, Rolf Findeisen.
Multi-mode
learning supported model predictive control with guarantees.
IFAC-PapersOnLine, Volume 51, Pages 517–522, 2018.
Mickael Binois, Robert B Gramacy, Mike Ludkovski.
Practical
heteroskedastic Gaussian process modeling for large simulation experiments.
Journal of Computational and Graphical Statistics, Pages 1–41, 2018.
Georgios Birpoutsoukis, Péter Zoltán Csurcsia, Johan Schoukens.
Efficient
multidimensional regularization for Volterra series estimation.
Mechanical Systems and Signal Processing, Volume 104, Pages 896–914,
2018.
L. Blanken, I. van den Meijdenberg, T. Oomen.
Kernel-based regression
of non-causal systems for inverse model feedforward estimation.
In 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC),
Volume , Pages 461–466, 2018.
Giulio Bottegal, Gianluigi Pillonetto.
The
generalized cross validation filter.
Automatica, Volume 90, Pages 130–137, 2018.
Alexis Boukouvalas, James Hensman, Magnus Rattray.
BGP: Identifying
gene-specific branching dynamics from single-cell data with a branching
Gaussian process.
Genome Biology, Volume 19, Issue 1, Number 65, 2018.
David M. Brandman, Tommy Hosman, Jad Saab, Michael C. Burkhart, Benjamin E.
Shanahan, John G. Ciancibello, Anish A. Sarma, Daniel J. Milstein, Carlos E.
Vargas-Irwin, Brian Franco, Jessica Kelemen, Christine Blabe, Brian A. Murphy,
Daniel R. Young, Francis R. Willett, Chethan Pandarinath, Sergey D. Stavisky,
Robert F. Kirsch, Benjamin L. Walter, A. Bolu Ajiboye, Sydney S. Cash, Emad N.
Eskandar, Jonathan P. Miller, Jennifer A. Sweet, Krishna V. Shenoy, Jaimie M.
Henderson, Beata Jarosiewicz, Matthew T. Harrison, John D. Simeral, Leigh R.
Hochberg.
Rapid calibration of an
intracortical brain-computer interface for people with tetraplegia.
Journal of Neural
Engineering, Volume
15, Issue 2, Number 026007, 2018.
Eric Bradford, Lars Imsland.
Stochastic
Nonlinear Model Predictive Control Using Gaussian Processes.
In 2018 European Control Conference (ECC), Pages 1027–1034, 2018.
Eric Bradford, Artur M. Schweidtmann, Dongda Zhang, Keju Jing, Ehecatl Antonio
del Rio-Chanona.
Dynamic
modeling and optimization of sustainable algal production with uncertainty
using multivariate Gaussian processes.
Computers and
Chemical Engineering,
Volume 118, Pages 143-158, 2018.
D. Büchler, R. Calandra, B. Schölkopf, J. Peters.
Control of
Musculoskeletal Systems Using Learned Dynamics Models.
IEEE Robotics and Automation Letters, Volume 3, Pages 3161–3168, 2018.
Tianshi Chen.
On
kernel design for regularized LTI system identification.
Automatica, Volume 90, Pages 109–122, 2018.
Changqing Cheng.
Multi-scale
Gaussian process experts for dynamic evolution prediction of complex systems.
Expert Systems with Applications, Volume 99, Pages 25–31, 2018.
Tianshi Chen, Gianluigi Pillonetto.
On
the stability of reproducing kernel Hilbert spaces of discrete-time impulse
responses.
Automatica, Volume 95, Pages 529–533, 2018.
Luo-jia Chi, Xin-xi Feng, Lu Miao.
Generalized
labeled multi-Bernoulli extended target tracking based on Gaussian process
regression.
In MATEC Web of
Conferences, Volume 176, Number 01017,
2018.
Kang-Ching Chu, George Bucsan, Masanori Ishigaki, Atsushi Iwai, Chungchih Chou,
Kazuhiro Saitou.
Plug-and-Play
Power Management Control of All-Electric Vehicles Using Multi-Agent System and
On-line Gaussian Learning.
In 2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), Pages 1599–1604, 2018.
Mohamed Abdelmonim Hassan Darwish, Pepijn Bastiaan Cox, Ioannis Proimadis,
Gianluigi Pillonetto, Roland Tóth.
Prediction-error
identification of LPV systems: A nonparametric Gaussian regression approach.
Automatica, Volume 97, Pages 92–103, 2018.
Mohamed Abdelmonim Hassan Darwish, Gianluigi Pillonetto, Roland Tóth.
The
quest for the right kernel in Bayesian impulse response identification: The use
of OBFs.
Automatica, Volume 87, Pages 318–329, 2018.
Andreas Doerr, Christian Daniel, Martin Schiegg, Duy Nguyen-Tuong, Stefan
Schaal, Marc Toussaint, Sebastian Trimpe.
Probabilistic
recurrent state-space models.
arXiv preprint arXiv:1801.10395, 2018.
Collin B. Erickson, Bruce E. Ankenman, Susan M. Sanchez.
Comparison of
Gaussian process modeling software.
European Journal of
Operational Research,
Volume 266, Issue 1, Pages 179-192 2018.
Niklas Everitt, Giulio Bottegal, Håkan Hjalmarsson.
An
empirical Bayes approach to identification of modules in dynamic networks.
Automatica, Volume 91, Pages 144–151, 2018.
Zicong Fan, Lili Meng, Tian Qi Chen, Jingchun Li, Ian M. Mitchell.
Learning
Motion Predictors for Smart Wheelchair Using Autoregressive Sparse Gaussian
Process.
In Proceedings -
IEEE International Conference on Robotics and Automation, Pages 713-718, 2018.
Tafarel de Avila Ferreira, Harsh A Shukla, Timm Faulwasser, Colin N Jones,
Dominique Bonvin.
Real-Time
optimization of Uncertain Process Systems via Modifier Adaptation and Gaussian
Processes.
In 2018 European Control Conference (ECC), Pages 465–470, 2018.
Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy
Gillula, Claire J Tomlin.
A general
safety framework for learning-based control in uncertain robotic systems.
IEEE Transactions on
Automatic Control, Volume 64, Issue 7, Pages 2737-2752, 2018.
Y. Fujimoto, I. Maruta, T. Sugie.
Input Design for
Kernel-Based System Identification From the Viewpoint of Frequency Response.
IEEE Transactions on Automatic Control, Volume 63, Pages 3075–3082,
2018.
Y. Fujimoto, T. Sugie.
Kernel-Based Impulse
Response Estimation With a Priori Knowledge on the DC Gain.
IEEE Control Systems Letters, Volume 2, Pages 713–718, 2018.
Himakar Ganti, Prashant Khare.
Prediction
of Liquid Jet Atomization Using Gaussian Process Based Machine Learning
Techniques.
In ICLASS. 14th Triennial International COnference on Liquid Atomization and
Spray Systems, 2018.
Daniel Garcia, Efren Gorrostieta, Emilio Vargas Soto, Cristian Rodriguez
Rivero, Guillermo Diaz Delgado.
Learning
from demonstration with Gaussian process approach for an omni-directional
mobile robot.
IEEE Latin America
Transactions, Volume 16, Issue 4, Pages 1250-1255, 2018.
Zhiqiang Ge.
Distributed
predictive modeling framework for prediction and diagnosis of key performance
index in plant-wide processes.
Journal of Process
Control, Volume 65, Pages 107-117, 2018.
Eric Bradford, Lars Imsland.
Stochastic
Nonlinear Model Predictive Control Using Gaussian Processes.
In 2018 European Control Conference (ECC), Pages 1027–1034, 2018.
Flávio B. Gonçalves, Dani Gamerman.
Exact
Bayesian inference in spatiotemporal Cox processes driven by multivariate
Gaussian processes.
Journal of the Royal
Statistical Society. Series B: Statistical Methodology, Volume 80, Issue 1, Pages 157-175, 2018.
Ruben Grandia, Diego Pardo, Jonas Buchli.
Contact Invariant Model
Learning for Legged Robot Locomotion.
IEEE Robotics and
Automation Letters,
Volume 3, Issue 3, Pages 2291-2298, 2018.
Karl B. Gregory, Soumendra N. Lahiri, Daniel J. Nordman.
A smooth block bootstrap for
quantile regression with time series.
Annals of Statistics, Volume 46, Issue 3, Pages 1138-1166, 2018.
Mengwu Guo, Jan S. Hesthaven.
Reduced order modeling
for nonlinear structural analysis using Gaussian process regression.
Computer Methods in
Applied Mechanics and Engineering, Volume 341, Pages 807-826, 2018.
Riddhi Swaroop Gupta, Michael J. Biercuk.
Machine Learning
for Predictive Estimation of Qubit Dynamics Subject to Dephasing.
Physical Review
Applied, Volume 9, Issue 6, Number 064042, 2018.
Jung-Su Ha, Hyeok-Joo Chae, Han-Lim Choi.
Approximate
Inference-Based Motion Planning by Learning and Exploiting Low-Dimensional
Latent Variable Models.
IEEE Robotics and
Automation Letters,
Volume 3, Issue 4, 3892-3899, 2018.
Miao Han, Lixian Fang, Xiaodong Zhao.
Qiantang river tidal
level predicting based on discrete wavelet transform and gaussian process
regression coupling model.
In Proceedings of the 2nd International Conference on Innovation in
Artificial Intelligence, Pages 175–180, 2018.
E Hart, WE Leithead, J Feuchtwang.
Wind
turbine C p, max and drivetrain-losses estimation using Gaussian process
machine learning.
In Journal of Physics: Conference Series, Volume 1037, Pages 032024,
2018.
Alberto Y. Hata, Fabio T. Ramos, Denis F. Wolf.
Monte
Carlo Localization on Gaussian Process Occupancy Maps for Urban Environments.
IEEE Transactions on
Intelligent Transportation Systems, Volume 19, Issue 9, Pages 2893-2902, 2018.
Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, Harri
Lähdesmäki.
Learning
unknown ODE models with Gaussian processes.
arXiv preprint arXiv:1803.04303, 2018.
Jürgen Herp, Mohammad H. Ramezani, Martin Bach-Andersen, Niels L. Pedersen,
Esmaeil S. Nadimi.
Bayesian state
prediction of wind turbine bearing failure.
Renewable Energy, Volume 116, Pages 164-172, 2018.
Lukas Hewing, Alexander Liniger, Melanie Nicole Zeilinger.
Cautious
NMPC with Gaussian Process Dynamics for Autonomous Miniature Race Cars.
In European Control
Conference (ECC 2018), Pages 1341-1348, 2018.
Victoria Hoolohan, Alison S. Tomlin, Timothy Cockerill.
Improved near
surface wind speed predictions using Gaussian process regression combined with
numerical weather predictions and observed meteorological data.
Renewable Energy, Volume 126, Pages 1043-1054, 2018.
Zhe Hu, Peigen Sun, Jia Pan.
Three-dimensional
deformable object manipulation using fast online gaussian process regression.
IEEE Robotics and Automation Letters, Volume 3, Pages 979–986, 2018.
Jian Huang, Yu Cao, Caihua Xiong, Hai-Tao Zhang.
An echo
state Gaussian process-based nonlinear model predictive control for pneumatic
muscle actuators.
IEEE Transactions on
Automation Science and Engineering, Volume 16, Issue 3, Pages 1071-1084, 2018.
Alessandro Davide Ialongo, Mark van der Wilk, Carl Edward Rasmussen.
Closed-form
inference and prediction in Gaussian process state-space models.
arXiv preprint arXiv:1812.03580, 2018.
Mahdi Imani, Ulisses M Braga-Neto.
Control of
gene regulatory networks with noisy measurements and uncertain inputs.
IEEE Transactions on Control of Network Systems, Volume 5, Pages
760–769, 2018.
Mahdi Imani, Seyede Fatemeh Ghoreishi, Ulisses M Braga-Neto.
Bayesian
control of large MDPs with unknown dynamics in data-poor environments.
In Advances in neural information processing systems, Pages 8146–8156,
2018.
William R Jacobs, Tara Baldacchino, Tony Dodd, Sean R Anderson.
Sparse
Bayesian nonlinear system identification using variational inference.
IEEE Transactions on Automatic Control, Volume 63, Pages 4172–4187,
2018.
Ryan Jackson, Michael Jump, Peter Green.
Towards
Gaussian Process Models of Complex Rotorcraft Dynamics.
2018.
Achin Jain, Truong X Nghiem, Manfred Morari, Rahul Mangharam.
Learning and control using
gaussian processes: towards bridging machine learning and controls for physical
systems.
In Proceedings of the 9th ACM/IEEE International Conference on
Cyber-Physical Systems, Pages 140–149, 2018.
C. Birk Jones, Manel Martinez-Ramon, Ryan Smith, Craig K. Carmignani, Olga
Lavrova, Charles Robinson, Joshua S. Stein.
Automatic
fault classification of photovoltaic strings based on an in situ IV
characterization system and a Gaussian process algorithm.
In 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017, 2018.
Sanket Kamthe, Marc Deisenroth.
Data-Efficient Reinforcement
Learning with Probabilistic Model Predictive Control.
In Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics, Volume 84, Pages 1701–1710, 2018.
Masoud Karbasi.
Forecasting of
Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process
Regression Model.
Water Resources
Management, Volume 32, Issue 3, Pages 1035-1052, 2018.
Torsten Koller, Felix Berkenkamp, Matteo Turchetta, Andreas Krause.
Learning-based
Model Predictive Control for Safe Exploration.
In 2018 IEEE
Conference on Decision and Control (CDC), Pages
6059–6066, 2018.
Dongdong Kong, Yongjie Chen, Ning Li.
Gaussian
process regression for tool wear prediction.
Mechanical Systems
and Signal Processing,
Volume 104, Pages 556-574, 2018.
Ayse Kucukyilmaz, Yiannis Demiris.
Learning Shared Control
by Demonstration for Personalized Wheelchair Assistance.
IEEE Transactions on
Haptics, Volume 11, Issue 3, Pages 431-442, 2018.
Danil Kuzin, Olga Isupova, Lyudmila Mihaylova.
Spatio-Temporal
Structured Sparse Regression With Hierarchical Gaussian Process Priors.
IEEE Transactions on Signal Processing, Volume 66, Pages 4598–4611,
2018.
Danil Kuzin, Le Yang, Olga Isupova, Lyudmila Mihaylova.
Ensemble Kalman
Filtering for Online Gaussian Process Regression and Learning.
In 2018 21st International Conference on Information Fusion, FUSION 2018,
2018.
Oussama Laib, Mohamed Tarek Khadir, Lyudmila Mihaylova.
A Gaussian
Process Regression for Natural Gas Consumption Prediction Based on Time Series
Data.
In 2018 21st International Conference on Information Fusion (FUSION),
Pages 55–61, 2018.
Max WY Lam, Xunying Liu, Helen ML Meng, Kelvin KF Tsoi.
Drawing-Based Automatic Dementia
Screening Using Gaussian Process Markov Chains.
In Proceedings of the 51st Hawaii International Conference on System
Sciences, 2018.
Muriel Lang, Martin Kleinsteuber, Sandra Hirche.
Gaussian process for
6-DoF rigid motions.
Autonomous Robots, Volume 42, Pages 1151–1167, 2018.
Jaehwa Lee, Pengfei Zhang, Leong Kit Gan, David A. Howey, Michael A. Osborne,
Alessandra Tosi, Stephen Duncan.
Optimal operation of
an energy management system using model predictive control and Gaussian process
time-series modeling.
IEEE Journal of
Emerging and Selected Topics in Power Electronics, Volume 6, Issue 4, Pages 1783-1795, 2018.
Miao Liu, Girish Chowdhary, Bruno Castra da Silva, Shih-Yuan Liu, Jonathan P
How.
Gaussian
Processes for Learning and Control: A Tutorial with Examples.
IEEE Control Systems Magazine, Volume 38, Pages 53–86, 2018.
Haitao Liu, Yew-Soon Ong, Xiaobo Shen, Jianfei Cai.
When
Gaussian process meets big data: A review of scalable GPs.
arXiv preprint arXiv:1807.01065, 2018.
Xiaoqi Liu, Parth Paritosh, Nimish M. Awalgaonkar, Ilias Bilionis, Panagiota
Karava.
Model
predictive control under forecast uncertainty for optimal operation of
buildings with integrated solar systems.
Solar Energy, Volume 171, Pages 953-970, 2018.
Yi Long, Zhi jiang Du, Wei dong Wang, Wei Dong.
Human motion intent
learning based motion assistance control for a wearable exoskeleton.
Robotics and
Computer-Integrated Manufacturing, Volume 49, Pages 317-327, 2018.
Wenhao Luo, Katia Sycara.
Adaptive
Sampling and Online Learning in Multi-Robot Sensor Coverage with Mixture of
Gaussian Processes.
In Proceedings -
IEEE International Conference on Robotics and Automation, Pages 6359-6364, 2018.
Linkai Luo, Yuan Yao, Furong Gao, Chunhui Zhao.
Mixed-effects
Gaussian process modeling approach with application in injection molding
processes.
Journal of Process Control, Volume 62, Pages 37–43, 2018.
Jianxin Ma, Peng Cui, Wenwu Zhu.
DepthLGP
: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks.
AAAI 2018, 2018.
Kai Chieh Ma, Lantao Liu, Hordur K. Heidarsson, Gaurav S. Sukhatme.
Data-driven
learning and planning for environmental sampling.
Journal of Field
Robotics, Volume 35, Issue 5, Pages 643-661, 2018.
Danielle C Maddix, Yuyang Wang, Alex Smola.
Deep factors
with gaussian processes for forecasting.
arXiv preprint arXiv:1812.00098, 2018.
Michael Maiworm, Daniel Limon, Jose Maria Manzano, Rolf Findeisen.
Stability
of gaussian process learning based output feedback model predictive control.
IFAC-PapersOnLine, Volume 51, Pages 455–461, 2018.
Ruben Martinez-Cantin.
Funneled
Bayesian optimization for design, tuning and control of autonomous systems.
IEEE transactions on
cybernetics, Volume 99, Pages 1–12, 2018.
Alonso Marco, Philipp Hennig, Stefan Schaal, Sebastian Trimpe.
On
the design of LQR kernels for efficient controller learning.
In 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017,
2018.
James L. McDonagh, Arnaldo F. Silva, Mark A. Vincent, Paul L.A. Popelier.
Machine
Learning of Dynamic Electron Correlation Energies from Topological Atoms.
Journal of Chemical
Theory and Computation, Volume 14, Issue 1, Pages 216-224, 2018.
D. W. van der Meer, J. Munkhammar, J. Widén.
Probabilistic
forecasting of solar power, electricity consumption and net load: Investigating
the effect of seasons, aggregation and penetration on prediction intervals.
Solar Energy, Volume 171, Pages 397-413
2018.
D. W. van der Meer, M. Shepero, A. Svensson, J. Widén, J. Munkhammar.
Probabilistic
forecasting of electricity consumption, photovoltaic power generation and net
demand of an individual building using Gaussian Processes.
Applied Energy, Volume 213, Pages 195–207, 2018.
R. Quintero Ḿinguez, I. Parra Alonso, D. Fernández-Llorca, M. Á. Sotelo.
Pedestrian Path, Pose,
and Intention Prediction Through Gaussian Process Dynamical Models and
Pedestrian Activity Recognition.
IEEE Transactions on
Intelligent Transportation Systems, Volume 20,
Issue 5, Pages 1803-1814, 2018.
Il Chul Moon, Kyungwoo Song, Sang Hyeon Kim, Han Lim Choi.
State
Prediction of High-speed Ballistic Vehicles with Gaussian Process.
International
Journal of Control, Automation and Systems, Volume 16, Issue 3, Pages 1282-1292, 2018.
Biqiang Mu, Tianshi Chen, Lennart Ljung.
On
asymptotic properties of hyperparameter estimators for kernel-based
regularization methods.
Automatica, Volume 94, Pages 381–395, 2018.
Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, Byron Boots.
Continuous-time
Gaussian process motion planning via probabilistic inference.
The International Journal of Robotics Research, Volume 37, Pages
1319–1340, 2018.
T. Münker, J. Belz, O. Nelles.
Improved Incorporation
of Prior Knowledge for Regularized FIR Model Identification.
In 2018 Annual American Control Conference (ACC), Volume , Pages
1090–1095, 2018.
Tobias Münker, Timm J. Peter, Oliver Nelles.
Gray-box identification
with regularized FIR models.
Automatisierungstechnik, Volume 66, Issue 9, Pages 704–713, 2018.
Mehdi Ghasemi Naraghi, Yousef Alipouri.
Minimum variance lower
bound estimation with Gaussian Process models.
Transactions of the Institute of Measurement and Control, Volume 40,
Pages 1799-1807, 2018.
Hannes Nickisch, Arno Solin, Alexander Grigorievskiy.
State space
Gaussian processes with non-Gaussian likelihood.
arXiv preprint arXiv:1802.04846, 2018.
Ravi Kumar Pandit, David Infield.
SCADA-based
wind turbine anomaly detection using Gaussian process models for wind turbine
condition monitoring purposes.
IET Renewable Power
Generation, Volume 12, Issue 11, Pages 1249-1255, 2018.
Christopher A. Penfold, Anastasiya Sybirna, John E.
Reid, Yun Huang, Lorenz Wernisch, Zoubin Ghahramani, Murray Grant, M. Azim
Surani.
