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ABSTRACT

The performance of estimated models is often evaluated in terms of their predictive capability. In this study, we investigate another important
aspect of estimated model evaluation: the disparity between the statistical and dynamical properties of estimated models and their source
system. Specifically, we focus on estimated models obtained via the regression method, sparse identification of nonlinear dynamics (SINDy),
one of the promising algorithms for determining equations of motion from time series of dynamical systems. We chose our data source
dynamical system to be a higher-dimensional instance of the Lorenz 2005 type II model, an important meteorological toy model. We examine
how the dynamical and statistical properties of the estimated models are affected by the standard deviation of white Gaussian noise added to
the numerical data on which the estimated models were fitted. Our results show that the dynamical properties of the estimated models match
those of the source system reasonably well within a range of data-added noise levels, where the estimated models do not generate divergent
(unbounded) trajectories. Additionally, we find that the dynamics of the estimated models become increasingly less chaotic as the data-added
noise level increases. We also perform a variance analysis of the (SINDy) estimated model’s free parameters, revealing strong correlations
between parameters belonging to the same component of the estimated model’s ordinary differential equation.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151252

The time evolution of a physical system is understood as a
dynamical system. Extracting the parameters of dynamical sys-
tems from measurements is a crucial part of everyday practice
in many areas of science and engineering. When we create a
model that imitates a real-world system from measurements via
a numerical procedure, we say that we have determined an esti-
mated model of the observed system. Typically, estimated models
are evaluated based on their ability to make accurate predictions
that closely match real data over a given simulation time. How-
ever, in this study, we focused on another aspect of estimated
model evaluation that is crucial for understanding an appropriate
use of estimated models: the differences in dynamical and statis-
tical properties between the estimated models and their source
systems, which is the system that generated the numerical data
used to build the estimated models. Specifically, we investigated

how the noise level in the numerical data that is used for estimated
model learning affects the dynamical and statistical properties of
estimated models. To conduct our analysis, we used the Lorenz
2005 type II model1 (L05 II), a popular toy model in meteorol-
ogy. Estimated models were obtained using a recently popular
SINDy2 algorithm, which is a sparse regression method that can
deduce equations of motion from a given system’s time series
data. The selection of the L05 II source system was based on its
inherent characteristics that make it well-suited for the exami-
nation of both long-term and short-term dynamics, as well as
its capacity to effectively test the SINDy algorithm in diverse
scenarios, such as dimensionality and chaoticity. Our findings
suggest that the dynamical properties of the estimated models
match those of the source system well within a certain range of
data-added noise amplitudes, where the estimated models do not

Chaos 33, 073127 (2023); doi: 10.1063/5.0151252 33, 073127-1

© Author(s) 2023

 29 August 2023 06:22:30

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0151252
https://doi.org/10.1063/5.0151252
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0151252
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0151252&domain=pdf&date_stamp=2023-07-17
https://orcid.org/0000-0001-7278-9985
https://orcid.org/0000-0002-0504-6003
https://orcid.org/0000-0002-1221-946X
mailto:aljaz.pavsek@ijs.si
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0151252


Chaos ARTICLE pubs.aip.org/aip/cha

generate unbounded trajectories. Additionally, we observed that
as the amplitude of the data-added noise increased, the estimated
models exhibited less chaotic dynamics and notably break certain
symmetries present in the source system. We also conducted an
analysis of the estimated model’s free parameters, which revealed
strong correlations between parameters belonging to the same
component of the estimated model’s equation of motion. Over-
all, this research provides valuable insights into the evaluation of
estimated models in capturing the behavior of complex systems.
Furthermore, it provides systematic analysis of the widely recog-
nized SINDy estimator, and it represents a contribution to the
study of L05 II.

I. INTRODUCTION

In this paper, we want to present the study of the change in
dynamical and statistical properties between the dynamical system
that is the source of numerical data and the data-driven mathemat-
ical model, i.e., an estimated model that is meant to represent the
former.

One of the important reasons to obtain an estimated model is
its use for the prediction of points along the trajectory of the studied
dynamical system. This is a very common problem in many areas of
physics and engineering and is generally very challenging, particu-
larly when the system under consideration has nonlinear dynamics
and our analytical knowledge of the dynamics of the system is
incomplete.

There are various approaches to the prediction of dynamics,
such as modal decomposition methods,3 symbolic regression,4 and
machine-learning techniques,5 each with their own strengths and
weaknesses. The applicability of these methods may be restricted by
issues, such as numerical stability, memory storage, and time effi-
ciency. Furthermore, one significant challenge with some of these
methods is the analytical interpretation of the dynamics of the
mathematical model, extracted from the numerical data.