Branch-recombinant
Gaussian processes for analysis of perturbations in biological time series.
Bioinformatics, Volume 34, Issue 17, Pages i1005-i1013, 2018.
Gianluigi Pillonetto.
System
identification using kernel-based regularization: New insights on stability and
consistency issues.
Automatica, Volume 93, Pages 321–332, 2018.
J. Prüher, O. Straka.
Gaussian Process
Quadrature Moment Transform.
IEEE Transactions on Automatic Control, Volume 63, Pages 2844–2854,
2018.
Maziar Raissi, George Em Karniadakis.
Hidden
physics models: Machine learning of nonlinear partial differential equations.
Journal of Computational Physics, Volume 357, Pages 125–141, 2018.
M. Raissi, P. Perdikaris, G. Karniadakis.
Numerical Gaussian Processes
for Time-Dependent and Nonlinear Partial Differential Equations.
SIAM Journal on Scientific Computing, Volume 40, Pages A172-A198, 2018.
Wilmer Ariza Ramirez, Zhi Quan Leong, Hung Nguyen, Shantha Gamini Jayasinghe.
Non-parametric
dynamic system identification of ships using multi-output Gaussian Processes.
Ocean Engineering, Volume 166, Pages 26–36, 2018.
Gonzalo Rios, Felipe Tobar.
Learning non-Gaussian
Time Series using the Box-Cox Gaussian Process.
In Proceedings of
the International Joint Conference on Neural Networks, Pages 1-8, 2018.
Abbas Rohani, Morteza Taki, Masoumeh Abdollahpour.
A novel soft
computing model (Gaussian process regression with K-fold cross validation) for
daily and monthly solar radiation forecasting (Part: I).
Renewable Energy, Volume 115, Pages 411-422, 2018.
Gozde O Sahinoglu, Milutin Pajovic, Zafer Sahinoglu, Yebin Wang, Philip V
Orlik, Toshihiro Wada.
Battery
State-of-Charge Estimation Based on Regular/Recurrent Gaussian Process
Regression.
IEEE Transactions on Industrial Electronics, Volume 65, Pages 4311–4321,
2018.
Simo Sarkka, Mauricio A Alvarez, Neil D Lawrence.
Gaussian
process latent force models for learning and stochastic control of physical
systems.
IEEE Transactions on Automatic Control, Volume 64, Issue 7, Pages 2953-2960,
2018.
Matteo Saveriano, Dongheui Lee.
Incremental
Skill Learning of Stable Dynamical Systems.
In IEEE/RSJ
International Conference on Intelligent Robots and System, Pages 6574-6581, 2018.
H. Sheng, J. Xiao, Y. Cheng, Q. Ni, S. Wang.
Short-Term Solar Power
Forecasting Based on Weighted Gaussian Process Regression.
IEEE Transactions on Industrial Electronics, Volume 65, Pages 300-308,
2018.
Paulo R Silveira, Danilo de F Naiff, Claudio MNA Pereira, Roberto Schirru.
Reconstruction
of radiation dose rate profiles by autonomous robot with active learning and
Gaussian process regression.
Annals of Nuclear Energy, Volume 112, Pages 876–886, 2018.
Andrew J Smith, Mohammed AlAbsi, Travis Fields.
Heteroscedastic
Gaussian Process-based System Identification and Predictive Control of a
Quadcopter.
In 2018 AIAA Atmospheric Flight Mechanics Conference, 2018.
Hossein Soleimani, James Hensman, Suchi Saria.
Scalable Joint Models
for Reliable Uncertainty-Aware Event Prediction.
IEEE Transactions on
Pattern Analysis and Machine Intelligence, Volume 40, Issue 8, Pages 1948-1963, 2018.
A. Solin, M. Kok, N. Wahlström, T. B. Schön, S. Särkkä.
Modeling and
Interpolation of the Ambient Magnetic Field by Gaussian Processes.
IEEE Transactions on Robotics, Volume 34, Pages 1112–1127, 2018.
Riddhi Swaroop Gupta, Michael J Biercuk.
Machine
learning for predictive estimation of qubit dynamics subject to dephasing.
Physical Review Applied, Volume 9, Pages 064042, 2018.
Yong Tao, Hui Liu, Xianling Deng, Youdong Chen, Hegen Xiong, Zengliang Fang,
Xianwu Xie, Xi Xu.
A
Robot Self-learning Grasping Control Method Based on Gaussian Process and
Bayesian Algorithm.
In Transactions on Intelligent Welding Manufacturing, Pages 79–98,
Singapore, 2018.
Kshitij Tiwari, Sungmoon Jeong, Nak Young Chong.
Point-wise
Fusion of Distributed Gaussian Process Experts (FuDGE) using a fully
decentralized robot team operating in communication-devoid environment.
IEEE Transactions on
Robotics, Volume 34, Issue 3, Pages 820-828, 2018.
Hande Topa, Antti Honkela.
GPrank: An R package
for detecting dynamic elements from genome-wide time series.
BMC Bioinformatics, Volume 19, Issue 1, Number 367, 2018.
Jonas Umlauft, Thomas Beckers, Sandra Hirche.
Scenario-based
Optimal Control for Gaussian Process State Space Models.
In 2018 European Control Conference (ECC), Pages 1386–1392, 2018.
J. Umlauft, L. Pöhler, S. Hirche.
An Uncertainty-Based
Control Lyapunov Approach for Control-Affine Systems Modeled by Gaussian
Process.
IEEE Control Systems Letters, Volume 2, Pages 483–488, 2018.
Dmytro Velychko, Benjamin Knopp, Dominik Endres.
Making the Coupled
Gaussian Process Dynamical Model Modular and Scalable with Variational
Approximations.
Entropy, Volume 20, Pages 724, 2018.
J. Vinogradska, B. Bischoff, J. Peters.
Approximate Value
Iteration Based on Numerical Quadrature.
IEEE Robotics and Automation Letters, Volume 3, Pages 1330–1337, 2018.
Pantelis R Vlachas, Wonmin Byeon, Zhong Y Wan, Themistoklis P Sapsis, Petros
Koumoutsakos.
Data-driven forecasting
of high-dimensional chaotic systems with long short-term memory networks.
Proc. R. Soc. A, Volume 474, Issue 2213, Number 20170844, 2018.
Julie M. Walker, Allison M. Okamura, Mykel J. Kochenderfer.
Gaussian
Process Dynamic Programming for Optimizing Ungrounded Haptic Guidance.
In IEEE
International Conference on Intelligent Robots and Systems, Pages 8758-8764, 2018.
J. Wan, S. McLoone.
Gaussian Process
Regression for Virtual Metrology-Enabled Run-to-Run Control in Semiconductor
Manufacturing.
IEEE Transactions on Semiconductor Manufacturing, Volume 31, Pages
12–21, 2018.
Hongchuan Wei, Pingping Zhu, Miao Liu, Jonathan P How, Silvia Ferrari.
Automatic
Pan–Tilt Camera Control for Learning Dirichlet Process Gaussian Process (DPGP)
Mixture Models of Multiple Moving Targets.
IEEE Transactions on Automatic Control, Volume 64, Pages 159–173, 2018.
Pengfei Wei, Fuchao Liu, Chenghu Tang.
Reliability
and reliability-based importance analysis of structural systems using multiple
response Gaussian process model.
Reliability
Engineering and System Safety, Volume 175, Pages 183-195, 2018.
Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico Gorbach, Andreas Krause,
Joachim M Buhmann.
Fast Gaussian
process based gradient matching for parameter identification in systems of
nonlinear ODEs.
arXiv preprint arXiv:1804.04378, 2018.
K. Worden, W. E. Becker, T. J. Rogers, E. J. Cross.
On
the confidence bounds of Gaussian process NARX models and their higher-order
frequency response functions.
Mechanical Systems and Signal Processing, Volume 104, Pages 188–223,
2018.
K. Worden, E. J. Cross.
On
switching response surface models, with applications to the structural health
monitoring of bridges.
Mechanical Systems
and Signal Processing,
Volume 98, Pages 139-156, 2018.
Dan Xu, Shao Bo Sui, Wei Zhang, Mengli Xing, Ying Chen, Rui Kang.
RUL prediction of
electronic controller based on multiscale characteristic analysis.
Mechanical Systems
and Signal Processing,
Volume 113, Pages 253-270, 2018.
Yandong Yang, Shufang Li, Wenqi Li, Meijun Qu.
Power load
probability density forecasting using Gaussian process quantile regression.
Applied Energy, Volume 213, Pages 499-509, 2018.
Duo Yang, Xu Zhang, Rui Pan, Yujie Wang, Zonghai Chen.
A
novel Gaussian process regression model for state-of-health estimation of
lithium-ion battery using charging curve.
Journal of Power Sources, Volume 384, Pages 387–395, 2018.
Wen Ye, Zhanchao Liu, Chi Li, Jiancheng Fang.
Enhanced
Kalman Filter using Noisy Input Gaussian Process Regression for Bridging GPS
Outages in a POS.
The Journal of Navigation, Volume 71, Pages 565–584, 2018.
Jianbo Yu.
State of health
prediction of lithium-ion batteries: Multiscale logic regression and Gaussian
process regression ensemble.
Reliability
Engineering and System Safety, Volume 174, Pages 82-95, 2018.
Ru Zhang, C Devon Lin, Pritam Ranjan.
Local
gaussian process model for large-scale dynamic computer experiments.
Journal of
Computational and Graphical Statistics, Volume 27, Issue 4, Pages 798-807,
2018.
Kaicheng Zhang, Akhil Guliani, Seda Ogrenci-Memik, Gokhan Memik, Kazutomo
Yoshii, Rajesh Sankaran, Pete Beckman.
Machine Learning-Based
Temperature Prediction for Runtime Thermal Management Across System Components.
IEEE Transactions on
Parallel and Distributed Systems, Volume 29, Issue 2, Pages 405-419, 2018.
Dongkun Zhang, Liu Yang, George Em Karniadakis.
Bi-directional
coupling between a PDE-domain and an adjacent Data-domain equipped with
multi-fidelity sensors.
Journal of Computational Physics, Volume 374, Pages 121–134, 2018.
Yizhou Zhou, Zhinong Wei, Guoqiang Sun, Kwok W. Cheung, Haixiang Zang, Sheng
Chen.
A
robust optimization approach for integrated community energy system in energy
and ancillary service markets.
Energy, Volume 148, Pages 1-15, 2018.
Li Zhu, Junghui Chen.
Prognostics
of PEM fuel cells based on Gaussian process state space models.
Energy, Volume 149, Pages 63-73, 2018.
Mattia Zorzi, Alessandro Chiuso.
The
harmonic analysis of kernel functions.
Automatica, Volume 94, Pages 125–137, 2018.
2017
LD Avendaño-Valencia, EN Chatzi, KY Koo, JMW Brownjohn.
Gaussian
Process Time-Series Models for Structures under Operational Variability. Front.
Frontiers in Built Environment, Volume 3, Pages 69, 2017.
Thomas Beckers, Jonas Umlauft, Sandra Hirche.
Stable
Model-based Control with Gaussian Process Regression for Robot Manipulators.
IFAC-PapersOnLine, Volume 50, Pages 3877–3884, 2017, 20th IFAC World
Congress.
T. Beckers, J. Umlauft, D. Kulic, S. Hirche.
Stable Gaussian process
based tracking control of Lagrangian systems.
In 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
Volume , Pages 5180–5185, 2017.
Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, Andreas Krause.
Safe
Model-based Reinforcement Learning with Stability Guarantees.
Advances in Neural Information Processing Systems 30, 2017.
Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, Michel Verhaegen.
System
identification through online sparse Gaussian process regression with input
noise.
IFAC Journal of Systems and Control, Volume 2, Pages 1–11, 2017.
Shamir Bin-Karim, Alireza Bafandeh, Ali Baheri, Christopher Vermillion.
Spatiotemporal
optimization through gaussian process-based model predictive control: A case
study in airborne wind energy.
IEEE Transactions on Control Systems Technology, Volume 27, Pages
798–805, 2017.
Georgios Birpoutsoukis, Anna Marconato, John Lataire, Johan Schoukens.
Regularized
nonparametric Volterra kernel estimation.
Automatica, Volume 82, Pages 324–327, 2017.
Giulio Bottegal, Håkan Hjalmarsson, Gianluigi Pillonetto.
A
new kernel-based approach to system identification with quantized output data.
Automatica, Volume 85, Pages 145–152, 2017.
Yu Cao, Jian Huang, Gangzheng Ding, Yongji Wang.
Design
of Nonlinear Predictive Control for Pneumatic Muscle Actuator Based on Echo
State Gaussian Process.
IFAC-PapersOnLine, Volume 50, Pages 1952–1957, 2017, 20th IFAC World
Congress.
Gang Cao, Edmund M-K Lai, Fakhrul Alam.
Gaussian process model predictive
control of unknown non-linear systems.
IET Control Theory & Applications, Volume 11, Pages 703–713, 2017.
Gang Cao, Edmund M.-K. Lai, Fakhrul Alam.
Gaussian Process Model
Predictive Control of an Unmanned Quadrotor.
Journal of Intelligent & Robotic Systems, Volume 88, Pages 147–162,
2017.
F. P. Carli, T. Chen, L. Ljung.
Maximum Entropy Kernels for System
Identification.
IEEE Transactions on Automatic Control, Volume 62, Pages 1471–1477,
2017.
Juan Pablo Carbajal, João Paulo Leitão, Carlo Albert, Jörg Rieckermann.
Appraisal
of data-driven and mechanistic emulators of nonlinear simulators: The case of
hydrodynamic urban drainage models.
Environmental Modelling & Software, Volume 92, Pages 17–27, 2017.
M. Chandorkar, E. Camporeale, S. Wing.
Probabilistic forecasting
of the disturbance storm time index: An autoregressive Gaussian process
approach.
Space Weather, 2017.
Lester Lik Teck Chan, Junghui Chen.
Probabilistic
uncertainty based simultaneous process design and control with iterative
expected improvement model.
Computers & Chemical Engineering, Volume 106, Pages 609–620, 2017.
A. H. Chang, C. M. Hubicki, J. J. Aguilar, D. I. Goldman, A. D. Ames, P. A.
Vela.
Learning to
jump in granular media: Unifying optimal control synthesis with Gaussian
process-based regression.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
Pages 2154–2160, 2017.
Mohamed A. H. Darwish, John Lataire, Roland Tóth.
Bayesian
Frequency Domain Identification of LTI Systems with OBFs Kernels.
IFAC-PapersOnLine, Volume 50, Pages 6238–6243, 2017, 20th IFAC World
Congress.
A. Doerr, D. Nguyen-Tuong, A. Marco, S. Schaal, S. Trimpe.
Model-based policy
search for automatic tuning of multivariate PID controllers.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
Volume , Pages 5295–5301, 2017.
Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, James Hensman.
Identification
of Gaussian Process State Space Models.
Advances in Neural Information Processing Systems 30, 2017.
Shimin Feng, Roderick Murray-Smith, Andrew Ramsay.
Position
stabilisation and lag reduction with Gaussian processes in sensor fusion system
for user performance improvement.
International Journal of Machine Learning and Cybernetics, Volume 8,
Pages 1167–1184, 2017.
A. Golabi, N. Meskin, R. Tóth, J. Mohammadpour.
A Bayesian Approach
for LPV Model Identification and Its Application to Complex Processes.
IEEE Transactions on Control Systems Technology, Volume 25, Pages
2160–2167, 2017.
R. C. Grande, T. J. Walsh, G. Chowdhary, S. Ferguson, J. P. How.
Online Regression for
Data With Changepoints Using Gaussian Processes and Reusable Models.
IEEE Transactions on Neural Networks and Learning Systems, Volume 28,
Pages 2115–2128, 2017.
J. Hidalgo-Carrió, D. Hennes, J. Schwendner, F. Kirchner.
Gaussian
process estimation of odometry errors for localization and mapping.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
Pages 5696–5701, 2017.
Xiaodan Hong, Biao Huang, Yongsheng Ding, Fan Guo, Lei Chen, Lihong Ren.
Multi-model
multivariate Gaussian process modelling with correlated noises.
Journal of Process Control, Volume 58, Pages 11–22, 2017.
Yuji Ito, Kenji Fujimoto, Yukihiro Tadokoro, Takayoshi Yoshimura.
On
Stabilizing Control of Gaussian Processes for Unknown Nonlinear Systems.
IFAC-PapersOnLine, Volume 50, Pages 15385–15390, 2017, 20th IFAC World
Congress.
Nam-Ho Kim, Dawn An, Joo-Ho Choi.
Prognostics
and Health Management of Engineering Systems.
Springer, 2017.
Taewan Kim, Wonchul Kim, Seungwon Choi, H. Jin Kim.
Path
Tracking for a Skid-steer Vehicle using Model Predictive Control with On-line
Sparse Gaussian Process.
IFAC-PapersOnLine, Volume 50, Pages 5755–5760, 2017, 20th IFAC World
Congress.
Taehwan Kim, Jeongho Park, Seongman Heo, Keehoon Sung, Jooyoung Park.
Characterizing Dynamic
Walking Patterns and Detecting Falls with Wearable Sensors Using Gaussian
Process Methods.
Sensors, Volume 17, 2017.
Dimitrios Korkinof, Yiannis Demiris.
Multi-task
and multi-kernel Gaussian process dynamical systems.
Pattern Recognition, Volume 66, Pages 190–201, 2017.
Andras Kupcsik, Marc Peter Deisenroth, Jan Peters, Ai Poh Loh, Prahlad
Vadakkepat, Gerhard Neumann.
Model-based
contextual policy search for data-efficient generalization of robot skills.
Artificial Intelligence, Volume 247, Pages 415–439, 2017.
T. V. Le, R. Oentaryo, S. Liu, H. C. Lau.
Local Gaussian Processes for
Efficient Fine-Grained Traffic Speed Prediction.
IEEE Transactions on Big Data, Volume 3, Pages 194–207, 2017.
Yiqi Liu, Yongping Pan, Daoping Huang, Qilin Wang.
Fault
prognosis of filamentous sludge bulking using an enhanced multi-output Gaussian
processes regression.
Control Engineering Practice, Volume 62, Pages 46–54, 2017.
César Lincoln C. Mattos, Zhenwen Dai, Andreas Damianou, Guilherme A. Barreto,
Neil D. Lawrence.
Deep
recurrent Gaussian processes for outlier-robust system identification.
Journal of Process Control, Volume 60, Pages 82–94, 2017, DYCOPS-CAB
2016.
Biqiang Mu, Tianshi Chen, Lennart Ljung.
Tuning
of Hyperparameters for FIR models – an Asymptotic Theory.
IFAC-PapersOnLine, Volume 50, Pages 2818–2823, 2017, 20th IFAC World
Congress.
Yuta Oka, Yutaka Nakamura, Hiroshi Ishiguro.
Sampling-Based Motion Planning
with a Prediction Model using Fast Gaussian Process Regression.
Electronics and Communications in Japan, Volume 100, Pages 24–34, 2017.
Lukas Ortmann, Dawei Shi, Eyal Dassau, Francis J. Doyle, Steffen Leonhardt,
Berno J.E. Misgeld.
Gaussian process-based
model predictive control of blood glucose for patients with type 1 diabetes
mellitus.
In 2017 Asian Control Conference, ASCC 2017, 2017.
Benjamin Paaßen, Christina Göpfert, Barbara Hammer.
Time Series Prediction
for Graphs in Kernel and Dissimilarity Spaces.
Neural Processing Letters, 2017.
Yunpeng Pan, Xinyan Yan, Evangelos A. Theodorou, Byron Boots.
Prediction under
Uncertainty in Sparse Spectrum Gaussian Processes with Applications to
Filtering and Control.
In Proceedings of the 34th International Conference on Machine Learning,
Volume 70, Pages 2760–2768, International Convention Centre, Sydney, Australia,
2017.
Giulia Prando, Alessandro Chiuso, Gianluigi Pillonetto.
Maximum Entropy vector kernels
for MIMO system identification.
Automatica, Volume 79, Pages 326–339, 2017.
J. Prüher, F. Tronarp, T. Karvonen, S. Särkkä, O. Straka.
Student-t process
quadratures for filtering of non-linear systems with heavy-tailed noise.
In 2017 20th International Conference on Information Fusion (Fusion),
Volume , Pages 1–8, 2017.
Maziar Raissi, Paris Perdikaris, George Em Karniadakis.
Machine
learning of linear differential equations using Gaussian processes.
Journal of Computational Physics, Volume 348, Pages 683–693, 2017.
Riccardo S. Risuleo, Giulio Bottegal, Håkan Hjalmarsson.
Variational
Bayes identification of acyclic dynamic networks.
IFAC-PapersOnLine, Volume 50, Pages 10556–10561, 2017, 20th IFAC World
Congress.
Hector Rodriguez-Deniz, Erik Jenelius, Mattias Villani.
Urban
network travel time prediction via online multi-output Gaussian process
regression.
In IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC,
2017.
Oscar Samuelsson, Anders Björk, Jesús Zambrano, Bengt Carlsson.
Gaussian
process regression for monitoring and fault detection of wastewater treatment
processes.
Water Science and Technology, Volume 75, Pages 2952–2963, 2017.
Rajiv Sambasivan, Sourish Das.
A statistical
machine learning approach to yield curve forecasting.
In ICCIDS 2017 - International Conference on Computational Intelligence in
Data Science, Proceedings, 2017.