The paper’s primary focus is to present and analyze an
approach that has recently gained popularity in the problem of dis-
covering dynamical systems from numerical data in the form of
sparse regression,6 which is also referred to as the compressive-
sensing approach, as introduced in the work by Wang et al.7 A key
motivation for utilizing sparse regression is the realization that phys-
ical dynamical systems often possess a parsimonious structure, that
is, they can be described by a small number of parameters. Build-
ing on this insight, a robust algorithm was developed, referred to
as sparse identification of nonlinear dynamics (SINDy),2 which can
extract sparse dynamical equations from numerical data. Although
the SINDy estimator has gained increased attention in recent years
following the publication of the influential paper2 in 2016, it is
essential to note that a fundamentally similar approach, known
as zeroing-and-refitting, had already been introduced two decades
earlier.8 The effectiveness of SINDy has been demonstrated by
reconstructing the system of ordinary differential equations (ODEs)
from data collected from various non-linear fluid mechanics mod-
els. As an illustration, the method was applied on the model of
liquid wave formation behind a cylinder9 and the well-known
chaotic Lorenz (1963) system,10 as well as other examples, even in the

presence of added noise in the collected data, as presented in the
featured paper2 and other studies.

The SINDy estimator offers several notable advantages in
uncovering the underlying dynamics of physical systems from
numerical data. One of the key benefits of this method is its low com-
putational time complexity and fast convergence, which allows for
efficient processing of large data sets. Additionally, the estimator’s
robustness to noise in the data ensures that the results obtained are
reliable, even in cases when the data are not perfect. Another of the
most significant benefits of the SINDy estimator is the interpretabil-
ity of the results. The system of ODEs obtained via this method
provides a clear and transparent representation of the underlying
dynamics of the system, in contrast to other popular black-box
methods, which may not offer this level of insight. This feature of the
SINDy estimator allows for a deeper understanding of the system’s
behavior, which can be crucial for various applications in physics
and engineering.

The system of ODEs identified through the SINDy estimator
generates an estimated model, which closely approximates the orig-
inal or source system and can serve as a viable replacement. The
primary objective when creating these estimated models is often to
maximize their predictive capability, i.e., the accuracy of their pre-
dictions over a given simulation time, given an initial condition.
However, this should not be the sole evaluation criterion for an
estimated model. In situations where the original dynamical system
exhibits strong sensitivity to initial conditions, estimated models
might struggle with predictive capabilities. Therefore, it is essential
to consider the dynamical and statistical properties of the original
system when constructing estimated models. This approach ensures
that the estimated models not only provide accurate predictions
but also effectively capture the underlying dynamics and statistical
characteristics of the original system.

The contribution of this paper will, therefore, be an investi-
gation of the dynamical and statistical properties of the estimated
high-dimensional ODE models. In particular, the focus will be on
how the dynamical properties of the estimated models obtained
with the SINDy algorithm are affected by the measurement noise,11

specifically, by the standard deviation of the white Gaussian noise
added to the numerical data on which the estimated models were
fitted. We decided to study the dependence of the dynamical prop-
erties of the estimated SINDy models on the example of the source
system being the Lorenz 2005 type II model1 (to which we will refer
to as L05 II), which is an important toy model in the field of mete-
orology. This model has some convenient properties for our study,
such as rich dynamics, certain symmetries, arbitrary dimensional-
ity of the system, and the restriction of the trajectories to a finite
volume of state-space. The construction of estimated models can
also be driven by objectives other than making predictions, such as
indirectly estimating specific properties of the investigated dynam-
ical system.8 In these scenarios, the present paper can serve as a
reference regarding the extent to which the considered method-
ology for building estimated models, i.e., the SINDy algorithm,
can efficiently extract the dynamical properties of the inspected
(high-dimensional) dynamical system.

In real-world situations involving modeling higher-dimensional
systems, one frequently encounters the problem of observability,
which refers to the issue of measuring only a subset of system
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variables that are necessary for a complete description of the state
in the system’s state-space. Addressing this issue often involves
state-space reconstruction techniques, such as time-delay embed-
ding and principal component analysis (PCA),12 (delay) differential
embedding,13 and more recent approaches using autoencoders.14

Tackling such problems naturally involves numerous challenges,15

with the central one being the determination of the minimal
attractor embedding dimension. While there are some important
analytical results with limited applicability in this regard,16 numer-
ical methods are typically employed to partially overcome these
limitations.17,18 Additionally, a crucial concern is identifying a coor-
dinate basis in which the estimated model assumes a sparse rep-
resentation. While this paper acknowledges the complexities of
tackling these issues, it proceeds under the assumption that there
are no unmeasured system variables and that a coordinate basis is
suitable for performing sparse regression.