Mark Schillinger, Benjamin Hartmann, Patric Skalecki, Mona Meister, Duy
Nguyen-Tuong, Oliver Nelles.
Safe
Active Learning and Safe Bayesian Optimization for Tuning a PI-Controller.
IFAC-PapersOnLine, Volume 50, Pages 5967–5972, 2017, 20th IFAC World
Congress.
K. Seo, M. Yamakita.
Nonlinear time-varying
system identification with recursive Gaussian process.
In 2017 American Control Conference (ACC), Volume , Pages 825–830, 2017.
J. G. Stoddard, J. S. Welsh, H. Hjalmarsson.
EM-Based
Hyperparameter Optimization for Regularized Volterra Kernel Estimation.
IEEE Control Systems Letters, Volume 1, Pages 388–393, 2017.
Andreas Svensson, Thomas B. Schön.
A flexible state–space model for
learning nonlinear dynamical systems.
Automatica, Volume 80, Pages 189–199, 2017.
Y. Takaki, K. Fujimoto.
On output feedback
controller design for Gaussian process state space models.
In 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
Volume , Pages 3652–3657, 2017.
Marc Toussaint.
A Tutorial on Newton
Methods for Constrained Trajectory Optimization and Relations to SLAM, Gaussian
Process Smoothing, Optimal Control, and Probabilistic Inference.
Pages 361–392, 2017.
J. Umlauft, T. Beckers, M. Kimmel, S. Hirche.
Feedback linearization
using Gaussian processes.
In 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
Volume , Pages 5249–5255, 2017.
J. Umlauft, Y. Fanger, S. Hirche.
Bayesian uncertainty
modeling for programming by demonstration.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
Volume , Pages 6428–6434, 2017.
Jonas Umlauft, Sandra Hirche.
Learning Stable
Stochastic Nonlinear Dynamical Systems.
In Proceedings of the 34th International Conference on Machine Learning,
Volume 70, Pages 3502–3510, International Convention Centre, Sydney, Australia,
2017.
J. Umlauft, A. Lederer, S. Hirche.
Learning stable
Gaussian process state space models.
In 2017 American Control Conference (ACC), Pages 1499–1504, 2017.
Julia Vinogradska, Bastian Bischoff, Duy Nguyen-Tuong, Jan Peters.
Stability of controllers for Gaussian process dynamics.
The Journal of Machine Learning Research, Volume 18, Pages 3483–3519,
2017.
Yali Wang, Brahim Chaib-draa.
An
online Bayesian filtering framework for Gaussian process regression:
Application to global surface temperature analysis.
Expert Systems with Applications, Volume 67, Pages 285–295, 2017.
Zhong Yi Wan, Themistoklis P. Sapsis.
Reduced-space Gaussian Process
Regression for data-driven probabilistic forecast of chaotic dynamical systems.
Physica D: Nonlinear Phenomena, Volume 345, Pages 40–55, 2017.
B. Wehbe, M. Hildebrandt, F. Kirchner.
Experimental
evaluation of various machine learning regression methods for model
identification of autonomous underwater vehicles.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
Volume , Pages 4885–4890, 2017.
K. Worden, T. Rogers, E. J. Cross.
Identification of
Nonlinear Wave Forces Using Gaussian Process NARX Models.
In Nonlinear Dynamics, Volume 1, Pages 203–221, Cham, 2017.
Keith Worden, Cecilia Surace, William Becker.
Uncertainty
Bounds on Higher-Order FRFs from Gaussian Process NARX Models.
Procedia Engineering, Volume 199, Pages 1994–2000, 2017, X International
Conference on Structural Dynamics, EURODYN 2017.
M. Xiloyannis, C. Gavriel, A. A. C. Thomik, A. A. Faisal.
Gaussian Process
Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control
With Natural Hand Kinematics.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Volume
25, Pages 1785–1801, 2017.
X. Yuan, Z. Ge, B. Huang, Z. Song.
A Probabilistic
Just-in-Time Learning Framework for Soft Sensor Development With Missing Data.
IEEE Transactions on Control Systems Technology, Volume 25, Pages
1124–1132, 2017.
Mahdi Zarghami, S. Hassan Hosseinnia, Mehrdad Babazadeh.
Optimal
Control of EGR System in Gasoline Engine Based on Gaussian Process.
IFAC-PapersOnLine, Volume 50, Pages 3750–3755, 2017, 20th IFAC World
Congress.
Yulai Zhang, Guiming Luo.
Recursive prediction
algorithm for non-stationary Gaussian Process.
Journal of Systems and Software, Volume 127, Pages 295–301, 2017.
Mattia Zorzi, Alessandro Chiuso.
Sparse plus low rank network
identification: A nonparametric approach.
Automatica, Volume 76, Pages 355–366, 2017.
2016
T. Beckers, S. Hirche.
Stability of
Gaussian Process State Space Models.
In Proceedings of the European Control Conference (ECC), 2016.
T. Beckers, S. Hirche.
Equilibrium
distributions and stability analysis of Gaussian Process State Space Models.
In 2016 IEEE 55th Conference on Decision and Control (CDC), Pages
6355–6361, 2016.
F. Berkenkamp, R. Moriconi, A. P. Schoellig, A. Krause.
Safe learning of regions of
attraction for uncertain, nonlinear systems with Gaussian processes.
In 2016 IEEE 55th Conference on Decision and Control (CDC), Pages
4661–4666, 2016.
Felix Berkenkamp, Angela P Schoellig, Andreas Krause.
Safe Controller Optimization for
Quadrotors with Gaussian Processes.
In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2016.
Giulio Bottegal, Aleksandr Y. Aravkin, Håkan Hjalmarsson, Gianluigi Pillonetto.
Robust
EM kernel-based methods for linear system identification.
Automatica, Volume 67, Pages 114–126, 2016.
G. Cao, E. M-K Lai, F. Alam.
Gaussian
Process based Model Predictive Control for Linear Time Varying systems.
In 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC),
Pages 251–256, 2016.
A. Carron, M. Todescato, R. Carli, L. Schenato, G. Pillonetto.
Machine learning
meets Kalman Filtering.
In 2016 IEEE 55th Conference on Decision and Control (CDC), Pages
4594–4599, 2016.
Tanmoy Chatterjee, Souvik Chakraborty, Rajib Chowdhury.
A
bi-level approximation tool for the computation of FRFs in stochastic dynamic
systems.
Mechanical Systems and Signal Processing, Volume 70-71, Pages 484 - 505,
2016.
Lester Lik Teck Chan, Tao Chen, Junghui Chen.
PID
based nonlinear processes control model uncertainty improvement by using
Gaussian process model.
Journal of Process Control, Volume 42, Pages 77–89, 2016.
Tianshi Chen, Tohid Ardeshiri, Francesca P Carli, Alessandro Chiuso, Lennart
Ljung, Gianluigi Pillonetto.
Maximum entropy properties of
discrete-time first-order stable spline kernel.
Automatica, Volume 66, Pages 34–38, 2016.
T. Chen, G. Pillonetto, A. Chiuso, L. Ljung.
Continuous-time DC
kernel — A stable generalized first order spline kernel.
In 2016 IEEE 55th Conference on Decision and Control (CDC), Pages
4647–4652, 2016.
A Chiuso.
Regularization and Bayesian
learning in dynamical systems: Past, present and future.
Annual Reviews in Control, Volume 41, Pages 24–38, 2016.
Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence.
Variational Inference
for Latent Variables and Uncertain Inputs in Gaussian Processes.
Journal of Machine Learning Research, Volume 17, Pages 1–62, 2016.
M. A. H. Darwish, Roland Tóth.
An on-line
compensation of input additive disturbances : an evolving Gaussian process
models approach.
25th European Research Network System Identification (ERNSI) Workshop,
2016, Research poster.
Y. Fanger, J. Umlauft, S. Hirche.
Gaussian processes for
dynamic movement primitives with application in knowledge-based cooperation.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Volume , Pages 3913–3919, 2016.
K. Fujimoto, Y. Takaki.
On system
identification for ARMAX models based on the variational Bayesian method.
In 2016 IEEE 55th Conference on Decision and Control (CDC), Pages
1217–1222, 2016.
PL Green.
Towards
the Diagnosis and Simulation of Discrepancies in Dynamical Models.
Model Validation and Uncertainty Quantification, Volume 3, 2016.
J. Han, X. P. Zhang, F. Wang.
Gaussian
Process Regression Stochastic Volatility Model for Financial Time Series.
IEEE Journal of Selected Topics in Signal Processing, Volume 10, Pages
1015–1028, 2016.
Toni Karvonen, Simo Särkkä.
Approximate
state-space Gaussian processes via spectral transformation.
In Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th
International Workshop on, Pages 1–6, 2016.
Edgar D. Klenske, Philipp Hennig.
Dual
Control for Approximate Bayesian Reinforcement Learning.
Journal of Machine Learning Research, Volume 17, Pages 1–30, 2016.
E.D. Klenske, M.N. Zeilinger, B. Scholkopf, P. Hennig.
Gaussian
Process-Based Predictive Control for Periodic Error Correction.
Control Systems Technology, IEEE Transactions on, Volume 24, Pages
110-121, 2016.
Juš Kocijan.
Modelling and
Control of Dynamic Systems Using Gaussian Process Models.
Springer International Publishing, 2016.
Juš Kocijan, Dejan Petelin.
Closed-Loop
Control with Evolving Gaussian Process Models.
Complex Systems, 2016.
John Lataire, Tianshi Chen.
Transfer
function and transient estimation by Gaussian process regression in the
frequency domain.
Automatica, Volume 72, Pages 217–229, 2016.
Yiqi Liu, Hongjun Xiao, Yongping Pan, Daoping Huang, Qilin Wang.
Development
of multiple-step soft-sensors using a Gaussian process model with application
for fault prognosis.
Chemometrics and Intelligent Laboratory Systems, Volume 157, Pages
85–95, 2016.
Anna Marconato, Maarten Schoukens, Johan Schoukens.
Filter-based regularisation for
impulse response modelling.
IET Control Theory & Applications, Volume 11, Pages 194–204, 2016.
César Lincoln C. Mattos, Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme
A Barreto, Neil D Lawrence.
Recurrent Gaussian Processes.
In International Conference on Learning Representations (ICLR), 2016.
César Lincoln C. Mattos, Andreas Damianou, Guilherme A Barreto, Neil Lawrence.
Latent
Autoregressive Gaussian Process Models for Robust System Identification.
In 11th IFAC Symposium on Dynamics and Control of Process System (DYCOPS),
2016.
J. R. Medina, S. Endo, S. Hirche.
Impedance-based
Gaussian Processes for predicting human behavior during physical interaction.
In 2016 IEEE International Conference on Robotics and Automation (ICRA),
Pages 3055–3061, 2016.
F. Meier, S. Schaal.
Drifting
Gaussian processes with varying neighborhood sizes for online model learning.
In 2016 IEEE International Conference on Robotics and Automation (ICRA),
Pages 264–269, 2016.
Rajesh Kumar Neerukatti, Masoud Yekani Fard, Aditi Chattopadhyay.
Gaussian
Process-Based Particle-Filtering Approach for Real-Time Damage Prediction with
Application.
Journal of Aerospace Engineering, Volume 30, Pages 04016080, 2016.
Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Yu Fan Chen, Nazim Kemal Ure,
Shih-Yuan Liu, Brett T Lopez, Rajeev Surati, Jonathan P How, John Vian.
Measurable Augmented
Reality for Prototyping Cyberphysical Systems: A Robotics Platform to Aid the
Hardware Prototyping and Performance Testing of Algorithms.
IEEE Control Systems, Volume 36, Pages 65–87, 2016.
P. Wen, J. Wang, J. Zhou, H. Wu, Q. Jin.
Gaussian
process based online dynamic modeling of neuromuscular blockade.
In Chinese Control and Decision Conference (CCDC), Pages 6982–6987,
2016.
Gianluigi Pillonetto.
A
new kernel-based approach to hybrid system identification.
Automatica, Volume 70, Pages 21–31, 2016.
Gianluigi Pillonetto, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao,
Lennart Ljung.
Regularized linear system
identification using atomic, nuclear and kernel-based norms: the role of the
stability constraint.
Automatica, Volume 69, Pages 137–149, 2016.
G. Prando, D. Romeres, A. Chiuso.
Online identification of
time-varying systems: A Bayesian approach.
In 2016 IEEE 55th Conference on Decision and Control (CDC), Pages
3775–3780, 2016.
G. Prando, D. Romeres, G. Pillonetto, A. Chiuso.
Classical vs. Bayesian methods
for linear system identification: Point estimators and confidence sets.
In 2016 European Control Conference (ECC), Pages 1365–1370, 2016.
Rishik Ranjan, Biao Huang, Alireza Fatehi.
Robust Gaussian
process modeling using EM algorithm.
Journal of Process Control, Volume 42, Pages 125–136, 2016.
R. S. Risuleo, G. Bottegal, H. Hjalmarsson.
Kernel-based system identification
from noisy and incomplete input-output data.
In 2016 IEEE 55th Conference on Decision and Control (CDC), Pages
2061–2066, 2016.
F. H. M. D. Rocha, V. Grassi, V. C. Guizilini, F. Ramos.
Model
Predictive Control of a Heavy-Duty Truck Based on Gaussian Process.
In 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics
Symposium (LARS/SBR), Pages 97–102, 2016.
D. Romeres, G. Prando, G. Pillonetto, A. Chiuso.
On-line Bayesian system
identification.
In 2016 European Control Conference (ECC), Pages 1359–1364, 2016.
D. Romeres, M. Zorzi, R. Camoriano, A. Chiuso.
Online semi-parametric learning
for inverse dynamics modeling.
In 2016 IEEE 55th Conference on Decision and Control (CDC), Pages
2945–2950, 2016.
Jens Schreiter, Duy Nguyen-Tuong, Marc Toussaint.
Efficient
sparsification for Gaussian process regression.
Neurocomputing, Volume 192, Pages 29–37, 2016.
Andreas Svensson, Arno Solin, Simo Särkkä, Thomas B Schön.
Computationally efficient
Bayesian learning of Gaussian process state space models.
In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics (AISTATS), Pages 213–221, 2016.
Julia Vinogradska, Bastian Bischoff, Duy Nguyen-Tuong, Henner Schmidt, Anne
Romer, Jan Peters.
Stability
of Controllers for Gaussian Process Forward Models.
In Proceedings of The 33rd International Conference on Machine Learning,
Pages 545–554, 2016.
Hongchuan Wei, Wenjie Lu, Pingping Zhu, Silvia Ferrari, Miao Liu, Robert H.
Klein, Shayegan Omidshafiei, Jonathan P. How.
Information
value in nonparametric Dirichlet-process Gaussian-process (DPGP) mixture models.
Automatica, Volume 74, Pages 360–368, 2016.
Weili Xiong, Wei Zhang, Baoguo Xu, Biao Huang.
JITL
based MWGPR soft sensor for multi-mode process with dual-updating strategy.
Computers & Chemical Engineering, Volume 90, Pages 260–267, 2016.
J. Yan, K. Li, E. W. Bai, J. Deng, A. M. Foley.
Hybrid
Probabilistic Wind Power Forecasting Using Temporally Local Gaussian Process.
IEEE Transactions on Sustainable Energy, Volume 7, Pages 87–95, 2016.
J. Zhao, S. Sun.
High-Order
Gaussian Process Dynamical Models for Traffic Flow Prediction.
IEEE Transactions on Intelligent Transportation Systems, Volume 17,
Pages 2014–2019, 2016.
Jing Zhao, Shiliang Sun.
Variational
Dependent Multi-output Gaussian Process Dynamical Systems.
Journal of Machine Learning Research, Volume 17, Pages 1–36, 2016.
Chi Zhang, Haikun Wei, Xin Zhao, Tianhong Liu, Kanjian Zhang.
A Gaussian
process regression based hybrid approach for short-term wind speed prediction.
Energy Conversion and Management, Volume 126, Pages 1084–1092, 2016.
2015
F. Abbasi, J. Mohammadpour, R. Tóth, N. Meskin.
A Bayesian approach for
model identification of LPV systems with uncertain scheduling variables.
In 2015 54th IEEE Conference on Decision and Control (CDC), Volume ,
Pages 789–794, 2015.
Ki-Uhn Ahn, Deuk-Woo Kim, Young-Jin Kim, Cheol-Soo Park, In-Han Kim.
Gaussian
Process Model for Control of an Existing Building.
Energy Procedia, Volume 78, Pages 2136 – 2141, 2015.
L.O. Avila, Ernesto C. Martinez.
A Grid-Based Tool
for Optimal Performance Monitoring of an Artificial Pancreas.
VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná,
Argentina 29, 30 & 31 October 2014, IFMBE Proceedings, 2015.
A.M. Axelrod, H.A. Kingravi, G.V. Chowdhary.
Gaussian process based
subsumption of a parasitic control component.
In American Control Conference (ACC), 2015, Pages 2888–2893, 2015.
F. Berkenkamp, A.P. Schoellig.
Safe
and robust learning control with Gaussian processes.
In Control Conference (ECC), 2015 European, Pages 2496-2501, 2015.
Hildo Bijl, Jan-Willem van Wingerden, Thomas B. Schoen, Michel Verhaegen.
Online
sparse Gaussian process regression using FITC and PITC approximations.
IFAC-PapersOnLine, Volume 48, Issue 28, Pages 703–708, 2015.
Silvia Bonettini, Alessandro Chiuso, Marco Prato.
A scaled gradient projection
method for Bayesian learning in dynamical systems.
SIAM Journal on Scientific Computing, Volume 37, Pages A1297–A1318,
2015.
Giulio Bottegal, Gianluigi Pillonetto, Håkan Hjalmarsson.
Bayesian kernel-based system
identification with quantized output data.
IFAC-PapersOnLine, Volume 48, Pages 455–460, 2015.
Giulio Bottegal, Riccardo S. Risuleo, Håkan Hjalmarsson.
Blind system identification using
kernel-based methods.
IFAC-PapersOnLine, Volume 48, Pages 466–471, 2015.
S.P. Chatzis, D. Kosmopoulos.
A
Latent Manifold Markovian Dynamics Gaussian Process.
Neural Networks and Learning Systems, IEEE Transactions on, Volume 26,
Pages 70–83, 2015.
Tianshi Chen, Lennart Ljung.
On
kernel structures for regularized system identification (II): a system theory
perspective.
IFAC-PapersOnLine, Volume 48, Pages 1041–1046, 2015, 17th IFAC Symposium
on System Identification SYSID 2015.
Tianshi Chen, Gianluigi Pillonetto, Alessandro Chiuso, Lennart Ljung.
Spectral analysis of
the DC kernel for regularized system identification.
In 2015 54th IEEE Conference on Decision and Control (CDC), Pages
4017–4022, 2015.
Xin Chen, Penghuan Xie, Yong He, Min Wu.
Coordinated
learning based on time-sharing tracking framework and Gaussian regression for
continuous multi-agent systems.
Engineering Applications of Artificial Intelligence, Volume 41, Pages
56–64, 2015.
G. Chowdhary, H.A. Kingravi, J.P. How, P.A. Vela.
Bayesian
Nonparametric Adaptive Control Using Gaussian Processes.
Neural Networks and Learning Systems, IEEE Transactions on, Volume 26,
Pages 537–550, 2015.
Andreas Damianou, Neil D. Lawrence.
Semi-described
and semi-supervised learning with Gaussian processes.
31st Conference on Uncertainty in Artificial Intelligence, 2015.
M. Darwish, P. Cox, G. Pillonetto, R. Tóth.
Bayesian identification
of LPV Box-Jenkins models.
In 2015 54th IEEE Conference on Decision and Control (CDC), Volume ,
Pages 66–71, 2015.
Mohamed Darwish, Gianluigi Pillonetto, Roland Toth.
Perspectives of
Orthonormal Basis Functions Based Kernels in Bayesian System Identification.
In 2015 54th IEEE Conference on Decision and Control (CDC), Pages
2713–2718, 2015.
M.P. Deisenroth, D. Fox, C.E. Rasmussen.
Gaussian
Processes for Data-Efficient Learning in Robotics and Control.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, Volume
37, Pages 408–423, 2015.
Pradipto Ghosh, Bruce A. Conway.
Spatial
statistical point prediction guidance for heating-rate-limited aeroassisted
orbital transfer.
Acta Astronautica, Volume 111, Pages 257 – 269, 2015.
Xinlu Guo, Kuniaki Uehara.
A Support
Set Selection Algorithm for Sparse Gaussian Process Regression.
In 2015 IIAI 4th International Congress on Advanced Applied Informatics,
Pages 568–573, 2015.
P. Guo, X. Wang.
Vibration
monitoring by Gaussian process regression for wind turbine towers.
Dongli Gongcheng Xuebao/Journal of Chinese Society of Power Engineering,
Volume 35, Pages 380–386, 2015.
Tomohiro Hachino, Hitoshi Takata, Seiji Fukushima, Yasutaka Igarashi.
Model
Predictive Control of Electric Power Systems Based on Gaussian Process
Predictors.
Journal of Automation and Control Engineering, Volume 3, Pages 418–424,
2015.
Hyuk Kang, F. C. Park.
Motion optimization
using Gaussian process dynamical models.
Multibody System Dynamics, Volume 34, Pages 307–325, 2015.