To provide a historical context and acknowledge potentially
relevant works, it is important to note that the field of nonlinear
system identification (with a focus on building sparse global ODE
models) has a history spanning over three decades, beginning with
the pioneering work by Crutchfield and McNamara.19 A compre-
hensive overview of this field can be found in the seminal article by
Aguirre and Letellier.20 As highlighted by the authors of this work,
the (global) modeling of nonlinear dynamical systems has its roots in
both engineering and mathematical physics, where the former takes
a more practical approach and the latter focuses on autonomous
and chaotic systems. Considering this interdisciplinary foundation,
we acknowledge that the terminology used in this paper may not
align perfectly with the expectations of readers from either end of the
spectrum. Nevertheless, we strive to maintain a balanced perspective
that bridges the gap between these two fields and accommodates the
interests of a broad audience.

This paper is roughly divided into three parts. In the first part
(Sec. II), we will discuss the theory needed to address the problem
at hand, i.e., we will briefly present the SINDy algorithm, L05 II and
its relevant features, and the employed methods of dynamical and
statistical analysis. In the second part (Sec. III), we will present the
proposed workflow that was carried out to arrive at the results. Last,
we will present and discuss the findings of this study in Sec. IV.

II. METHODS

As we implied in Sec. I, the objective of the present research was
to evaluate the performance of the SINDy algorithm being subject
to noisy data, in terms of the dynamical properties of the sought-
after estimated SINDy models. For the reasons that will become clear
in the present section, we chose the source dynamical system to be
Lorenz 2005 model of type II (L05 II), which has rich dynamics and
possesses intriguing properties.

We emphasize that the central focus of this study is on the
SINDy algorithm, i.e., L05 II is a carefully picked toy model whose
purpose is to serve as a source dynamical system for the testing of the
SINDy algorithm. Thus, the results are model-specific and should
not be recklessly generalized to the broad field of regression prob-
lems where the SINDy algorithm could be applied. Nevertheless, this
paper should serve as a caveat to such practices.

The purpose of the present section is to transparently lay down
the theoretic footing that is essential to understanding the results
and their implications, reported in Sec. IV. Following the main
SINDy article,2 we will first define the sparse regression problem21

and briefly present a variant of the basic SINDy algorithm. Second,
we will introduce the L05 II system focusing on its properties that
play a relevant role in the present study. Last, we will review the cho-
sen methods of dynamical and statistical analysis that were selected
as suitable characteristics on the basis of which the source system
and the estimated models can be compared.

A. Sparse identification of nonlinear dynamics (SINDy)

Sparse identification of nonlinear dynamics (SINDy)2 is a
method developed for the purpose of determining dynamical equa-
tions from noisy numerical data collected from numerical simu-
lations or real-world physical experiments. The method assumes
that, as in many physically relevant scenarios, the observed system’s
dynamics can be expressed in the form of a N-dimensional ODE
(system of ODEs),

ẋ(t) = f(x(t)), (1)

whose right-hand side (RHS), i.e., the vector function f is in every
component made up of only a handful of non-zero terms. That is, if
we chose a library 2 of all function terms that could (with respect
to some relevant prior knowledge on the problem, such as dimen-
sionality and a coordinate basis) govern the dynamics of our system,
we expect the solution f to be sparse in the space of all such possible
functions.

Suppose that, by being provided with numerical data on the

state vector x(t) =
[

x0(t) x1(t) · · · xN−1(t)
]T

∈ R
N of the sys-

tem, measured at consecutive time instances ti, i ∈ 0, . . . , m − 1, we
first construct the matrix of the system states,

X =
[

x0 x1 · · · xm−1

]T
∈ R

m×N. (2)

The corresponding derivatives matrix, represented as Ẋ

=
[

ẋ0 ẋ1 · · · ẋm−1

]T
can be computed using a suitable tech-

nique, the choice of which can directly impact the final models.22

In our study, we opted for the Savitzky–Golay method,23 utilizing
third-order polynomials for the calculations, which is suitable for
working with noisy data. Building the library of function candidates2

2(X) =
[

θ 0(X) · · · θP−1(X)
]