K. Kronander, M. Khansari, A. Billard.
Incremental
motion learning with locally modulated dynamical systems.
Robotics and Autonomous Systems, Volume 70, Pages 52 – 62, 2015.
Zitao Liu, Milos Hauskrecht.
Clinical
time series prediction: Toward a hierarchical dynamical system framework.
Artificial Intelligence in Medicine, Volume 65, Pages 5 - 18, 2015,
Artificial Intelligence in Medicine AIME 2013.
César Lincoln C. Mattos, José Daniel A. Santos, Guilherme A. Barreto.
An Empirical
Evaluation of Robust Gaussian Process Models for System Identification.
Pages 172–180, 2015.
B. Michini, T.J. Walsh, A.-A. Agha-Mohammadi, J.P. How.
Bayesian
Nonparametric Reward Learning From Demonstration.
Robotics, IEEE Transactions on, Volume 31, Pages 369–386, 2015.
J. Ngeo, T. Tamei, K. Ikeda, T. Shibata.
Modeling dynamic
high-DOF finger postures from surface EMG using nonlinear synergies in latent
space representation.
In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual
International Conference of the IEEE, Pages 2095-2098, 2015.
Yuya Okadome, Yutaka Nakamura, Hiroshi Ishiguro.
Sampling-based Motion
Planning with a Prediction Model using Fast Gaussian Process Regression.
IEEJ Transactions on Electronics, Information and Systems, Volume 135,
Pages 526–533, 2015, (in Japanese).
Chris J. Ostafew, Angela P. Schoellig, Timothy D. Barfoot.
Conservative
to confident: treating uncertainty robustly within learning-based control.
In Proc. of the IEEE International Conference on Robotics and Automation
(ICRA), Pages 421–427, 2015.
Y. Pan, E. A. Theodorou.
Data-driven
differential dynamic programming using Gaussian processes.
In 2015 American Control Conference (ACC), Pages 4467-4472, 2015.
Gianluigi Pillonetto.
Identification of
hybrid systems using stable spline kernels.
In 2015 IEEE 25th International Workshop on Machine Learning for Signal
Processing (MLSP), Pages 1–6, 2015.
Gianluigi Pillonetto, Alessandro Chiuso.
Tuning
complexity in regularized kernel-based regression and linear system
identification: The robustness of the marginal likelihood estimator.
Automatica, Volume 58, Pages 106 – 117, 2015.
I. Proimadis, H. J. Bijl, J. W. van Wingerden.
A
kernel based approach for LPV subspace identification.
IFAC-PapersOnLine, Volume 48, Pages 97–102, 2015.
Jakub Prüher, Ladislav Král.
Functional
Dual Adaptive Control with Recursive Gaussian Process Model.
In Journal of Physics: Conference Series, Volume 659, 2015.
R. Quintero, I. Parra, D.F. Llorca, M.A. Sotelo.
Pedestrian Intention and Pose
Prediction through Dynamical Models and Behaviour Classification.
In Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International
Conference on, Pages 83-88, 2015.
Riccardo S. Risuleo, Giulio Bottegal, Håkan Hjalmarsson.
A kernel-based approach to
Hammerstein system identication.
IFAC-PapersOnLine, Volume 48, Pages 1011–1016, 2015.
R. S. Risuleo, G. Bottegal, H. Hjalmarsson.
On the estimation of initial
conditions in kernel-based system identification.
In 2015 54th IEEE Conference on Decision and Control (CDC), Pages
1120–1125, 2015.
R. S. Risuleo, G. Bottegal, H. Hjalmarsson.
A new kernel-based approach to
overparameterized Hammerstein system identification.
In 2015 54th IEEE Conference on Decision and Control (CDC), Pages
115–120, 2015.
D. Romeres, G. Pillonetto, A. Chiuso.
Identification of stable models
via nonparametric prediction error methods.
In 2015 European Control Conference (ECC), Pages 2044–2049, 2015.
J. Schreiter, P. Englert, D. Nguyen-Tuong, M. Toussaint.
Sparse
Gaussian Process Regression for Compliant, Real-Time Robot Control.
In Proceedings of 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2015.
Ahmed Shokry, Francesca Audino, Patricia Vicente, Gerard Escudero, Montserrat
Perez Moya, Moises Graells, Antonio Espuña.
Modeling
and Simulation of Complex Nonlinear Dynamic Processes Using Data Based Models:
Application to Photo-Fenton Process.
12th International Symposium on Process Systems Engineering and 25th
European Symposium on Computer Aided Process Engineering, Computer Aided
Chemical Engineering, 2015.
H. Soh, Y. Demiris.
Spatio-Temporal
Learning With the Online Finite and Infinite Echo-State Gaussian Processes.
Neural Networks and Learning Systems, IEEE Transactions on, Volume 26,
Pages 522–536, 2015.
Martin Stepančič, Alexandra Grancharova, Juš Kocijan.
Adaptive
MPC based on probabilistic black-box input-output model.
Comptes Rendus de l Academie Bulgare des Sciences, Volume 68, Pages
767–774, 2015.
Pei Sun, Junghui Chen, Lei Xie.
Self-active
and recursively selective Gaussian process models for nonlinear distributed
parameter systems.
Chemical Engineering Science, Volume 123, Pages 125 – 136, 2015.
S. Urban, M. Ludersdorfer, P. van der Smagt.
Sensor
Calibration and Hysteresis Compensation With Heteroscedastic Gaussian Processes.
IEEE Sensors Journal, Volume 15, Pages 6498–6506, 2015.
Michail D. Vrettas, Manfred Opper, Dan Cornford.
Variational
mean-field algorithm for efficient inference in large systems of stochastic
differential equations.
Phys. Rev. E, Volume 91, Issue 1, Pages 012148, 2015.
Tianfang Xu, Albert J. Valocchi.
A
Bayesian approach to improved calibration and prediction of groundwater models
with structural error.
Water Resources Research, Volume 51, Pages 9290–9311, 2015.
Xiaoke Yang, J.M. Maciejowski.
Fault
tolerant control using Gaussian processes and model predictive control.
International Journal of Applied Mathematics and Computer Science,
Volume 25, Issue 1, Pages 133–148, 2015.
Xiaoke Yang, Jan Maciejowski.
Risk-Sensitive
Model Predictive Control with Gaussian Process Models.
IFAC-PapersOnLine, Volume 48, Pages 374–379, 2015, 17th IFAC Symposium
on System Identification SYSID 2015.
Fu Yongfeng, Xu Ouguan, Chen Weijie, Ji Haifeng.
Adaptive soft sensor
modeling method based on multi-model dynamic fusion and its industrial
application.
In Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE
International, Pages 1308-1313, 2015.
Le Zhou, Junghui Chen, Zhihuan Song.
Recursive
Gaussian Process Regression Model for Adaptive Quality Monitoring in Batch
Processes.
Mathematical Problems in Engineering, Volume 2015, Pages 761280, 2015.
M. Zorzi, A. Chiuso.
A Bayesian approach to sparse plus
low rank network identification.
In 2015 54th IEEE Conference on Decision and Control (CDC), Pages
7386-7391, 2015.
2014
Ali Abusnina, Daniel Kudenko, Rolf Roth.
Selection of
Covariance Functions in Gaussian Process-based Soft Sensors.
In Industrial Technology (ICIT), 2014 IEEE International Conference on,
2014.
Ali Abusnina, Daniel Kudenko, Rolf Roth.
Gaussian
Process-Based Inferential Control System.
International Joint Conference SOCO'14-CISIS'14-ICEUTE'14, Advances
in Intelligent Systems and Computing, 2014.
N. T. Alberto, M. Mistry, F. Stulp.
Computed torque
control with variable gains through Gaussian process regression.
In 2014 IEEE-RAS International Conference on Humanoid Robots, Pages
212–217, 2014.
Adriana Amicarelli, Olga Quintero, Fernando di Sciascio.
Behavior comparison for biomass
observers in batch processes.
Asia-Pacific Journal of Chemical Engineering, Volume 9, Pages 81–92,
2014.
Tim Barfoot, Chi Hay Tong andbuk Simo Särkkä.
Batch
Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process
Regression.
In Proceedings of Robotics: Science and Systems, Berkeley, USA, 2014.
Felix Berkenkamp, Angela P. Schoellig.
Learning-based
robust control: guaranteeing stability while improving performance.
In Proc. of the Machine Learning in Planning and Control of Robot Motion
Workshop at the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2014.
Hildo Bijl, Jan-Willem van Wingerden, Michel Verhaegen.
Applying
Gaussian Processes to Reinforcement Learning for Fixed-Structure Controller
Synthesis.
In World Congress, Volume 19, Pages 10391–10396, 2014.
Ilias Bilionis, Emil M Constantinescu, Mihai Anitescu.
Data-driven model for
solar irradiation based on satellite observations.
Solar Energy, Volume 110, Pages 22–38, 2014.
B. Bischoff, D. Nguyen-Tuong, H. van Hoof, A. McHutchon, C.E. Rasmussen, A.
Knoll, J. Peters, M.P. Deisenroth.
Policy
Search For Learning Robot Control Using Sparse Data.
In Proceedings of 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014.
B. Bocsi, L. Csato, J. Peters.
Indirect
Robot Model Learning for Tracking Control.
Advanced Robotics, Volume 28, Pages 1–11, 2014.
B. Bocsi, H. Jakab, L. Csato.
Simulation-Extrapolation
Gaussian Processes for Input Noise Modeling.
In Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2014
16th International Symposium on, Pages 189–195, 2014.
Carl Boettiger, Marc Mangel, Stephan Munch.
Avoiding
tipping points in fisheries management through Gaussian process dynamic
programming.
Proceedings of the Royal Society of London B: Biological Sciences,
Volume 282, Pages n/a, 2014.
J. Boedecker, J. T. Springenberg, J. Wülfing, M. Riedmiller.
Approximate
real-time optimal control based on sparse Gaussian process models.
In 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), Pages 1–8, 2014.
Luca Bortolussi, Guido Sanguinetti.
A
Statistical Approach for Computing Reachability of Non-linear and Stochastic
Dynamical Systems.
Quantitative Evaluation of Systems, Lecture Notes in Computer Science,
2014.
Giulio Bottegal, Aleksandr Y Aravkin, Håkan Hjalmarsson, Gianluigi Pillonetto.
Outlier robust system
identification: a Bayesian kernel-based approach.
IFAC Proceedings Volumes, Volume 47, Pages 1073–1078, 2014.
W. Bukhari, S.-M. Hong.
Real-time prediction
of respiratory motion using a cascade structure of an extended Kalman filter
and support vector regression.
Physics in Medicine and Biology, 2014.
M.C. Burkhart, Y. Heo, V.M. Zavala.
Measurement
and verification of building systems under uncertain data: A Gaussian process
modeling approach.
Energy and Buildings, Volume 75, Pages 189–198, 2014.
Gang Cao, E.M.-K. Lai, F. Alam.
Particle
swarm optimization for convolved Gaussian process models.
In Neural Networks (IJCNN), 2014 International Joint Conference on,
Pages 1573–1578, 2014.
Francesca P. Carli.
On the maximum entropy property
of the first-order stable spline kernel and its implications.
In Control Applications (CCA), 2014 IEEE Conference on, Pages 409–414,
2014.
Hongmei Chen, Xianghong Cheng, Haipeng Wang, Xu Han.
Dealing
with Observation Outages within Navigation Data using Gaussian Process
Regression.
Journal of Navigation, Volume 67, Issue 04, Pages 603–615, 2014.
A. Chiuso, T. Chen, L. Ljung, G. Pillonetto.
On the design of
multiple kernels for nonparametric linear system identification.
In 53rd IEEE Conference on Decision and Control, Pages 3346–3351, 2014.
Johan Dahlin, Fredrik Lindsten.
Particle filter-based Gaussian
process optimisation for parameter inference.
In Proceedings of the 19th IFAC World Congress, Pages 8675–8680, 2014.
M. P. Deisenroth, P. Englert, J. Peters, D. Fox.
Multi-Task Policy Search
for Robotics.
In IEEE International Conference on Robotics and Automation (ICRA),
2014.
Bing Dong, KheePoh Lam.
A real-time model
predictive control for building heating and cooling systems based on the
occupancy behavior pattern detection and local weather forecasting.
Building Simulation, Volume 7, Pages 89–106, 2014.
C. Earls, G. Hooker.
Bayesian
covariance estimation and inference in latent Gaussian process models.
Journal of Statistical Methodology, Volume 18, Pages 79–100, 2014.
Roger Frigola, Yutian Chen, Carl Rasmussen.
Variational
Gaussian Process State-Space Models.
Advances in Neural Information Processing Systems 27, 2014.
Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl E. Rasmussen.
Identification of Gaussian Process
State-Space Models with Particle Stochastic Approximation EM.
In Proceedings of the 19th World Congress of the International Federation of
Automatic Control (IFAC), Pages 4097–4102, 2014.
A. Golabi, N. Meskin, R. Tóth, J. Mohammadpour.
A Bayesian approach for
estimation of linear-regression LPV models.
In 53rd IEEE Conference on Decision and Control, Volume , Pages
2555–2560, 2014.
Adam Gonczarek, Jakub M. Tomczak.
Manifold
Regularized Particle Filter for Articulated Human Motion Tracking.
Advances in Systems Science, Advances in Intelligent Systems and
Computing, 2014.
Robert C. Grande, Girish Chowdhary, Jonathan P. How.
Experimental Validation of
Bayesian Nonparametric Adaptive Control Using Gaussian Processes.
J. Aerospace Inf. Sys., Volume 11, Pages 565–578, 2014.
Robert Grande, Thomas Walsh, Jonathan How.
Sample
Efficient Reinforcement Learning with Gaussian Processes.
In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), Pages 1332–1340, 2014.
T. Hachino, Y. Hashiguchi, H. Takata, S. Fukushima, Y. Igarashi.
Local Gaussian process models for identification of discrete-time
Hammerstein Systems.
ICIC Express Letters, Volume 8, Pages 173–179, 2014.
T. Hachino, K. Matsushita, H. Takata, S. Fukushima, Y. Igarashi.
Identification
of continuous-time nonlinear systems via local Gaussian process models.
IEEJ Transactions on Electronics, Information and Systems, Volume 134,
Pages 1708–1715, 2014.
Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji
Fukushima, Yasutaka Igarashi.
Gaussian Process Model
Identification Using Artificial Bee Colony Algorithm and Its Application to
Modeling of Power Systems.
International Journal of Electrical, Computer, Electronics and Communication
Engineering, Volume 8, Pages 437 – 442, 2014.
Nooshin Haji-Ghassemi, Marc Deisenroth.
Analytic
Long-Term Forecasting with Periodic Gaussian Processes.
Journal of Machine Learning Research, Volume 33, Pages 303–311, 2014.
Ming Hu, Zonghai Sun.
Multimodel
Nonlinear Predictive Control with Gaussian Process Model.
Unifying Electrical Engineering and Electronics Engineering, Lecture
Notes in Electrical Engineering, 2014.
Marco F. Huber.
Recursive
Gaussian process: On-line regression and learning.
Pattern Recognition Letters, Volume 45, Pages 85–91, 2014.
He-ming Jia, Wen-long Song, Hong-wei Mu, Yan-ting Che.
Research on
Initial Alignment Technology Based on GP-SRCDKF.
Computer Engineering, Volume 40, Pages 195–198, 2014.
Sanket Kamthe, Jan Peters, Marc P. Deisenroth.
Multi-Modal
Filtering for Non-linear Estimation.
In International Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2014), 2014.
Juš Kocijan, Alexandra Grancharova.
Application of
Gaussian Processes to the Modelling and Control in Process Engineering.
Innovations in Intelligent Machines-5, Studies in Computational
Intelligence, 2014.
L. Král, J. Pruher, M. Šimandl.
Gaussian process based
dual adaptive control of nonlinear stochastic systems.
In Control and Automation (MED), 2014 22nd Mediterranean Conference of,
Pages 1074–1079, 2014.
Ivan Madjarov, Juš Kocijan, Alexandra Grancharova, Bogdan Shishedjiev.
Towards
a Service-Based Framework for Environmental Data Processing.
International Journal of Advanced Computer Science and Applications(IJACSA),
Volume 5, Issue 4, 2014.
J. Mahler, S. Krishnan, M. Laskey, S. Sen, A. Murali, B. Kehoe, S. Patil,
Jiannan Wang, M. Franklin, P. Abbeel, K. Goldberg.
Learning accurate kinematic
control of cable-driven surgical robots using data cleaning and Gaussian
Process Regression.
In Automation Science and Engineering (CASE), 2014 IEEE International
Conference on, Pages 532–539, 2014.
L. Muñoz-González, M. Lázaro-Gredilla, Aníbal R. Figueiras-Vidal.
Laplace
approximation with Gaussian Processes for volatility forecasting.
In Cognitive Information Processing (CIP), 2014 4th International Workshop
on, Pages 1–6, 2014.
Gerhard Neumann, Christian Daniel, Alexandros Paraschos, Andras Kupcsik, Jan
Peters.
Learning
Modular Policies for Robotics.
Frontiers in Computational Neuroscience, Volume 8, Pages 1–13, 2014.
P. Ngo, J. Das, J. Ogle, J. Thomas, W. Anderson, R.N. Smith.
Predicting the speed
of a Wave Glider autonomous surface vehicle from wave model data.
In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, Pages 2250–2256, 2014.
Wangdong Ni, Lars Nørgaard, Morten Mørup.
Non-linear
calibration models for near infrared spectroscopy.
Analytica Chimica Acta, Volume 813, Pages 1–14, 2014.
C.J. Ostafew, A.P. Schoellig, T.D. Barfoot.
Learning-based
nonlinear model predictive control to improve vision-based mobile robot
path-tracking in challenging outdoor environments.
In Robotics and Automation (ICRA), 2014 IEEE International Conference on,
Pages 4029–4036, 2014.
Dejan Petelin, Jus Kocijan.
Evolving
Gaussian process models for predicting chaotic time-series.
In Evolving and Adaptive Intelligent Systems (EAIS), 2014 IEEE Conference on,
Pages 1–8, 2014.
Gianluigi Pillonetto, Francesco Dinuzzo, Tianshi Chen, Giuseppe De Nicolao,
Lennart Ljung.
Kernel
methods in system identification, machine learning and function estimation: A
survey.
Automatica, Volume 50, Pages 657 – 682, 2014.
G. Prando, A. Chiuso, G. Pillonetto.
Bayesian and regularization
approaches to multivariable linear system identification: The role of rank
penalties.
In 53rd IEEE Conference on Decision and Control, Pages 1482–1487, 2014.
Christian Preusche, Christoph Anger, Uwe Klingauf.
Evaluation
of the Training Process of three different Prognostic Approaches based on the
Gaussian Process.
In Proceedings of the European conference of the prognostics and health
management society, Pages 202–213, 2014.
Jakub Prüher, Miroslav Šimandl.
Gaussian
process based recursive system identification.
Journal of Physics: Conference Series, Volume 570, Pages 012002, 2014.
Steven Reece, Siddhartha Ghosh, Alex Rogers, Stephen Roberts, Nicholas R.
Jennings.
Efficient State-space Inference
of Periodic Latent Force Models.
Journal of Machine Learning Research, Volume 15, Pages 2337–2397, 2014.
M. Rupp, M. R. Bauer, R. Wilcken, A. Lange, M. Reutlinger, F. M. Boeckler, G.
Schneider.
Machine
Learning Estimates of Natural Product Conformational Energies.
PLOS Computational Biology, Volume 10, 2014.
Behrooz Safarinejadian, Elham Kowsari.
Fault detection in
non-linear systems based on GP-EKF and GP-UKF algorithms.
Systems Science & Control Engineering, Volume 2, Pages 610–620,
2014.
Ahmed Shokry, Antonio Espuña.
Sequential
Dynamic Optimization of Complex Nonlinear Processes based on Kriging Surrogate
Models.
Procedia Technology, Volume 15, Pages 376 - 387, 2014, 2nd International
Conference on System-Integrated Intelligence: Challenges for Product and
Production Engineering.
Arno Solin, Simo Särkkä.
Explicit link
between periodic covariance functions and state space models.
Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, Volume 33, Pages 904–912, 2014.
Martin Stepančič, Juš Kocijan.
Vodenje nestabilnega hidravličnega sistema z modelom na podlagi Gaussovih
procesov.
Industrijski forum IRT, 2014, (in Slovene).
Martin Stepančič, Juš Kocijan.
Prediktivno
vodenje nestabilnega sistema s sprotno identifikacijo verjetnostnega modela.
Ventil, Volume 20, Issue 5, Pages 374–380, 2014, (in Slovene).
Zonghai Sun.
Gaussian Process
adaptive control of nonlinear system base on online algorithm.
In Control Conference (CCC), 2014 33rd Chinese, Pages 8791-8794, 2014.
A. Y. Sun, D. Wang, X. Xu.
Monthly
streamflow forecasting using Gaussian Process Regression.
Journal of Hydrology, Volume 511, Pages 72–81, 2014.
J.T. Thorson, K. Ono, S.B. Munch.
A Bayesian
approach to identifying and compensating for model misspecification in
population models.
Ecology, Volume 95, Pages 329–341, 2014.
Nils Tietze, Urich Konigorski, Duy Nguyen-Tuong.
Local Gaussian
process regression for model-based calibration of engine control units.
5th Simulation and Testing for Automotive Electronics, 2014.