∈ R
m×P, evaluated on the data X,

we seek the solution of equation

Ẋ = 2(X)4, (3)

i.e., we are searching for the matrix of coefficient vectors 4

=
[

ξ 0 ξ 1 · · · ξN−1

]

∈ R
P×N that minimizes the above expres-

sion. The aforementioned requirement of f being sparse in the
space of all candidate functions translates into condition on 4

being sparse. Trying to find 4 that best solves Eq. (3) numerically
translates into minimizing the expression

||Ẋ − 2(X)4||22 + αR(4) (4)

over 4, where || · ||22 denotes the square of the Frobenius norm of
a matrix, usually referred to as the `2 norm,24 and R is the chosen
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regularizer function.25 The strength of regularization is controlled
by the scalar parameter α.

A popular method to enforce the sparsity of the solution 4

is to choose R to be the `1 norm, resulting in LASSO.26 However,
LASSO can be computationally inefficient when dealing with excep-
tionally large data sets.2 Additionally, prior research has indicated
that LASSO may yield models that are not genuinely sparse, as a con-
siderable number of terms in the coefficient matrix 4 can be small
yet non-zero.27 Owing to these concerns, the authors of SINDy2

proposed a so-called sequential thresholded least squares (STLSQ)
algorithm, which arrives at the solution in an iterative fashion. At
each step, first, the regularized least squares solution to (4) is com-
puted, where R = `2 is chosen.28 Then, all the coefficients of 4 that
are smaller than some predefined value λ, are zeroed out. The proce-
dure is iterated until only a handful of terms in 4 are different from
zero or until convergence.

The algorithm is easy on computer memory, turns out to be
robust to noisy data, and is also fast convergent, usually arriv-
ing at the solution only after a couple of iterations.2 The noise
level-dependent performance of the STLSQ algorithm was stud-
ied only on generic, low-dimensional systems, focusing mainly on
the forecasting abilities and the attractor shape of the resulting
estimated dynamical systems. However, it remained unclear how
exactly do properties of the estimated models obtained via STLSQ
vary with respect to the changing noise level in the data, how the
algorithm performs over a range of different, especially higher state-
space dimensions, dynamic regimes, and sparsity parameters21 of the
source system’s ODE in the feature space (assuming source system’s
ODE is known analytically). We suggest that the L05 II case study
could be suitable to help to answer some of the above questions.

B. Lorenz 2005 type II model

Lorenz 2005 type II model (L05 II) is a meteorological toy
model that represents one-dimensional transport of a scalar quantity
on a closed chain, i.e., on a finite set of discrete points with periodic
boundary conditions.1 It is represented in a form of an ODE (a sys-
tem of ODEs) whose structure is determined by three model-specific
parameters; N is the dimension of the system, F is a forcing constant
that impacts the dynamical regime of the system, and the parameter
K can be used to control the number of bilinear terms on the RHS
of the model’s ODE. The equation that defines the time evolution of
the state vector x in its nth component is given by

dxn

dt
= fn(x0, . . . , xN−1) = [x, x]K,n − xn + F, (5)

with

[x, x]K,n =
1

K2

J
∑′

i=−J

J
∑′

j=−J

(xn−K+j−ixn+K+j − xn−2K−ixn−K−j), (6)

where n = 0, . . . , N − 1. In the case of K being an even number,
J = K/2 and

∑′ denotes a modified summation where the first and
last terms are divided by two. For odd K, we perform the usual sum-
mation, where J = (K − 1)/2. While the structure of Eq. (5) might
appear complex, its components possess a clear physical interpreta-
tion. With xn representing the value of a scalar variable at nth node

FIG. 1. Figure illustrates the PCA reconstruction of long trajectories of the L05 II
system for N = 30, K = 3, and two values of the forcing parameter: F = 5 (left)
and F = 30 (right). The axes, labeled z0, z1, and z2, correspond to the scores
of the first three principal components. These components represent the direc-
tions in the original state-space along which the system’s variance is the highest.
Specifically, they account for 60% of the total variance in the case of F = 5, and
30% when F = 30. Both systems are simulated for 104 time units, as indicated
on the colorbar, starting from a random point in the state-space, generated in
accordance with Lorenz.1

on the chain, if taken to be positive, the constant term represents
the forcing, the (negative) linear term indicates the damping of this
variable, and the bilinear terms function as convective terms.