Kenji Urai, Yuya Okadome, Yoshihiro Nakata, Yutaka Nakamura, Hiroshi Ishiguro.
Estimation of physical
interaction between a musculoskeletal robot and its surroundings.
Artificial Life and Robotics, Volume 19, Pages 193–200, 2014.
Dmytro Velychko, Dominik Endres, Nick Taubert, MartinA. Giese.
Coupling
Gaussian Process Dynamical Models with Product-of-Experts Kernels.
Artificial Neural Networks and Machine Learning – ICANN 2014, Lecture
Notes in Computer Science, 2014.
Yali Wang, Marcus A Brubaker, Brahim Chaib-draa, Raquel Urtasun.
Bayesian
Filtering with Online Gaussian Process Latent Variable Models.
Conference on Uncertainty in Artificial Intelligence (UAI), Quebec City,
Canada, 2014.
Ziyou Wang, J. Kinugawa, Hongbo Wang, K. Kazahiro.
A human motion
estimation method based on GP-UKF.
In Information and Automation (ICIA), 2014 IEEE International Conference on,
Pages 1228–1232, 2014.
Keith Worden, Graeme Manson, ElizabethJ. Cross.
On Gaussian Process
NARX Models and Their Higher-Order Frequency Response Functions.
Solving Computationally Expensive Engineering Problems, Springer
Proceedings in Mathematics & Statistics, 2014.
Yulai Zhang, Guiming Luo, Fuan Pu.
Power Load
Forecasting based on Multi-task Gaussian Process.
In Proceedings of the IFAC 19th World Congress, Pages 3651–3656, 2014.
Jing Zhao, Shiliang Sun.
Variational
Dependent Multi-output Gaussian Process Dynamical Systems.
Discovery Science, Lecture Notes in Computer Science, 2014.
K. Zhou, G. Liang, J. Tang.
Efficient model updating
using Bayesian probabilistic framework based on measured vibratory response.
In Nondestructive Characterization for Composite Materials, Aerospace Engineering,
Civil Infrastructure, and Homeland Security 2014, Volume 9063, 2014.
Justina Žuraskiené, Paul Kirk, Thomas Thorne, John Pinney, Michael Stumpf.
Derivative
processes for modelling metabolic fluxes.
Systems biology, Volume 30, Pages 1892–1898, 2014.
2013
A Abusnina, D. Kudenko.
Adaptive
Soft Sensor based on moving Gaussian process window.
In Industrial Technology (ICIT), 2013 IEEE International Conference on,
Pages 1051–1056, 2013.
T. Alpcan, I Shames, M. Cantoni, G. Nair.
Learning
and Information for Dual Control.
In Control Conference (ASCC), 2013 9th Asian, Pages 1–6, 2013.
M.A Alvarez, D. Luengo, N.D. Lawrence.
Linear
Latent Force Models Using Gaussian Processes.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, Volume
35, Pages 2693–2705, 2013.
Z. Amini, H. Rabbani.
Seizure
diagnosis in children based on the electroencephalogram modellind by Gaussian
process model.
Journal of Isfahan Medical School, Volume 31, Pages 985–996, 2013.
Erik Berger, David Vogt, Nooshin Haji-Ghassemi, Bernhard Jung, Heni Ben Amor.
Inferring
Guidance Information in Cooperative Human-Robot Tasks.
In Proceedings of the International Conference on Humanoid Robots
(HUMANOIDS), 2013.
B. Bischoff, D. Nguyen-Tuong, H. Markert, A. Knoll.
Learning
control under uncertainty: A probabilistic Value-Iteration approach.
In ESANN 2013 proceedings, 21st European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, Pages 209–214,
2013.
S. Butler, J. Ringwood, F. O'Connor..
Exploiting
SCADA System Data for Wind Turbine Performance Monitoring.
Conference on Control and Fault-Tolerant Systems (SysTol) October 9-11,
2013. Nice, France, 2013.
J. Calliess, M. Osborne, S. J. Roberts.
Nonlinear adaptive
hybrid control by combining Gaussian process system identification with
classical control laws.
In Novel Methods for Learning and Optimization of Control Policies and
Trajectories for Robotics, ICRA, 2013, 2013.
Pengfei Cao, Xionglin Luo.
Modeling
of soft sensor for chemical process.
CIESC Journal, 2013.
Lester Lik Teck Chan, Yi Liu, Junghui Chen.
Nonlinear System
Identification with Selective Recursive Gaussian Process Models.
Industrial & Engineering Chemistry Research, Volume 52, Pages
18276–18286, 2013.
Junghui Chen, Lester Lik Teck Chan, Yi-Cheng Cheng.
Gaussian
process regression based optimal design of combustion systems using flame
images.
Applied Energy, Volume 111, Pages 153–160, 2013.
Tianshi Chen, Lennart Ljung.
Implementation
of algorithms for tuning parameters in regularized least squares problems in
system identification.
Automatica, Volume 49, Pages 2213–2220, 2013.
N. Chen, Z. Qian, X. Meng.
Multistep
Wind Speed Forecasting Based on Wavelet and Gaussian Processes.
Mathematical Problems in Engineering, Volume 2013, 2013.
N. Chen, Z. Qian, X. Meng, I. T. Nabney.
Short-Term Wind
Power Forecasting Using Gaussian Processes.
International joint conference on Artificial Intelligence IJCAI'13,
2013.
K. Chen, Y. Zhang, J. Yi.
Modeling
of Rider-Bicycle Interactions with Learned Dynamics on Constrained Embedding
Manifolds.
2013 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics: Mechatronics for Human Wellbeing, AIM 2013, 2013.
G. Chowdhary, H. Kingravi, J.P. How, P. Vela.
Bayesian
nonparameteric model reference adaptive control using Gaussian processes.
52nd IEEE Conference on Decision and Control, 2013.
G. Chowdhary, H.A. Kingravi, J.P. How, P.A. Vela.
Bayesian
nonparametric adaptive control of time-varying systems using Gaussian processes.
Proceedings of the American Control Conference, 2013.
Girish Chowdhary, Miao Liu, Robert C. Grande, Thomas J. Walsh, Jonathan P. How.
Off-Policy
Reinforcement Learning with Gaussian Processes.
Multidisciplinary Conference on Reinforcement Learning and Decision Making,
2013.
O.M. Cliff, T. Sildomar, Monteiro.
Evaluating
Techniques for Learning a Feedback Controller for Low-Cost Manipulators.
IEEE International Conference on Intelligent Robots and Systems, 2013.
M. Deisenroth, G. Neumann, J. Peters.
A
Survey on Policy Search for Robotics.
Foundations and Trends in Robotics, Volume 2, Issue 1-2, Pages 1–142,
2013.
A. H. ELSheikh, C. C. Pain, F. Fang, J. L. M. A. Gomes, I. M. Navon.
Parameter
estimation of subsurface flow models using iterative regularized ensemble
Kalman filter.
Stochastic Environmental Research and Risk Assessment, Volume 27, Pages
877–897, 2013.
Peter Englert, Alexandros Paraschos, Marc Deisenroth, Jan Peters.
Probabilistic
Model-based Imitation Learning.
Adaptive Behavior, Volume 21, Pages 388–403, 2013.
Peter Englert, Alexandros Paraschos, Jan Peters, Marc Peter Deisenroth.
Model-based
Imitation Learning by Probabilistic Trajectory Matching.
In ICRA, Pages 1922–1927, 2013.
Roger Frigola, Fredrik Lindsten, Thomas B Schon, Carl Rasmussen.
Bayesian
Inference and Learning in Gaussian Process State-Space Models with Particle
MCMC.
Advances in Neural Information Processing Systems 26, 2013.
Roger Frigola, Carl E Rasmussen.
Integrated Pre-Processing for
Bayesian Nonlinear System Identification with Gaussian Processes.
In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on,
2013.
R.C. Grande, G. Chowdhary, J.P. How.
Nonparametric
adaptive control using Gaussian Processes with online hyperparameter estimation.
In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on,
Pages 861–867, 2013.
Ratko Grbić, Dino Kurtagić, Dražen Slišković.
Stream
water temperature prediction based on Gaussian process regression.
Expert Systems with Applications, Volume Volume 40, Pages 7407–7414,
2013.
Ratko Grbić, Dražen Slišković, Petr Kadlec.
Adaptive
soft sensor for online prediction and process monitoring based on a mixture of
Gaussian process models.
Computers & Chemical Engineering, Volume 58, Pages 84–97, 2013.
Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Seiji Fukushima, Yasutaka
Igarashi.
Application of
Firefly Algorithm to Gaussian Process-based Prediction of Electric Power Damage
Caused by Typhoons.
International Journal of Computer Science and Electronics Engineering (IJCSEE),
Volume 1, Issue 3, Pages 440–444, 2013.
Tomohiro Hachino, Tatsuya Ueda, Hitoshi Takata.
Gaussian
Process Regression for Prediction of Electric Power Damage Caused by Typhoons Considering
Nonstationarity of Damage.
Journal of Signal Processing, Volume 17, Issue 3, Pages 61–68, 2013.
M. Han, W. Ren, M. Xu.
Prediction
of multivariate time series with sparse Gaussian process echo state network.
Proceedings of the 2013 International Conference on Intelligent Control and
Information Processing, ICICIP 2013, 2013.
Prasad Hemakumara, Salah Sukkarieh.
Learning
UAV Stability and Control Derivatives Using Gaussian Processes.
IEEE Transactions on Robotics, Pages 1–12, 2013.
Sheng Hong, Zheng Zhou, Chuan Lv, Hongyi Guo.
Prognosis
for insulated gate bipolar transistor based on Gaussian Process Regression.
In Prognostics and Health Management (PHM), 2013 IEEE Conference on,
Pages 1–5, 2013.
M. F. Huber.
Recursive
Gaussian process regression.
In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, Pages 3362–3366, 2013.
E.D. Klenske, M.N. Zeilinger, B. Scholkopf, P. Hennig.
Nonparametric
Dynamics Estimation for Time Periodic Systems.
In Communication, Control, and Computing (Allerton), 2013 51st Annual
Allerton Conference on, Pages 486–493, 2013.
Juš Kocijan.
Incorporating
knowledge about model structure in the identification of Gaussian-process models.
In Recent Advances in Telecommunications, Signals and Systems, Pages
124–129, Lemesos, Cyprus, 2013.
Peng Kou, Feng Gao, Xiaohong Guan.
Sparse
online warped Gaussian process for wind power probabilistic forecasting.
Applied Energy, Volume 108, Pages 410–428, 2013.
Andras Gabor Kupcsik, Marc Peter Deisenroth, Jan Peters, Gerhard Neumann.
Data-Efficient
Generalization of Robot Skills with Contextual Policy Search.
In AAAI, 2013.
Duehee Lee, Joonhyun Kim, R. Baldick.
Stochastic
Optimal Control of the Storage System to Limit Ramp Rates of Wind Power Output.
Smart Grid, IEEE Transactions on, Volume 4, Pages 2256–2265, 2013.
Yu Lei, Huizhong Yang.
Combination
model soft sensor based on Gaussian process and Bayesian committee machine.
CIESC Journal, Volume 64, Issue 12, Pages 4434–4438, 2013.
Xiangyu Li, Xianwen Gao, Yongbin Cui, Kun Li.
Dynamic
liquid level modeling of sucker-rod pumping systems based on Gaussian process
regression.
In Natural Computation (ICNC), 2013 Ninth International Conference on,
Pages 917–922, 2013.
Fredrik Lindsten, Thomas B. Schön, Michael I. Jordan.
Bayesian
semiparametric Wiener system identification.
Automatica, Volume 49, Pages 2053–2063, 2013.
Zitao Liu, Lei Wu, Milos Hauskrecht.
Modeling
clinical time series using Gaussian process sequences.
In SIAM international conference on data mining, Pages 623–631, 2013.
J.M. Lourenço, J.M. Lemos, J.S. Marques.
Control
of neuromuscular blockade with Gaussian process models.
Biomedical Signal Processing and Control, Volume 8, Pages 244–254, 2013.
J.M. Maciejowski, X. Yang.
Fault
tolerant control using Gaussian processes and model predictive control.
Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France.,
2013.
Hae Young Noh, Ram Rajagopal.
Data-Driven
Forecasting Algorithms for Building Energy Consumption.
In Proceedings SPIE Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems, Volume 8692, San Diego, California, USA,
2013.
Sooho Park, S.K. Mustafa, K. Shimada.
Learning-based
robot control with localized sparse online Gaussian process.
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, Pages 1202–1207, 2013.
Sooho Park, S.K. Mustafa, K. Shimada.
Learning
based robot control with sequential Gaussian process.
In Robotic Intelligence In Informationally Structured Space (RiiSS), 2013
IEEE Workshop on, Pages 120–127, 2013.
Fernando Pérez-Cruz, Steven Van Vaerenbergh, Juan José Murillo-Fuentes, Miguel
Lázaro-Gredilla, Ignacio Santamaría.
Gaussian
Processes for Nonlinear Signal Processing: An Overview of Recent Advances.
IEEE Signal Processing Magazine, Volume 30, Pages 40–50, 2013.
L. Peternel, J. Babič.
Learning
of compliant human-robot interaction using full-body haptic interface.
Advanced Robotics, Volume 27, Pages 1003–1012, 2013.
Dejan Petelin, Alexandra Grancharova, Juš Kocijan.
Evolving
Gaussian process models for prediction of ozone concentration in the air.
Simulation Modelling Practice and Theory, Volume 33, Pages 68–80, 2013.
Gianluigi Pillonetto.
Consistent
identification of Wiener systems: A machine learning viewpoint.
Automatica, Volume 49, Pages 2704–2712, 2013.
G. Pillonetto, T. Chen, L. Ljung.
Kernel-based model order
selection for linear system identification.
IFAC Proceedings Volumes (IFAC-PapersOnline), Volume 11, Pages 257–262,
2013.
Jan Přikryl.
Graphics
card as a cheap supercomputer.
In Programs and Algorithms of Numerical Matematics, Volume 16, Pages
162–167, 2013.
S. Särkkä, J. Hartikainen.
Non-linear
noise adaptive Kalman filtering via variational Bayes.
In Machine Learning for Signal Processing (MLSP), 2013 IEEE International
Workshop on, Pages 1–6, 2013.
Simo Särkkä, Arno Solin, Jouni Hartikainen.
Spatiotemporal
Learning via Infinite-Dimensional Bayesian Filtering and Smoothing: A Look at
Gaussian Process Regression Through Kalman Filtering.
IEEE Signal Processing Magazine, Volume 30, Pages 51–61, 2013.
S. Sedai, M. Bennamoun, D. Q. Huynh..
A
Gaussian Process Guided Particle Filter for Tracking 3D Human Pose in Video.
IEEE Transactions on Image Processing, Volume 22, Pages 4286 – 4300,
2013.
Gang Shen, Yu Cao.
A Gaussian Process
Based Model Predictive Controller for Nonlinear Systems with Uncertain
Input-Output Delay.
Applied Mechanics and Materials, Volume 433–435, Pages 1015–1020, 2013.
Arno Solin, Simo Särkkä.
Infinite-dimensional
Bayesian filtering for detection of quasiperiodic phenomena in spatiotemporal
data.
Phys. Rev. E, Volume 88, Issue 5, Pages 052909, 2013.
Yanyu Su, Yan Wu, Harold Soh, Zhijiang Du, Yiannis Demiris.
Enhanced
Kinematic Model for Dexterous Manipulation with an Underactuated Hand.
In IROS, Pages 2493–2499, 2013.
Taiji Suzuki, Kazuyuki Aihara.
Nonlinear
system identification for prostate cancer and optimality of intermittent
androgen suppression therapy.
Mathematical biosciences, 2013.
N. Taubert, M. Löffler, N. Ludolph, A. Christensen, D. Endres, M.A. Giese.
A
virtual reality setup for controllable, stylized real-time interactions between
humans and avatars with sparse Gaussian process dynamical models.
In Proceedings - SAP 2013: ACM Symposium on Applied Perception, Pages
41–44, 2013.
V. Vitelli, E. Zio.
Approximate Gaussian Process
Regression with Sparse Functional Learning of Inducing Points for Components
Condition Monitoring.
Chemical Engineering Transactions, Volume 33, Pages 907–912, 2013.
Y. Wang, B. Chaib-Draa.
A KNN based
kalman filter Gaussian process regression.
International joint conference on Artificial Intelligence IJCAI'13,
2013.
Zhikun Wang, Katharina Mülling, Marc Peter Deisenroth, Heni Ben Amor, David
Vogt, Bernhard Schölkopf, Jan Peters.
Probabilistic
Movement Modeling for Intention Inference in Human-Robot Interaction.
The International Journal of Robotics Research, Volume 32, Pages
841–858, 2013.
Z. Xia, J. Tang.
Characterization
of Dynamic Response of Structures With Uncertainty by Using Gaussian Processes.
Journal of Vibration and Acoustics-Transactions of the ASME, Volume 135,
Issue 5, 2013.
Wei Xi-qing, Song Shen-min.
Model-free
cubature Kalman filter and its application.
Control and Decision, Volume 28, 2013.
Juan Yan, Kang Li, Er-Wei Bai.
Prediction
error adjusted Gaussian Process for short-term wind power forecasting.
In Intelligent Energy Systems (IWIES), 2013 IEEE International Workshop on,
Pages 173–178, 2013.
J. Yu, K. Chen, J. Mori, M. M. Rashid.
A
Gaussian mixture copula model based localized Gaussian process regression
approach for long-term wind speed prediction.
Energy, Volume 61, Pages 673–686, 2013.
J. Yu, K. Chen, J. Mori, M.M. Rashid.
Multi-kernel
Gaussian process regression and Bayesian model averaging based nonlinear state
estimation and quality prediction of multiphase batch processes.
Proceedings of the American Control Conference, 2013.
J. Yu, K. Chen, M. M. Rashid.
A
Bayesian model averaging based multi-kernel Gaussian process regression
framework for nonlinear state estimation and quality prediction of multiphase
batch processes with transient dynamics and uncertainty.
Chemical Engineering Science, Volume 93, Pages 96–109, 2013.
2012
Christoph Anger, R Schrader, U Klingauf.
Unscented
Kalman filter with Gaussian process degradation model for bearing fault
prognosis.
In Proceedings of the European conference of the prognostics and health
management society, Pages 202–213, 2012.
M. M. Atia, A. Noureldin, M. Korenberg.
Enhanced
Kalman Filter for RISS/GPS Integrated Navigation using Gaussian Process
Regression.
In Proceedings of the 2012 International Technical Meeting of The Institute
of Navigation, Pages 1148–1156, Newport Beach, California, USA, 2012.
Er-Wei Bai.
Local
Prediction Error Adjusted Gaussian Process for Nonlinear Non-Parametric System
Identification.
In 16th IFAC Symposium on System Identification, Pages 101–106,
Brussels, Belgium, 2012.
Tianshi Chen, Henrik Ohlsson, Lennart Ljung.
On the
estimation of transfer functions, regularizations and Gaussian
processes-Revisited.
Automatica, Volume 48, Pages 1525–1535, 2012.
Alessandro Chiuso, Gianluigi Pillonetto.
A
Bayesian approach to sparse dynamic network identification.
Automatica, Volume 48, Pages 1553–1565, 2012.
Girish Chowdhary, Jonathan How, Hassan Kingravi.
Model
reference adaptive control using nonparametric adaptive elements.
In Conference on Guidance Navigation and Control, Minneapolis, MN, 2012.
L. Clifton, D. A. Clifton, M. A. F. Pimentel, P. J. Watkinson, L. Tarassenko.
Gaussian
Process Regression in Vital-Sign Early Warning Systems.
Engineering in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE, 2012.
John P Cunningham, Zoubin Ghahramani, Carl E Rasmussen.
Gaussian
Processes for time-marked time-series data.
Journal of Machine Learning Research - Proceedings Track, Volume 22,
Pages 225–263, 2012.
A.C. Damianou, C.H. Ek, M.K. Titsias, N.D. Lawrence.
Manifold relevance determination.
In Proceedings of the 29th International Conference on Machine Learning
(ICML), Volume 1, Pages 145–152, 2012.
M. De Paula, E. Martinez.
Probabilistic
optimal control of blood glucose under uncertainty.
Computer Aided Chemical Engineering, Volume 30, Pages 1357–1361, 2012.
Marc Peter Deisenroth, Roberto Calandra, André Seyfarth, Jan Peters.
Toward
Fast Policy Search for Learning Legged Locomotion.
In IROS'12, Pages 1787–1792, 2012.
Marc Peter Deisenroth, Shakir Mohamed.
Expectation
Propagation in Gaussian Process Dynamical Systems.
Advances in Neural Information Processing Systems, Volume 25, Pages
2618–2626, 2012.
MP Deisenroth, J Peters.
Solving
Nonlinear Continuous State-Action-Observation POMDPs for Mechanical Systems
with Gaussian Noise.
In European Workshop on Reinforcement Learning (EWRL 2012), Pages 1–14,
2012.
Marc Peter Deisenroth, Ryan Darby Turner, Marco F. Huber, Uwe D. Hanebeck, Carl
Edward Rasmussen.
Robust
Filtering and Smoothing with Gaussian Processes.
IEEE Transactions on Automatic Control, Volume 57, Pages 1865–1871,
2012.
Dingwen Dong.
Mine
Gas Emission Prediction based on Gaussian Process Model.
Procedia Engineering, Volume 45, Pages 334–338, 2012.
D.-W. Dong, S.-G. Li, X.-T. Chang, H.-F. Lin.
Prediction
model of gas concentration around working face using multivariate time series.
Journal of Mining and Safety Engineering, Volume 29, Pages 135–139, 2012.
R. Grbić, D. Slišković, P. Kadlec.
Adaptive
soft sensor for online prediction based on moving window Gaussian process
regression.
In 2012 11th International Conference on Machine Learning and Applications,
Pages 428–433, 2012.
Gregor Gregorčič, Gordon Lightbody.
Gaussian
process internal model control.
International Journal of Systems Science, Volume 43, Pages 2079–2094,
2012.
Tobias Gutjahr, Holger Ulmer, Christoph Ament.
Sparse
Gaussian Processes with Uncertain Inputs for Multi-Step Ahead Prediction.
In 16th IFAC Symposium on System Identification, Pages 107–112,
Brussels, Belgium, 2012.
Tomohiro Hachino, Shoichi Yamakawa.
Non-parametric
identification of continuous-time Hammerstein systems using Gaussian process
model and particle swarm optimization.
Artificial Life and Robotics, Volume 17, Pages 35–40, 2012.
J. Hall, C. E. Rasmussen, J. Maciejowski.
Modelling and
Control of Nonlinear Systems using Gaussian Processes with Partial Model
Information.
Conference on Decision and Control (CDC), 2012.
Jouni Hartikainen, Mari Seppänen, Simo Särkkä.
State-Space Inference for
Non-Linear Latent Force Models with Application to Satellite Orbit Prediction.
In Proceedings of the 29th International Conference on Machine Learning
(ICML-12), Pages 903–910, Edinburgh, Scotland, 2012.
Y. Heo, V. M. Zavala.
Gaussian process
modeling for measurement and verification of building energy savings.
Energy and buildings, Volume 53, Pages 2012, 2012.
Živko Južnič-Zonta, Juš Kocijan, Xavier Flotats, Darko Vrečko.
Multi-criteria
analyses of wastewater treatment bio-processes under an uncertainty and a
multiplicity of steady states.
Water research, Volume 46, Pages 6121–31, 2012.
Hyuk Kang, F. C. Park.
Humanoid
Motion Optimization via Nonlinear Dimension Reduction.
2012 IEEE International Conference on Robotics and Automation, Pages
1444–1449, 2012.
Juš Kocijan.
Dynamic
GP models: an overview and recent developments.
In ASM'12 Proceedings of the 6th international conference on Applied
Mathematics, Simulation, Modelling, Pages 38–43, 2012.
Christophe Lecomte, J J Forster, B R Mace, N S Ferguson.
Bayesian
Damage Localisation at Higher Frequencies with Gaussian Process Error.
In Conference Proceedings of the Society for Experimental Mechanics Series,
Pages 39–48, New York, New York, USA, 2012.
Fredrik Lindsten, Thomas B. Schön, Michael I. Jordan.
A
semiparametric Bayesian approach to Wiener system identification.
In 16th IFAC Symposium on System Identification, Pages 1137–1142,
Brussels, Belgium, 2012.
M. Niranjan W. Liu.
Gaussian
process modelling for bicoid mRNA regulation in spatio-temporal Bicoid profile.
Bioinformatics, Volume 28, Pages 366–372, 2012.
Zaobao Liu, Weiya Xu, Jianfu Shao.
Gauss
Process Based Approach for Application on Landslide Displacement Analysis and
Prediction.
CMES - Computer Modeling in Engineering and Sciences, Volume 84, Pages
99–122, 2012.
J. M. Lourenco, P. J. Santos.
Short-term
load forecasting using a Gaussian process model: The influence of a
derivativeterm in the input regressor.
Intelligent Decision Technologies, Volume 6, 2012.
Max D. Morris.
Gauss
Process Based Approach for Application on Landslide Displacement Analysis and
Prediction.
Technometrics, Volume 54, Pages 42–50, 2012.
Duy Nguyen-Tuong, J. Peters.
Online
Kernel-Based Learning for Task-Space Tracking Robot Control.
Neural Networks and Learning Systems, IEEE Transactions on, Volume 23,
Pages 1417–1425, 2012.
Wangdong Ni, Soon Keat Tan, Wun Jern Ng, Steven D. Brown.
Moving-Window GPR
for Nonlinear Dynamic System Modeling with Dual Updating and Dual Preprocessing.
Industrial & Engineering Chemistry Research, Volume 51, Pages
6416–6428, 2012.
Wangdong Ni, Ke Wang, Tao Chen, Wun Jern Ng, Soon Keat Tan.
GPR
model with signal preprocessing and bias update for dynamic processes modeling.
Control Engineering Practice, Volume 20, Pages 1281–1292, 2012.
Michael A. Osborne, Roman Garnett, Kevin Swersky, Nando de Freitas.
Prediction and Fault Detection
of Environmental Signals with Uncharacterised Faults.
In 26th AAAI Conference on Artificial Intelligence (AAAI-12), Toronto,
Canada, 2012.
Carl Edward Rasmussen.
Machine
Learning, Probabilistic Inference, System Identification and Control.
In 16th IFAC Symposium on System Identification, Pages 1275–1275, 2012.
Simo Särkkä, Jouni Hartikainen.
Infinite-Dimensional
Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression.
Journal of Machine Learning Research - Proceedings Track, Volume 22,
Pages 993–1001, 2012.
Harold Soh, Yiannis Demiris.
Iterative
Temporal Learning and Prediction with the Sparse Online Echo State Gaussian
Process.
In The 2012 International Joint Conference on Neural Networks (IJCNN),
Pages 1–8, 2012.
B. Sun, H. Yao, T. Liu.
Short-term wind
speed forecasting based on Gaussian process regression model.
In Proceedings of the Chinese Society of Electrical Engineering, 2012.
Chi Hay Tong, P. Furgale, T.D. Barfoot.
Gaussian Process
Gauss-Newton: Non-Parametric State Estimation.
In Computer and Robot Vision (CRV), 2012 Ninth Conference on, Pages
206–213, 2012.
Ryan Turner, Carl Edward Rasmussen.
Model based learning
of sigma points in unscented Kalman filtering.
Neurocomputing, Volume 80, Pages 47–53, 2012.
Yali Wang, Brahim Chaib-draa.
A
Marginalized Particle Gaussian Process Regression.
In Neural Information Processing Systems 25, 2012.
Yali Wang, Brahim Chaib-draa.
An
Adaptive Nonparametric Particle Filter for State Estimation.
In 2012 IEEE International Conference on Robotics and Automation, Pages
4355–4360, 2012.
Zhikun Wang, Marc Deisenroth, Heni Ben Amor, David Vogt, Bernhard Scholkopf,
Jan Peters.
Probabilistic
Modeling of Human Movements for Intention Inference.
In Proceedings of Robotics: Science and Systems, Sydney, Australia,
2012.
Jie Yu.
Online
quality prediction of nonlinear and non-Gaussian chemical processes with
shifting dynamics using finite mixture model based Gaussian process regression
approach.
Chemical Engineering Science, Volume 82, Pages 22–30, 2012.
Zulkarnain Zainudin, Sarath Kodagoda, Linh Van Nguyen.
Mutual
information based data selection in Gaussian processes for people tracking.
In Proceedings of Australasian Conference on Robotics and Automation,
Pages 225–230, 2012.
2011
Etienne Rudolph Ackermann, Johan Pieter de Villiers, Pierre J. Cilliers.
Nonlinear
dynamic systems modeling using Gaussian processes: Predicting ionospheric total
electron content over South Africa.
Journal of Geophysical Research A: Space Physics, Volume 116, 2011.
Mauricio A. Álvarez, Neil D. Lawrence.
Computationally
Efficient Convolved Multiple Output Gaussian Processes.
Journal of Machine Learning Research, Volume 12, Pages 1459–1500, 2011.
Kristjan Ažman, Juš Kocijan.
Dynamical systems
identification using Gaussian process models with incorporated local models.
Engineering Applications of Artificial Intelligence, Volume 24, Pages
398–408, 2011.
William Becker, Keith Worden, Manuela Battipede, Cecilia Surace.
Uncertainty
Analysis of a Dynamic Model of a Novel Remotely Piloted Airship.
Journal of Aircraft, Volume 48, Pages 1028–1035, 2011.
Sotirios P. Chatzis, Yiannis Demiris.
Echo
state Gaussian process.
IEEE Transactions on Neural Networks, Volume 22, Pages 1435–1445, 2011.
Tianshi Chen, Henrik Ohlsson, Lennart Ljung.
On
the Estimation of Transfer Functions, Regularizations and Gaussian Processes -
Revisited.
In 18th IFAC World Congress, 2011.
Marc Peter Deisenroth, Henrik Ohlsson.
A
general perspective on Gaussian filtering and smoothing: Explaining current and
deriving new algorithms.
In American Control Conference (ACC), 2011, Pages 1807–1812, 2011.
Marc P Deisenroth, Carl Edward Rasmussen.
PILCO: A model-based and
data-efficient approach to policy search.
In International Conference on Machine Learning (ICML), Pages 465–472,
2011.
Marc P Deisenroth, Carl Edward Rasmussen, Dieter Fox.
Learning to Control a
Low-Cost Manipulator using Data-Efficient Reinforcement Learning.
In Robotics: Science & Systems (RSS), 2011.
Guolliang Fan, Xin Zhang, Meng Ding.
Gaussian
process for human motion modeling: A comparative study.
IEEE International Workshop on Machine Learning for Signal Processing,
2011.
Nuwan Gamage, Ye Chow Kuang, Rini Akmeliawati, Serge Demidenko.
Gaussian
Process Dynamical Models for hand gesture interpretation in Sign Language.
Pattern Recognition Letters, Volume 32, Pages 2009–2014, 2011.
Zhiqiang Ge, Tao Chen, Zhihuan Song.
Quality
prediction for polypropylene production process based on CLGPR model.
Control Engineering Practice, Volume 19, Pages 423–432, 2011.
Alexandra Grancharova, Juš Kocijan.
Explicit stochastic model
predictive control of gas-liquid separator based on Gaussian process model.
In Proceedings of the International Conference Automatics and Informatics
2011, 2011.
Perry Groot, Peter Lucas, Paul van den Bosch.
Multiple-step
time series forecasting with sparse Gaussian processes.
In Proceedings of the 23rd Benelux Conference on Artificial Intelligence
(BNAIC 2011), Pages 105–112, Ghent, 2011.
Tomohiro Hachino, Visakan Kadirkamanathan.
Multiple
Gaussian process models for direct time series forecasting.
IEEJ Transactions on Electrical and Electronic Engineering, Volume 6,
Pages 245–252, 2011.
Joseph Hall, Carl Edward Rasmussen, Jan Maciejowski.
Reinforcement
Learning with Reference Tracking Control in Continuous State Spaces.
In Proceedings of the 50th International Conference on Decision and Control,
2011.
Jouni Hartikainen, Jaakko Riihimäki, Simo Särkkä.
Sparse
Spatio-temporal Gaussian Processes with General Likelihoods.
Artificial Neural Networks and Machine Learning - ICANN 2011, Lecture
Notes in Computer Science, 2011.
Jouni Hartikainen, Simo Särkkä.
Sequential
Inference for Latent Force Models.
Proceedings of the 27th Conference on Uncertainty in Artificial
Intelligence, UAI 2011, 2011.
Philipp Hennig.
Optimal
reinforcement learning for Gaussian systems.
In Advances in Neural Information Processing Systems, Pages 325–333,
2011.
Andres Felipe Hernandez, Martha Grover.
Comparison of
Sampling Strategies for Gaussian Process Models, with Application to
Nanoparticle Dynamics.
Industrial and Engineering Chemistry Research, Volume 50, Pages
1379–1388, 2011.
Antti Honkela, Pei Gao, Jonatan Ropponen, Magnus Rattray, Neil D. Lawrence.
tigre:
Transcription factor inference through Gaussian process reconstruction of
expression for bioconductor.
Bioinformatics, Volume 27, Pages 1026–1027, 2011.
Wenjing Huang, Ke Wang, F. Jay Breidt, Richard A. Davis.
A
class of stochastic volatility models for environmental applications.
Journal of Time Series Analysis, Volume 32, Pages 364–377, 2011.
Hunor Jakab, Lehel Csató.
Improving Gaussian
Process Value Function Approximation in Policy Gradient Algorithms.
Artificial Neural Networks and Machine Learning - ICANN 2011, Lecture
Notes in Computer Science, 2011.
Đani Juričić, Pavel Ettler, Juš Kocijan.
Fault
detection based on Gaussian process models: An application to the rolling mill.
ICINCO 2011 - Proceedings of the 8th International Conference on Informatics
in Control, Automation and Robotics, 2011.
A. A. Kalaitzis, N. D. Lawrence.
A
Simple Approach to Ranking Differentially Expressed Gene Expression Time
Courses through Gaussian Process Regression.
BMC Bioinformatics, Volume 12, 2011.
Jonathan Ko, Dieter Fox.
Learning
GP-BayesFilters via Gaussian process latent variable models.
Autonomous Robots, Volume 30, Pages 3–23, 2011.
Juš Kocijan.
Control Algorithms Based on
Gaussian Process Models: A State-of-the-Art Survey.
In Proceedings of the Special International Conference on Complex Systems:
Synergy of Control, Communications and Computing - COSY 2011, 2011.
Juš Kocijan, Dejan Petelin.
Output-Error Model
Training for Gaussian Process Models.
Adaptive and Natural Computing Algorithms, Lecture Notes in Computer
Science, 2011.
Michał Lewandowski, Dimitros Makris, Jean-Christoph Nebel.
Probabilistic
Feature Extraction from Multivariate Time Series using Spatio-Temporal
Constraints.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Volume 6635
LNAI, Pages 173–184, 2011.
Andrew McHutchon, Carl Edward Rasmussen.
Gaussian Process Training with Input Noise.
Advances in Neural Information Processing Systems, 2011.
O. Menzer, A. Moffat, G. Lasslop, M. Reichstein.
Gaussian Process
Regression for Uncertainty Estimation on Ecosystem Data.
American Geophysical Union, Fall Meeting, 2011.
Duy Nguyen-Tuong, Jan Peters.
Incremental
online sparsification for model learning in real-time robot control.
Neurocomputing, Volume 74, Pages 1859–1867, 2011.
Wangdong Ni, Soon Keat Tan, Wun Jern Ng.
Recursive
GPR for nonlinear dynamic process modeling.
Chemical Engineering Journal, Volume 173, Pages 636–643, 2011.
PnichHang Ou, Hengshan Wang.
Modeling
and forecasting stock market volatility by Gaussian processes based on GARCH,
EGARCH and GJR models.
Proceedings of the World Congress on Engineering 2011, WCE 2011, 2011.
Jóan Petur Petersen, Daniel J Jacobsen, Ole Winther.
Statistical
modelling for ship propulsion efficiency.
Journal of Marine Science and Technology, Pages 1–10, 2011.
Dejan Petelin, Juš Kocijan.
Control
system with evolving Gaussian process models.
IEEE SSCI 2011: Symposium Series on Computational Intelligence - EAIS 2011:
2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems, 2011.
Dejan Petelin, Juš Kocijan, Alexandra Grancharova.
On-line
Gaussian process model for the prediction of the ozone concentration in the air.
Comptes Rendus de L'Academie Bulgare des Sciences, Volume 64, Pages
117–124, 2011.
D Petelin, J Sindelar, J Prikryl, J Kocijan.
Financial
modeling using Gaussian process models.
In Intelligent Data Acquisition and Advanced Computing Systems (IDAACS),
2011 IEEE 6th International Conference on, Volume 2, Pages 672–677, 2011.
Gianluigi Pillonetto, Alessandro Chiuso, Giuseppe De Nicolao.
Prediction
error identification of linear systems: A nonparametric Gaussian regression
approach.
Automatica, Volume 47, Pages 291–305, 2011.
Gianluigi Pillonetto, Minh Ha Quang, Alessandro Chiuso.
A New
Kernel-Based Approach for NonlinearSystem Identification.
IEEE Transactions on Automatic Control, Volume 56, Pages 2825–2840,
2011.
Shi Qu, Ronghuan Yu, Yingmei Wei, Lingda Wu.
Gaussian
Process Latent Variable Models for Inverse Kinematics.
Journal of Multimedia, Volume 6, Pages 48–55, 2011.
Aditi Roy, Shamik Sural, Jayanta Mukherjee, Gerhard Rigoll.
Occlusion
detection and gait silhouette reconstruction from degraded scenes.
Signal, Image and Video Processing, Volume 5, Pages 415–430, 2011.
Javier Serradilla, Jian Qing Shi, Julian A. Morris.
Fault
detection based on Gaussian process latent variable models.
Chemometrics and Intelligent Laboratory Systems, Volume 109, Pages 9–21,
2011.
Jian Qing Shi, Taeryon Choi.
Gaussian
Process Regression Analysis for Functional Data.
Taylor and Francis, 2011.
Xiaolin Wei, Jianyuan Min, Jinxiang Chai.
Physically-Valid
Statistical Models for Human Motion Generation.
ACM Transactions on Graphics, Volume 30, 2011.
Z. Xia, J. Tang.
Characterization
of Structural Dynamics With Uncertainty by Using Gaussian Processes.
ASME 2011 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, 2011.
Hongkai Xiong, Zhe Yuan, Yuan F. Zheng.
A
learning-based video compression on low-quality data by unscented kalman
filters with Gaussian process regression.
Proceedings - IEEE International Symposium on Circuits and Systems,
2011.
Jianfeng Xu, Koichi Takagi, Shigeyuki Sakazawa.
Human motion
tracking with monocular video by introducing a graph structure into Gaussian
process dynamical models.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Volume 7087 LNCS,
Pages 370–383, 2011.
Wenjin Yan, Shuangquan Hu, Yanhui Yang, Furong Gao, Tao Chen.
Bayesian
migration of Gaussian process regression for rapid process modeling and optimization.
Chemical Engineering Journal, Volume 166, Pages 1095–1103, 2011.
Fu Yongfeng.
A
dynamic soft-sensor modeling method based on FC-GP for 4-CBA content.
Conference Record - IEEE Instrumentation and Measurement Technology
Conference, 2011.
Xu Zhao, Yun Fu, Yuncai Liu.
Human
motion tracking by temporal-spatial local Gaussian process experts.
IEEE Transactions on Image Processing, Volume 20, Pages 1141–1151, 2011.
Ze Zhang, Tuopeng Tong, Kai Song.
A
novel GPLS-GP algorithm and its application to air temperature prediction.
Proceedings - 2011 7th International Conference on Natural Computation, ICNC
2011, 2011.
2010
Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, Neil D. Lawrence.
Efficient
Multioutput Gaussian Processes through Variational Inducing Kernels.
Journal of Machine Learning Research - Proceedings Track, Volume 9,
Pages 25–32, 2010.
Mauricio A. Álvarez, Jan Peters, Bernhard Schölkopf, Neil D. Lawrence.
Switched
Latent Force Models for Movement Segmentation.
In Advances in Neural Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Systems 2010. Proceedings of a
meeting held 6-9 December 2010, Vancouver, British Columbia, Canada, Pages
55–63, 2010.
Cédric Archambeau, Manfred Opper.
Approximate
inference for continuous-time Markov processes.
Inference and Learning in Dynamic Models, 2010.
Liefeng Bo, Cristian Sminchisescu.
Twin
Gaussian processes for structured prediction.
International Journal of Computer Vision, Volume 87, Pages 28–52, 2010.
Satish T. S. Bukkapatnam, Changqing Cheng.
Forecasting the
evolution of nonlinear and nonstationary systems using recurrence-based local
Gaussian process models.
Physical Review E, Volume 82, 2010.
Salil Deena, Shaobo Hou, Aphrodite Galata.
Visual
Speech Synthesis by Modelling Coarticulation Dynamics using a Non-Parametric
Switching State-Space Model.
In International Conference on Multimodal Interfaces and the Workshop on
Machine Learning for Multimodal Interaction (ICMI-MLMI 2010), 2010.
Marc Peter Deisenroth, Henrik Ohlsson.
A
Probabilistic Perspective on Gaussian Filtering and Smoothing.
ArXiv e-prints, 2010.
Marc Peter Deisenroth, Carl Edward Rasmussen.
A Practical
and Conceptual Framework for Learning in Control.
Technical Report UW-CSE-10-06-01, Department of Computer Science &
Engineering, University of Washington, Seattle, 2010.
Marc Peter Deisenroth, Carl Edward Rasmussen.
Reducing Model
Bias in Reinforcement Learning.
In Learning and Planning from Batch Time Series Data, 2010.
Dragoljub Gagi Drmanac, Brendon Bolin, Li-C. Wang.
A
Non-Parametric Approach to Behavioral Device Modeling.
In 1th International Symposium on Quality of Electronic Design (ISQED),
Pages 284–290, San Jose, CA, 2010.
Denis Forte, Aleš Ude, Andrej Kos.
Robot
learning by Gaussian process regression.
In Proceedings of the 19th International Workshop on Robotics in
Alpe-Adria-Danube Region (RAAD 2010), Pages 303–308, 2010.
Alexandra Grancharova, Juš Kocijan, Alexander Krastev, Hristina Hristova.