The principal component analysis12 (PCA) of the L05 II’s long
trajectories, which serve to represent the system’s attractor with
parameters N = 30 and K = 3, is displayed in Fig. 1 for two distinct
forcing term F values. At F = 5, the system exhibits more regular
dynamics, effectively evolving on a manifold much lower than N
= 30. However, the system at F = 30 is markedly different, lacking
a distinct structure due to its highly chaotic dynamics. Despite this
chaotic characteristic, the system’s state evolution remains tractable
when visualizing the time-varying component values side-by-side.

In this vein, Fig. 2 depicts a typical trajectory of the L05 II sys-
tem at N = 30, K = 3, and F = 30 in the form of a heat map. Each
component of the state vector x(t) is constrained within a finite
interval and locally resembles a superposition of waves. The afore-
mentioned transport of the scalar variable across the closed chain
manifests as conspicuous ridges, slightly deviated from the vertical
direction of the plot.

Along the three model-specific parameters that allow for tun-
ing of the system’s certain properties, L05 II possesses additional
two key features that play an essential role in this study. First, the
model is manifestly translation symmetric along the chain, i.e., it is

FIG. 2. Typical time evolution for L05 II at the value of model-specific parameters
N = 30, K = 3, and F = 30. Every row represents the time evolution of one
component of the state vectorx(t) over time range [0, 15].
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invariant under the cyclic change in variables indices

n → n + k (mod N) (7)

for an arbitrary integer k.29 The STLSQ algorithm does not have a
property that would preserve this symmetry on purpose.

Second, if we rewrite the model Eq. (5) in a tensorial notation
as

dxn

dt
= fn = F +

N−1
∑

ni=0

Lnni
xni

+

N−1
∑

ni=0

N−1
∑

nj=0

Qnninj
xni

xnj
, (8)

we find that the tensor Qnninj
is skew-symmetric and that Lnni

is
negative definite. The long-term stability theorem30 guarantees for
systems that possess this property that there exists a N-dimensional
ellipsoid in the state-space into which the trajectory resulting from
the general initial condition will fall after some initial finite trap-
ping time and remain there forever. Since such systems, therefore,
do not generate divergent trajectories, we can assume that the long-
term dynamical and statistical properties that will be presented in
Sec. II C are reasonably defined for the case of L05 II.

Another feature that comes about as a direct consequence of the
model’s equation form is that the divergence of the system’s ODE is
equal to the negative value of the system’s dimension, i.e.,

∑

n

∂fn

∂xn

= −N. (9)

C. Utilized evaluation methods of estimated models

In this section, we will discuss the methods of dynamical and
statistical analysis that were selected as suitable characteristics on
basis of which the source system and the estimated models can be
compared. Specifically, the evaluation of the estimated models will
be based on the deviation from the source system in terms of the
Lyapunov spectrum, power spectral density (PSD), and an example-
specific function that measures the breaking of a certain symmetry
that is present in the source system. Following Sec. II D, we will
separately discuss the evaluation of the estimator in terms of the
covariant matrix of estimated model coefficients, which will provide
insights into the sensitivity of the STLSQ algorithm to variations in
data.

1. Lyapunov exponents

Suppose that a N-dimensional dynamical system under inspec-
tion possesses N Lyapunov exponents31 that can be numerically
calculated, e.g., as in our case, via standard Benettin algorithm32 with
modified Gram–Schmidt orthonormalization.33 Lyapunov expo-
nents dictate the rate and the fashion in which the control volume
of the dynamical system’s state-space will deform under the action
of time evolution in the statistical limit. Particularly, its largest
value determines the system’s sensitivity to perturbations in initial
conditions.

Further on, the spectrum as a whole can be used to approxi-
mately determine Lyapunov dimension34 dL that serves as a measure
of the dimension of the attractor’s manifold, i.e., the subspace of
the state-space, on which the systems’ dynamics effectively takes
place. Suppose that we order the exponents λi in the spectrum

from the most positive λ1 = λmax to the most negative λN = λmin.
The Lyapunov dimension can be calculated using the Kaplan–Yorke
formula,34

dL = j +

∑j
i=1 λi

|λj+1|
, (10)

where j is the highest index for which
∑j

i=1 λi > 0.
Another property of the Lyapunov spectrum relevant for our

case is the equivalence of the divergence of the system’s ODE and
the sum of all exponents λi in the spectrum,35 i.e.,

∑

n

∂fn

∂xn

=
∑

i

λi. (11)

If the divergence of the system’s ODE turns out to be a state-
space constant, as in the case of (9), it can be used as a numerical
check when computing the Lyapunov spectrum numerically.