High-order
Gaussian process models for prediciton of ozone concentration in the air.
In Proceedings of the 7th EUROSIM Congress on Modelling and Simulation
EUROSIM 2010, Volume 2, Pages 8, Prague, 2010.
Raia Hadsell, J. Andrew Bagnell, Daniel F. Huber, Martial Hebert.
Non-Stationary
Space-Carving Kernels for Accurate Rough Terrain Estimation.
International Journal of Robotics Research, Volume 29, Pages 981–996,
2010.
Andres Felipe Hernandez, Martha Grover.
Stochastic
dynamic predictions using Gaussian process models for nanoparticle synthesis.
Computers and Chemical Engineering, Volume 34, Pages 1953–1961, 2010.
Antti Honkela, Charles Girardot, E. Hilary Gustafson, Ya-Hsin Liu, E. M.
Furlong Furlong, Neil D. Lawrence, Magnus Rattray.
Model-based method for
transcription factor target identification with limited data.
Proceedings of the National Academy of Sciences of the United States of
America, Volume 107, Pages 7793–7798, 2010.
X. Jiang, B. Donga, L. Xie, L. Sweeney.
Adaptive
Gaussian Process for Short-Term Wind Speed Forecasting.
In Proceedings of the 2010 conference on ECAI 2010: 19th European Conference
on Artificial Intelligence, Pages 661–666, 2010.
T. Jung, P. Stone.
Gaussian
processes for sample efficient reinforcement learning with RMAX-like
exploration.
Lecture Notes in Computer Science, Volume 6321, Pages 601–616, 2010.
Juš Kocijan, Alexandra Grancharova.
Gaussian
process modelling case study with multiple outputs.
Comptes Rendus de l Academie Bulgare des Sciences, Volume 36, Pages
601–607, 2010.
Juš Kocijan, Jan Prikryl.
Soft
Sensor for Faulty Measurements Detection and Reconstruction in Urban Traffic.
In Proceedings 15th IEEE Mediterranian Electromechanical Conference
(MELECON), Pages 172–177, Valletta, Malta, 2010.
Peng Li, Shen-min Song, Xing-lin Chen, Guang-ren Duan.
Square root unscented
Kalman filter incorporating Gaussian process regression.
Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics,
Volume 32, Pages 1281–1285, 2010.
João Lourenço, Paulo J. Santos.
Short term load
forecasting using Gaussian process models.
Technical Report ISSN: 1645-2631, Issue 5, Instituto de Engenharia de Sistemas
e Computadores de Coimbra Institute of Systems Engineering and Computers INESC,
Coimbra, 2010.
Bojan Musizza, Dejan Petelin, Juš Kocijan.
Accelerated learning of
Gaussian process models.
In Proceedings of the 7th EUROSIM Congress on Modelling and Simulation,
2010.
J. C. Nascimento, J. G. Silva.
Manifold
Learning for Object Tracking with Multiple Motion Dynamics.
Lecture Notes in Computer Science, Volume 6313, Pages 172–185, 2010.
Duy Nguyen-Tuong, Jan Peters.
Using
Model Knowledge for Learning Inverse Dynamics.
In Proceedings of IEEE International Conference on Robotics and Automation,
Pages 2677–2682, 2010.
Duy Nguyen-Tuong, Matthias Seeger, Jan Peters.
Real-time
local GP model learning.
From Motor Learning to Interaction Learning in Robots, Volume 264, Pages
193–207, 2010.
Michael A. Osborne, Roman Garnett, Stephen J. Roberts.
Active Data Selection for
Sensor Networks with Faults and Changepoints.
In Proceedings of the 2010 24th IEEE International Conference on Advanced
Information Networking and Applications, Pages 533–540, Washington, DC,
USA, 2010.
Veli Peltola, Antti Honkela.
Variational
inference and learning for non-linear state-space models with state-dependent
observation noise.
In Proceedings of the 2010 IEEE International Workshop on Machine Learning
for Signal Processing, MLSP 2010, Pages 190–195, 2010.
Dejan Petelin, Juš Kocijan.
Application
of on-line Gaussian process models for pressure signal.
In Proceedings of the 11th International PhD Workshop on Systems and
Control, September 1-3, 2010, Veszprém, Hungary : a young generation viewpoint,
Pages 39–44, 2010.
Gianluigi Pillonetto, Giuseppe De Nicolao.
A new
kernel-based approach for linear system identification.
Automatica, Volume 46, Pages 81–93, 2010.
Steven Reece, Stephen J. Roberts.
An
Introduction to Gaussian Processes for the Kalman Filter Expert.
In Proceedings of the 13th International Conference on Information Fusion,
Edinburgh, 2010.
Marisa Resende, Paulo J. Santos.
Short - Term Load
Forecasting Using a Gaussian Process Model - Optimal Endogenous Regressor.
Technical Report ISSN: 1645-2631, Issue 10, Instituto de Engenharia de Sistemas
e Computadores de Coimbra Institute of Systems Engineering and Computers INESC,
Coimbra, 2010.
Axel Rottmann, Wolfram Burgard.
Learning
non-stationary system dynamics online using Gaussian processes.
Pattern Recognition, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2010.
Yunus Saatçi, Ryan Turner, Carl Edward Rasmussen.
Gaussian Process Change
Point Models.
In Proceedings of the 27th International Conference on Machine Learning,
Haifa, Israel, 2010.
Yuan Shen, Cédric Archambeau, Dan Cornford, Manfred Opper, John Shawe-Taylor,
Remi Barillec.
A Comparison
of Variational and Markov Chain Monte Carlo Methods for Inference in Partially
Observed Stochastic Dynamic Systems.
Journal of Signal Processing Systems, Volume 61, Pages 51–59, 2010.
Q. Q. Shen, Z. H. Sun.
Online Learning
Algorithm of Gaussian Process Based on Adaptive Natural Gradient for Regression.
Advanced Materials Research: Manufacturing Engineering and Automation,
Volume 1847, Pages 139–141, 2010.
Ryan Turner, Marc Peter Deisenroth, Carl Edward Rasmussen.
State-space
inference and learning with Gaussian processes.
In Proceedings of 13th International Conference on Artificial Intelligence
and Statistics, Volume 9, Pages 868–875, Sardinia, Italy, 2010.
Yafeng Yin, Hong Man, Jing Wang, Guang Yang.
Human
motion change detection by hierarchical Gaussian process dynamical model with
particle filter.
In Proceedings of IEEE International Conference on Advanced Video and Signal
Based Surveillance, AVSS 2010, Pages 307–314, 2010.
2009
Ali Abusnina, Daniel Kudenko.
Adaptive Soft Sensor based on Moving Gaussian Process Window.
International Conference on Mechatronics Automation (ICMTMA), 2009.
Mauricio A. Álvarez, David Luengo, Neil D. Lawrence.
Latent
Force Models.
Journal of Machine Learning Research - Proceedings Track, Volume 5,
Pages 9–16, 2009.
Kristjan Ažman, Juš Kocijan.
Fixed-structure
Gaussian process model.
International Journal of Systems Science, Volume 40, Pages 1253–1262,
2009.
Jixu Chen, Minyoung Kim, Yu Wang, Qiang Ji.
Switching
Gaussian Process Dynamic Models for simultaneous composite motion tracking and
recognition.
In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, Pages 2655–2662, 2009.
S. Conti, J. P. Gosling, J. E. Oakley, A. O'Hagan.
Gaussian
process emulation of dynamic computer codes.
Biometrika, Volume 3, Pages 663–676, 2009.
Patrick Dallaire, Camille Besse, Brahim Chaib-Draa.
Learning
Gaussian process models from uncertain data.
Neural Information Processing, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2009.
Patrick Dallaire, Camille Besse, Stéphane Ross, Brahim Chaib-Draa.
Bayesian
reinforcement learning in continuous POMDPs with Gaussian processes.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2009, Pages 2604–2609, 2009.
Marc Peter Deisenroth, Marco F. Huber, Uwe D. Hannebeck.
Analytic
moment-based Gaussian process filtering.
In Proceedings of the 26th Annual International Conference on Machine
Learning, Pages 225–232, Montreal, Canada, 2009.
Marc Peter Deisenroth, Carl Edward Rasmussen.
Bayesian Inference
for Efficient Learning in Control.
In Proceedings of Multidisciplinary Symposium on Reinforcement Learning
(MSRL), Montreal, Canada, 2009.
Marc Peter Deisenroth, Carl Edward Rasmussen.
Bayesian
Inference for Efficient Learning in Control.
In Proceedings of the 10th International PhD Workshop on Systems and
Control, a Young Generation Viewpoint, Hluboka nad Vltavou, Czech Republic,
2009.
Marc Peter Deisenroth, Carl Edward Rasmussen, Jan Peters.
Gaussian process
dynamic programming.
Neurocomputing, Volume 72, Pages 1508–1524, 2009.
Gregor Gregorčič, Gordon Lightbody.
Gaussian process
approach for modelling of nonlinear systems.
Engineering Applications of Artificial Intelligence, Volume 22, Pages
522–533, 2009.
Leslie Ikemoto, Okan Arikan, David A. Forsythe.
Generalizing
motion edits with Gaussian processes.
ACM Transactions on Graphics, Volume 28, Pages 1–12, 2009.
Johnsen Kho, Alex Rogers, Nicholas R. Jennings.
Decentralised Control of
Adaptive Sampling in Wireless Sensor Networks.
ACM Transactions on Sensor Networks, Volume 5, Pages 1–35, 2009.
Jonathan Ko, Dieter Fox.
GP-BayesFilters:
Bayesian filtering using Gaussian process prediction and observation models.
Autonomous Robots, Volume 27, Pages 75–90, 2009.
Jonathan Ko, Dieter Fox.
Learning
GP-BayesFilters via Gaussian process latent variable models.
Robotics: science and systems, 2009.
Juš Kocijan, Kristjan Ažman.
Application
of varying parameters modelling with Gaussian processes.
In 2nd IFAC International Conference on Intelligent Control Systems and
Signal Processing (ICONS), Istanbul, Turkey, 2009.
Subhasish Mohanty, Santanu Das, Aditi Chattopadhyay, Pedro Peralta.
Gaussian
Process Time Series Model for Life Prognosis of Metallic Structures.
Journal of Intelligent Material Systems and Structures, Volume 20, Pages
887–896, 2009.
Duy Nguyen-Tuong, Matthias Seeger, Jan Peters.
Model
learning with local Gaussian process regression.
Advanced Robotics, Volume 23, Pages 2015–2034, 2009.
Jerome Le Ny, George J. Pappas.
On
trajectory optimization for active sensing in Gaussian process models.
In Proceedings of the IEEE Conference on Decision and Control, Pages
6286–6292, 2009.
Gianluigi Pillonetto, Alessandro Chiuso.
A Bayesian learning
approach to linear system identification with missing data.
In Proceedings of the IEEE Conference on Decision and Control, Pages
4698–4703, 2009.
Axel Rottmann, Wolfram Burgard.
Adaptive
autonomous control using online value iteration with Gaussian processes.
In Proceedings - IEEE International Conference on Robotics and Automation,
Pages 2106–2111, 2009.
Anton Schwaighofer, Timon Schroeter, Sebastian Mika, Gilles Blanchard.
How
wrong can we get? A review of machine learning approaches and error bars.
Combinatorial chemistry & high throughput screening, Volume 12,
Pages 453–468, 2009.
Ryan Turner, Marc Peter Deisenroth, Carl Edward Rasmussen.
System
Identification in Gaussian Process Dynamical Systems.
In Nonparametric Bayes Workshop at NIPS, Whistler, Canada, 2009.
Dit-Yan Yeung, Yu Zhang.
Learning
Inverse Dynamics by Gaussian process Regression under the Multi-Task Learning
Framework.
The Path to Autonomous Robots, 2009.
Guanling Zhou, Nanping Dong, Yuping Wang.
Non-Linear
Dynamic Texture Analysis and Synthesis Using Constrained Gaussian Process
Latent Variable Model.
In Proceedings of the Pacific-Asia Conference on Circuits, Communications
and System (PACCS), Pages 27–30, 2009.
Wen-yun Zhou, Qaun Liu.
A
Gaussian Processes Reinforcement Learning Method in Large Discrete State Spaces.
In Proceedings of International Conference on Advanced Computer Control
(ICACC), Pages 589–593, 2009.
2008
Kristjan Ažman, Juš Kocijan.
Non-linear
model predictive control for models with local information and uncertainties.
Transactions of the Institute of Measurement and Control, Volume 30,
2008.
B. Calderhead, M. Girolami, N. D. Lawrence.
Accelerating
Bayesian Inference over Nonlinear Differential Equations with Gaussian
Processes.
In Advances in Neural Information Processing Systems 21 - Proceedings of the
2008 Conference, Volume 1, Pages 217–224, 2008.
Kian M. Chai, Christopher Williams, Stefan Klanke, Sethu Vijayakumar.
Multi-task
Gaussian Process Learning of Robot Inverse Dynamics.
Advances in Neural Information Processing Systems 21, 2008.
Alessandro Chiuso, Gianluigi Pillonetto, Giuseppe De Nicolao.
Subspace
identification using predictor estimation via Gaussian regression.
In Proceedings of the IEEE Conference on Decision and Control, 2008.
Jongeun Choi, Joonho Lee, Songhwai Oh.
Swarm
intelligence for achieving the global maximum using spatio-temporal Gaussian
processes.
In Proceedings of American Control Conference (ACC), Pages 135–140,
Seattle, WA, 2008.
Jongeun Choi, Joonho Lee, Songhwai Oh.
Biologically-inspired
navigation strategies for swarm intelligence using spatial Gaussian processes.
In Proceedings of IFAC 17th World Congress, Pages 593–598, Seoul, South
Korea, 2008.
Giuseppe De Nicolao, Gianluigi Pillonetto.
A
new kernel-based approach for system identification.
In Proceedings of American Control Conference (ACC), Pages 4510–4516,
Seattle, WA, 2008.
Marc Peter Deisenroth, Jan Peters, Carl Edward Rasmussen.
Approximate
dynamic programming with Gaussian processes.
In Proceedings of American Control Conference (ACC), Pages 4480–4485,
Seattle, WA, 2008.
Marc Peter Deisenroth, Carl Edward Rasmussen, Jan Peters.
Model-Based
Reinforcement Learning with Continuous States and Actions.
In Proceedings of the European Symposium on Artificial Neural Networks
(ESANN), Pages 19–24, Bruges, Belgium, 2008.
Carl Henrik Ek, Philip H.S. Torr, Neil D. Lawrence.
Gaussian Process
Latent Variable Models for Human Pose Estimation.
Machine Learning for Multimodal Interaction, Lecture Notes in
Computer Science, 2008.
Alexandra Grancharova, Juš Kocijan, Tor Arne Johansen.
Explicit
stochastic predictive control of combustion plants based on Gaussian process
models.
Automatica, Volume 44, Pages 1621–1631, 2008.
Gregor Gregorčič, Gordon Lightbody.
Nonlinear system
identification: From multiple-model networks to Gaussian processes.
Engineering Applications of Artificial Intelligence, Volume 21, Pages
1035–1055, 2008.
Tomohiro Hachino, Hitoshi Takata.
Identification
of continuous-time nonlinear systems by using a Gaussian process model.
IEEJ Transactions on Electrical and Electronic Engineering, Volume 3,
Pages 620–628, 2008.
Jonathan Ko, Dieter Fox.
GP-Bayes
Filters: Bayesian filtering using Gaussian process prediction and observation
models.
In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Pages 3471–3476, Nice, France, 2008.
Juš Kocijan.
Gaussian Process Models for Systems
Identification.
In Proceedings of 9th Intetnational PhD Workshop on Systems and Control:
young generation viewpoint, Izola, Slovenia, 2008.
Juš Kocijan, Kristjan Ažman.
Gaussian
process model identification: a process engineering case study.
Systems Science Journal, Volume 34, Pages 31–38, 2008.
Juš Kocijan, Bojan Likar.
Gas-liquid
separator modelling and simulation with Gaussian-process models.
Simulation Modelling Practice and Theory, Volume 16, Pages 910–922,
2008.
Duy Nguyen-Tuong, Jan Peters.
Learning
Robot Dynamics for Computed Torque Control Using Local Gaussian Processes
Regression.
In Symposium on Learning and Adaptive Behaviors for Robotic Systems,
Pages 59–64, 2008.
Duy Nguyen-Tuong, Jan Peters, Matthias Seeger, Bernhard Schölkopf.
Learning
Inverse Dynamics: a Comparison.
In Proceedings of the European Symposium on Artificial Neural Networks
(ESANN), Pages 13–18, Bruges, Belgium, 2008.
Duy Nguyen-Tuong, Matthias Seeger, Jan Peters.
Computed
Torque Control with Nonparametric Regression Models.
In Proceedings of the American Control Conference (ACC), Pages 212–217,
2008.
Gianluigi Pillonetto, Alessandro Chiuso, Giuseppe De Nicolao.
Predictor
estimation via Gaussian regression.
In Proceedings of the IEEE Conference on Decision and Control, 2008.
Luc Pronzato.
Optimal
experimental design and some related control problems.
Automatica, Volume 44, Pages 303–325, 2008.
Carl Edward Rasmussen, Marc Peter Deisenroth.
Probabilistic
Inference for Fast Learning in Control.
Recent Advances in Reinforcement Learning, Lecture Notes on Computer Science,
2008.
Kyle Schmitt, Justin Madsen, Mihai Anitescu, Dan Negrut.
A
Gaussian process based approach for handling uncertainty in vehicle dynamics
simulation.
International Mechanical Engineering Congress and Exposition (IMECE),
2008.
Fernando di Sciascio, Adriana N. Amicarelli.
Biomass
estimation in batch biotechnological processes by Bayesian Gaussian process
regression.
Computers and Chemical Engineering, Volume 32, Pages 3264–3273, 2008.
Sylvain Vinet, Emmanuel Vazquez.
Black-box
identification and simulation of continuous-time nonlinear systems with random
processes.
In Proceedings of the IFAC 17th World Congress, Pages 14391–14396,
Seoul, South Korea, 2008.
Jack M. Wang, David J. Fleet, Aaron Hertzmann.
Gaussian
Process Dynamical Models for Human Motion.
IEEE transactions on pattern analysis and machine intelligence, Volume
30, Pages 283–298, 2008.
Jack M. Wang, David J. Fleet, Aaron Hertzmann.
Erratum:
Gaussian process dynamical models for human motion.
IEEE transactions on pattern analysis and machine intelligence, Volume
30, Pages 1118, 2008.
Jin Yuan, Kesheng Wang, Tao Yu, Minglun Fang.
Reliable
multi-objective optimization of high-speed WEDM process based on Gaussian
process regression.
International Journal of Machine Tools and Manufacture, Volume 48, Pages
47–60, 2008.
2007
Cédric Archambeau, Dan Cornford, Manfred Opper, John Shawe-Taylor.
Gaussian
Process Approximations of Stochastic Differential Equations.
In Journal of Machine Learning Research: Workshop and Conference Proceedings,
Volume 1, Pages 1–16, 2007.
Cédric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford, John Shawe-Taylor.
Variational
Inference for Diffusion Processes.
Advances in Neural Information Processing Systems, 2007.
Kristjan Ažman, Juš Kocijan.
Application of
Gaussian processes for black-box modelling of biosystems.
ISA transactions, Volume 46, Pages 443–457, 2007.
S. Calinon, F. Guenter, A Billard.
On Learning,
Representing, and Generalizing a Task in a Humanoid Robot.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
Volume 37, Pages 286–298, 2007.
Marc P. Deisenroth, Florian Weissel, Toshiyuki Ohtsuka, Uwe D. Hanebeck.
Online-Computation
Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous
State and Control Spaces.
In In Proceedings of the European Control Conference (ECC 2007, 2007.
Luka Eciolaza, M. Alkarouri, N. D. Lawrence, V. Kadirkamanathan, P. J. Fleming.
Gaussian
Process Latent Variable Models for Fault Detection.
In Proceedings of the 2007 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM 2007), Pages 287–292, Honolulu, HI, 2007.
Stephen Faul, Gregor Gregorčič, Geraldine Boylan, William Marnane, Gordon
Lightbody, Sean Connolly.
Gaussian
process modeling of EEG for the detection of neonatal seizures.
IEEE Transactions on Biomedical Engineering, Volume 54, Pages 2151–2162,
2007.
Alexandra Grancharova, Juš Kocijan.
Stochastic predictive control of
a thermoelectric power plant.
In Proceedings of the International Conference Automatics and Informatics'07,
Pages I-13–I-16, Sofia, 2007.
Alexandra Grancharova, Juš Kocijan, Tor Arne Johansen.
Explicit
stochastic nonlinear predictive control based on Gaussian process models.
In Proceedings of European control conference (ECC), Pages 2340–2347,
Kos, Greece, 2007.
Gregor Gregorčič, Gordon Lightbody.
Local
model identification with Gaussian processes.
IEEE Transactions on neural networks, Volume 18, Pages 1404–1423, 2007.
Tomohiro Hachino, Visakan Kadirkamanathan.
Time
series forecasting using multiple Gaussian process prior model.
In IEEE Symposium on Computational Intelligence and Data Mining (CIDM),
Pages 604–609, 2007.
Jonathan Ko, Daniel J. Klein, Dieter Fox, Dirk Haehnel.
Gaussian
Processes and Reinforcement Learning for Identification and Control of an
Autonomous Blimp.
In Proceedings of the International Conference on Robotics and Automation,
Pages 742–747, Rome, Italy, 2007.
Jonathan Ko, Daniel J. Klein, Dieter Fox, Dirk Haehnel.
GP-UKF:
Unscented Kalman filters with Gaussian process prediction and observation
models.
In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Pages 1901–1907, San Diego, CA, 2007.
Juš Kocijan.
Identifikacija
nelinearnih sistemov z Gaussovimi procesi.
Modeliranje dinamičnih sistemov z umetnimi nevronskimi mrežami in sorodnimi
metodami, Pages 73–86, 2007, (in Slovene).
Juš Kocijan, Kristjan Ažman.
Gaussian process model identification: a process engineering case study.
In Proceedings of the 16th International Conference on Systems Science,
Volume 1, Pages 418–427, Wroclaw, Poland, 2007.
Juš Kocijan, Kristjan Ažman, Alexandra Grancharova.
The
concept for Gaussian process model based system identification toolbox.
In Proceedings of the InternationalConference on Computer Systems and Technologies
(CompSysTech), Pages IIIA.23–1—-IIIA.23–6, Rousse, Bulgaria, 2007.
Juš Kocijan, Bojan Likar.
Gas-liquid separator modelling and simulation with Gaussian-process models.
In Proceedings of the 6th EUROSIM Congress on Modelling and Simulation (EUROSIM),
Ljubljana, Slovenia, 2007.
William E. Leithead, Yunong Zhang.
O(N-2)-operation
approximation of covariance matrix inverse in Gaussian process regression based
on quasi-Newton BFGS method.
Communications in Statistics-Simulation and Computation, Volume 36,
Pages 367–380, 2007.
Bojan Likar, Juš Kocijan.
Predictive
control of a gas-liquid separation plant based on a Gaussian process model.
Computers and chemical engineering, Volume 31, Pages 142–152, 2007.
Marta Neve, Giuseppe De Nicolao, Laura Marchesi.
Nonparametric
identification of population models via Gaussian processes.
Automatica, Volume 43, Pages 1134–1144, 2007.
Rainer Palm.
Multiple-step-ahead
prediction in control systems with Gaussian process models and TS-fuzzy models.
Engineering Applications of Artificial Intelligence, Volume 20, Pages
1023–1035, 2007.
Jack M. Wang, David J. Fleet, Aaron Hertzmann.
Multifactor
Gaussian process models for style-content separation.
In Proceedings of the 24th international conference on Machine learning,
Oregon, 2007.
H. Wu, F. Sun.
Adaptive
Kriging control of discrete-time nonlinear systems.
IET Control Theory & Applications, Volume 1, Pages 646–656, 2007.
Yunong Zhang, William E. Leithead.
Approximate
implementation of the logarithm of the matrix determinant in Gaussian process
regression.
Journal of Statistical Computation and Simulation, Volume 77, Pages
329–348, 2007.
2006
Kristjan Ažman, Juš Kocijan.
Gaussian process model validation: biotechnological case studies.
In Proceedings of the 5th Vienna Symposium on Mathematical Modeling
(MathMod), Vienna, Austria, 2006.
Kristjan Ažman, Juš Kocijan.
Identifikacija
dinamičnega sistema z znanim modelom šuma z modelom na osnovi Gaussovih
procesov.
In Zbornik petnajste elektrotehniške in računalniške konference (ERK),
Pages 289–292, Portorož, Slovenia, 2006.
Kristjan Ažman, Juš Kocijan.
An
application of Gaussian process models for control design.
In UKACC International Control Conference, Glasgow, UK, 2006.
Boštjan Grašič, Primož Mlakar, Marija Zlata Božnar.
Ozone
prediction based on neural networks and Gaussian processes.
Nuovo Cimento della Societa Italiana di Fisica, Sect. C, Volume 29, Pages
651–662, 2006.
David B. Grimes, Rawichote Chalodhorn, Rajesh P. N. Rao.
Dynamic
Imitation in a Humanoid Robot through Nonparametric Probabilistic Inference.
In Robotics: Science and Systems, 2006.
Đani Juričić, Juš Kocijan.
Fault detection based on Gaussian process model.
In Proceedings of the 5th Vienna Symposium on Mathematical Modeling
(MathMod), Vienna, Austria, 2006.
Douglas J. Leith, Roderick Murray-Smith, William E. Leithead.
Inference of
disjoint linear and nonlinear subdomains of a nonlinear mapping.
Automatica, Volume 42, Pages 849–858, 2006.
Kooksang Moon, Vladimir Pavlović.
Impact
of Dynamics on Subspace Embedding and Tracking of Sequences.
In Proceedings - 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), Volume 1, Pages 198–205, 2006.
Keith Kian Seng Neo, William E. Leithead, Yunong Zhang.
Multi-frequency
scale Gaussian regression for noisy time-series data.
In UKACC International Control Conference, Glasgow, UK, 2006.
Masatarou Ohmi, Hiroyuki Mori.
A
Gaussian processes technique for short-term load forecasting with
considerations of uncertainty.
IEEJ Transactions on Power and Energy, Volume 126, Pages 202–208, 2006.
Carl Edward Rasmussen, Christopher K. I. Williams.
Gaussian Processes for
Machine Learning.
MIT Press, 2006.
Keith Russell Thompson, David James Murray-Smith.
Implementation of Gaussian process models for nonlinear system
identification.
In Proceedings of the 5th Vienna Symposium on Mathematical Modeling
(MathMod), Vienna, Austria, 2006.
Raquel Urtasun, David J. Fleet, Pascal Fua.
3D
people tracking with Gaussian process dynamical models.
In Proceedings - 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), Volume 1, Pages 238–245, 2006.
2005
Kristjan Ažman.
Incorporating
prior knowledge into Gaussian process model.
In Proceedings of 6th International PhD Workshop on Systems and Control - A Young
Generation Viewpoint, Volume A, Pages 253–256, Izola, Slovenia, 2005.
Kristjan Ažman, Juš Kocijan.
An example
of Gaussian process model identification.
In Proceedings of 28th International conference MIPRO, CIS - Inteligent
Systems, Pages 79–84, Opatija, Croatia, 2005.
Kristjan Ažman, Juš Kocijan.
Identifikacija
dinamičnega sistema s histerezo z modelom na osnovi Gaussovih procesov.
In Zbornik štirinajste elektrotehniške in računalniške konference (ERK 2005),
Volume A, Pages 253–256, Portorož, Slovenia, 2005.
Kristjan Ažman, Juš Kocijan.
Comprising
prior knowledge in dynamic Gaussian process models.
In Proceedings of the International Conference on Computer Systems and
Technologies (CompSysTech), Pages IIIB.2–1—-IIIB.2–6, Varna, Bulgaria,
2005.
Yaakov Engel, Shie Mannor, Ron Meir.
Reinforcement
learning with Gaussian processes.
In Proceedings of the 22nd international conference on Machine learning,
Pages 201–208, Bonn, Germany, 2005.
Yaakov Engel, Peter Szabo, Dmitry Volkinshtein.
Learning
to Control an Octopus Arm with Gaussian Process Temporal Difference Methods.
In Advances in Neural Information Processing Systems, Volume 18, Pages
347–354, 2005.
Agathe Girard, Roderick Murray-Smith.
Gaussian
processes: Prediction at a noisy input and application to iterative
multiple-step ahead forecasting of time-series.
Lecture Notes in Computer Science, 2005.
Gregor Gregorčič, Gordon Lightbody.
Gaussian
Process Approaches to Nonlinear Modelling for Control.
Intelligent Control Systems Using Computational Intelligence Techniques,
IEE Intelligent Control Series, 2005.
Jostein Hansen, Roderick Murray-Smith, Tor Arne Johansen.
Nonparametric
identification of linearizations and uncertainty using Gaussian process
models—application to robust wheel slip control.
In Joint 44th IEEE conference on decision and control and European control
conference (CDC-ECC), Pages 7994–7999, Sevilla, Spain, 2005.
Juš Kocijan, Agathe Girard.
Incorporating
linear local models in Gaussian process model.
In Proceedings of IFAC 16th World Congress, Prague, Czech Republic,
2005.
Juš Kocijan, Agathe Girard, Blaž Banko, Roderick Murray-Smith.
Dynamic
systems identification with Gaussian processes.
Mathematical and Computer Modelling of Dynamical Systems, Volume 11,
Pages 411–424, 2005.
Juš Kocijan, Roderick Murray-Smith.
Nonlinear predictive control with
Gaussian process model.
Lecture Notes in Computer Science, 2005.
William E. Leithead.
Identification
of Nonlinear Dynamic Systems by Combining Equilibrium and Off-Equilibrium
Information.
In Proceedings of International Conference on Industrial Electronics and
Control Applications (ICIECA), Quito, Ecuador, 2005.
William E. Leithead, Keith Kian Seng Neo, Douglas J. Leith.
Gaussian
regression based on models with two stochastic processes.
In Proceedings of IFAC 16th World Congress, Prague, Czech Republic,
2005.
William E. Leithead, Yunong Zhang, Douglas J. Leith.
Efficient
hyperparameter estimation of Gaussian process regression based on quasi-Newton
BFGS update and power series approximation.
In Proceedings of IFAC 16th World Congress, Prague, Czech Republic,
2005.
William E. Leithead, Yunong Zhang, Douglas J. Leith.
Time-series
Gaussian process regression based on Toeplitz computation of O(N2) operations
and O(N) level storage.
In Joint 44th IEEE conference on decision and control and European control
conference (CDC-ECC), Sevilla, Spain, 2005.
William E. Leithead, Yunong Zhang, Keith Kian Seng Neo.
Wind
turbine rotor acceleration: identification using Gaussian regression.
In Proceedings of International conference on informatics in control
automation and robotics (ICINCO), Barcelona, Spain, 2005.
Hiroyuki Mori, Masatarou Ohmi.
Probabilistic
short-term load forecasting with Gaussian processes.
In Proceedings of the 13th International Conference on Intelligent Systems
Application to Power Systems, Pages 452–457, Arlington, VA, 2005.
Roderick Murray-Smith, Barak A. Pearlmutter.
Transformations
of Gaussian process priors.
Lecture Notes in Artificial Intelligence, 2005.
Rainer Palm.
Multi-step-ahead
prediction with Gaussian Processes and TS-Fuzzy Models.
In Proceedings of 14th IEEE International Conference on Fuzzy Systems,
Pages 945–950, 2005.
Daniel Sbarbaro, Roderick Murray-Smith.
An
adaptive nonparametric controller for a class of nonminimum phase non-linear
system.
In Proceedings of IFAC 16th World Congress, Prague, Czech Republic,
2005.
Daniel Sbarbaro, Roderick Murray-Smith.
Self-tuning control of nonlinear
systems using Gaussian process prior models.
Lecture Notes in Computer Science, 2005.
Jian Qing Shi, Roderick Murray-Smith, D. Mike Titterington.
Hierarchical Gaussian process
mixtures for regression.
Statistics and Computing, Volume 15, Pages 31–41, 2005.
Sethu Vijayakumar, Aaron D'souza, Stefan Schaal.
Incremental
Online Learning in High Dimensions.
Neural Computation, Volume 17, Pages 2602–2634, 2005.
Jack M. Wang, David J. Fleet, Aaron Hertzmann.
Gaussian
Process Dynamical Models.
Advances in Neural Information Processing Systems, Volume 18, Pages
1441–1448, 2005.
Zhi-hua Xiong, Hai-bin Yang, Yun-feng Wu, Hui-he Shao.
Sparse
GP-based soft sensor applied to the power plant.
Zhongguo Dianji Gongcheng Xuebao (Proc. Chin. Soc. Electr. Eng.), Volume
25, Pages 130–133, 2005.
Zhi-hua Xiong, Wei-qing Zhang, Yu Zhao, Hui-he Shao.
Thermal parameter soft
sensor based on the mixture of Gaussian processes.
Zhongguo Dianji Gongcheng Xuebao (Proc. Chin. Soc. Electr. Eng.), Volume
25, Pages 30–33, 2005.
Yunong Zhang, William E. Leithead.
Exploiting Hessian
matrix and trust region algorithm in hyperparameters estimation of Gaussian
process.
Applied Mathematics and Computation, Volume 171, Pages 1264–1281, 2005.
2004
Juš Kocijan, Douglas J. Leith.
Derivative
Observations Used in Predictive Control.
In Proceedings of IEEE Melecon, Volume 1, Pages 379–382, Dubrovnik,
Croatia, 2004.
Juš Kocijan, Roderick Murray-Smith, Carl Edward Rasmussen, Agathe Girard.
Gaussian Process Model Based
Predictive Control.
In Proceedings of 4th American Control Conference (ACC 2004), Pages
2214–2218, Boston, MA, 2004.
Douglas J. Leith, Martin Heidl, John V. Ringwood.
Gaussian Process
Prior Models for Electrical Load Forecasting.
In International Conference on Probabilistic Methods Applied to Power
Systems, Pages 112–117, 2004.
Carl Edward Rasmussen, Malte Kuss.
Gaussian
Processes in Reinforcement Learning.
In Advances in Neural Information Processing Systems conference, Volume
16, Pages 751–759, 2004.
Daniel Sbarbaro, Roderick Murray-Smith, Arturo Valdes.
Multivariable
generalized minimum variance control based on artificial neural networks and
Gaussian process models.
In International Symposium on Neural Networks, 2004.
2003
Agathe Girard, Carl Edward Rasmussen, Joaquin Quiñonero-Candela, Roderick
Murray-Smith.
Bayesian
regression and Gaussian process priors with uncertain inputs - application to
multiple-step ahead time series forecasting.
In Advances in Neural Information Processing Systems conference, Volume
15, Pages 529–536, 2003.
Gary Gray, Roderick Murray-Smith, Keith Russell Thompson, David James
Murray-Smith.
Tutorial
example of Gaussian process prior modelling applied to twin-tank system.
Technical Report DCS TR-2003-151, University of Glasgow, Glasgow, 2003.
Gregor Gregorčič, Gordon Lightbody.
Internal
model control based on Gaussian process prior model.
In Proceedings of the 2003 American Control Conference (ACC 2003), Pages
4981–4986, Denver, CO, 2003.
Gregor Gregorčič, Gordon Lightbody.
From multiple model networks to the Gaussian processes prior model.
In Proceedings of IFAC ICONS conference, Pages 149–154, Faro, Portugal,
2003.
Gregor Gregorčič, Gordon Lightbody.
An
affine Gaussian process approach for nonlinear system identification.
Systems Science Journal, Volume 29, Pages 47–63, 2003.
Jostein Hansen.
Using Gaussian processes as a modelling tool in control systems.
Technical Report DCS TR-2003, University of Glasgow, Glasgow, 2003.
Juš Kocijan, Blaž Banko, Bojan Likar, Agathe Girard, Roderick Murray-Smith,
Carl Edward Rasmussen.
A
case based comparison of identification with neural network and Gaussian
process models.
In Proceedings of IFAC ICONS Conference, Volume 1, Pages 137–142, Faro,
Portugal, 2003.
Juš Kocijan, Agathe Girard, Blaž Banko, Roderick Murray-Smith.
Dynamic
systems identification with Gaussian processes.
In Proceedings of 4th IMACS Symposium on Mathematical Modelling (MathMod),
Pages 776–784, Vienna, Austria, 2003.
Juš Kocijan, Agathe Girard, Douglas J. Leith.
Incorporating
linear local models in Gaussian process model.
Technical Report DP-8895, Institut Jožef Stefan, Ljubljana, 2003.
Juš Kocijan, Roderick Murray-Smith, Carl Edward Rasmussen, Bojan Likar.
Predictive
control with Gaussian process models.
In The IEEE Region 8 EUROCON: computer as a tool, Volume A, Pages
352–356, Ljubljana, Slovenia, 2003.
Douglas J. Leith, William E. Leithead, Roderick Murray-Smith.
Nonlinear structure
identification with application to Wiener-Hammerstein systems.
In Proceedings of 13th IFAC Symposium on System Identification,
Rotterdam, Netherlands, 2003.
William E. Leithead, Ercan Solak, Douglas J. Leith.
Direct
identification of nonlinear structure using Gaussian process prior models.
In Proceedings of European Control Conference (ECC 2003), Cambridge, UK,
Cambridge, UK, 2003.
Roderick Murray-Smith, Daniel Sbarbaro, Carl Edward Rasmussen, Agathe Girard.
Adaptive,
cautious, predictive control with Gaussian process priors.
In Proceedings of 13th IFAC Symposium on System Identification, Rotterdam,
Netherlands, 2003.
Joaquin Quiñonero-Candela, Agathe Girard.
Prediction
at uncertain input for Gaussian processes and relevance vector machines -
Application to multiple-step ahead time-series forecasting.
Technical Report IMM-2003-18, Technical University Denmark, Informatics and
Mathematical Modelling, Kongens Lyngby, 2003.
Joaquin Quiñonero-Candela, Agathe Girard, Jan Larsen, Carl Edward Rasmussen.
Propagation
of uncertainty in Bayesian kernel models - Application to multiple-step ahead
forecasting.
In Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Volume 2, Pages 701–704, 2003.
Daniel Sbarbaro, Roderick Murray-Smith.
Self-tuning
control of nonlinear systems using Gaussian process prior models.
Technical Report DCS TR-2003-143, University of Glasgow, Glasgow, 2003.
Ercan Solak, Roderick Murray-Smith, William E. Leithead, Douglas J. Leith, Carl
Edward Rasmussen.
Derivative
observations in Gaussian process models of dynamic systems.
In Advances in Neural Information Processing Systems conference, Volume
15, Pages 529–536, 2003.
2002
Blaž Banko, Juš Kocijan.
Uporaba
Gaussovih procesov za identifikacijo nelinearnih sistemov.
In Zbornik enajste elektrotehniške in računalniške konference (ERK 2002),
Volume A, Pages 323–326, Portorož, Slovenia, 2002.
Agathe Girard, Carl Edward Rasmussen, Roderick Murray-Smith.
Gaussian
process priors with uncertain inputs: Multiple-step-ahead prediction.
Technical Report DCS TR-2002-119, University of Glasgow, Glasgow, 2002.
Gregor Gregorčič, Gordon Lightbody.
Gaussian
Processes for Modelling of Dynamic Non-linear Systems.
In Proceedings of the Irish Signals and Systems Conference, Pages
141–147, Cork, Ireland, 2002.
Gregor Gregorčič, Gordon Lightbody.
Gaussian
Process for Internal Model Control.
In Proceedings of 3rd International PhD Workshop on Advances in Supervision
and Control Systems, A Young Generation Viewpoint, Pages 39–46, Strunjan,
Slovenia, 2002.
Juš Kocijan.
Gaussian
Process Model Based Predictive Control.
Technical Report DP-8710, Institute Jožef Stefan, Ljubljana, 2002.
Juš Kocijan, Bojan Likar, Blaž Banko, Agathe Girard, Roderick Murray-Smith,
Carl Edward Rasmussen.
Identification
of pH neutralization process with neural networks and Gaussian process model:
MAC project.
Technical Report DP-8575, Institute Jožef Stefan, Ljubljana, 2002.
Douglas J. Leith.
On identifying nonlinear dynamic structure from time series data.
Proceedings of Workshop on Modern Methods for Data Intensive Modelling,
Maynooth, Ireland, 2002.
Douglas J. Leith, William E. Leithead, Ercan Solak, Roderick Murray-Smith.
Divide and conquer identification using Gaussian processes.
In Proceedings of IEE Workshop on Nonlinear and Non-Gaussian signal
processing (N2SP), Peebles, UK, 2002.
Roderick Murray-Smith, Daniel Sbarbaro.
Nonlinear adaptive control using
nonparametric Gaussian process prior models.
In Proceedings of IFAC 15th World Congress, Barcelona, Spain, 2002.
Roderick Murray-Smith, Robert Shorten, Douglas J. Leith.
Nonparametric models of dynamic systems.
In Proceedings of IEE Workshop on Nonlinear and Non-Gaussian signal
processing (N2SP), Peebles, UK, 2002.
2001
Vladan Babovic, Maarten Keijzer.
A
Gaussian Process Model Applied to Prediction of the Water Levels in Venice
Lagoon.
In Proceedings Of The XXIX Congress Of International Association For
Hydraulic Research, Pages 509–513, 2001.
Roderick Murray-Smith, Agathe Girard.
Gaussian
Process priors with ARMA noise models.
In Irish Signals and Systems Conference, Maynooth, Ireland, Pages
147–152, Maynooth, Ireland, 2001.
2000
William E. Leithead, Douglas J. Leith, Roderick Murray-Smith.
A Gaussian Process
prior/velocity-based Framework for Nonlinear Modelling and Control.
In Irish Signals and Systems Conference, Dublin, Ireland, 2000.
Douglas J. Leith, Roderick Murray-Smith, William E. Leithead.
Nonlinear
structure identification: A non-parametric/velocity-based approach.
In Proceedings of the UKACC Control Conference, Cambridge, UK, 2000.
1999
Roderick Murray-Smith, Tor Arne Johansen, Robert Shorten.
On
transient dynamics, off-equilibrium behaviour and identification in blended
multiple model structures.
In Proceedings of the European Control Conference (ECC99), Pages BA–14,
Karlsruhe, Germany, 1999.
E-mail:jus[dot]kocijan[at]ijs[dot]si