The Lyapunov spectrum is known to be invariant under
smooth changes of the coordinate system.36 Consequently, only
alterations in the estimated model parameter space that contribute
to the change in its dynamics will lead to variations in the Lya-
punov spectrum values and other closely related quantities. With
this in mind, we regard the Lyapunov spectrum and other closely
related quantities as valuable characteristics for evaluating estimated
models.

Lyapunov exponents govern the behavior of the distance
between initially adjacent points in state-space under the system’s
time evolution. For dynamical systems with finite-size attractors,
this is, however, relevant only for short time periods. To encapsulate
the system’s long-term properties, it is sensible to examine a differ-
ent quantity. As a natural candidate presents itself the power spectral
density.25

2. Power spectral density

Power spectral density (PSD) holds the information on the
presence of waves of different frequencies ν within the signal xn,
where an instance of the signal is the time series generated by sam-
pling system’s nth component xn with a discrete time step 1t over a
finite time interval t ∈ [0, (m − 1)1t], where the number of samples
is m. In other words, xn is a column vector in the matrix of system
states (2).

Such a signal, generated by a chaotic dynamical system, will
result in a PSD that is in general a highly variable function and must
be thus appropriately smoothed in order to be compared between
source system and estimated models. For this purpose, we employ
a well-known method for smoothing the noise in the spectrum,
the so-called Welch’s method.37 The source dynamical system pos-
sesses a translation symmetry (7), but this only holds approximately
for estimated models. Consequently, it is sensible to get additional
smoothing of the spectra by averaging over all n = 0, . . . , N − 1 sig-
nals xn produced by the corresponding system components. That is,
we define our observable to be

S̃(ν) =
1

N

N−1
∑

n=0

S(ν|xn), (12)
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where S(ν|xn) denotes the PSD of the signal at frequency ν generated
by the nth component of the system, calculated via Welch’s method.
The parameters of Welch’s method were adjusted to produce PSDs
for trajectories of the source system and different estimated models,
that were, at an adequate frequency resolution, sufficiently smooth
to be compared with each other.

3. Spatial correlation

We want to design a quantity to describe the interdependence
of the components of the dynamical system’s ODE, i.e., its state-
space variables. Let us define the spatial correlation matrix C of
dimension N × N in terms of its coefficients,

Cn1 ,n2 =
1

m

m−1
∑

i=0

(xn1 ,i − x̄n1 ,i)(xn2 ,i − x̄n2 ,i). (13)

As in Sec. II C 2, xn1 is a signal corresponding to the system’s
n1th component, specifically xn1 ,i is its ith entry and x̄n1 ,i denotes
the mean of each signal xn1 , i.e., x̄n1 ,i = 1

m

∑

i xn1 ,i. To simplify the
notation in the following equations, we define the matrix C to be
cyclically periodic in each index with period N, i.e.,

Cn1+N,n2 = Cn1 ,n2+N = Cn1 ,n2 . (14)

Matrix C is manifestly symmetric (under exchange of indices)
and contains information about the correlation between two arbi-
trary components of the system’s state vector. Its diagonal values
(n1=n2) are a well-known quantity, i.e., the variance of the values
within the signal xn1 , produced by n1th system component. In the
case that, cyclically relabeling state-space variable indices does not
change the equation of motion (1), i.e., the system has symmetry
(7), for any integer k it also holds

Cn1 ,n2 = Cn1+k,n2+k. (15)

These symmetries reduce N × N of initially independent quan-
tities of the spatial correlation matrix C to just N/2 + 1 if N is even or
(N + 1)/2 if N is odd. For this purpose, it is convenient to introduce

C(1)
k =

1

N

N−1
∑

n=0

Cn,n+k, (16)

where the integer k runs from 0 to N/2 or to (N − 1)/2.
In fact, symmetry (15) is expected to hold in the limit of the

infinite continuous signal, i.e., when we send the number of samples
m and the sampling rate 1/1t to infinity. However, we expect the
symmetry to approximately hold for sufficiently long signals. Esti-
mated models, or specifically their ODEs in general will not possess
symmetry (15). Deviation from it can be characterized by

C(2)
k =

1

N

N−1
∑

n=0

(

Cn,n+k − C(1)
k

)2
, (17)

which can be thought of as the variance of Cn,n+k at fixed k. The
violation of the symmetry (15), which is likely to be observed in esti-
mated models, will be reflected in larger values of C(2)

k compared to
the source system.

D. Evaluation of the estimator: Covariance matrix of

model coefficients

Regardless of our knowledge of the source system, it is possible
to statistically evaluate the estimator based on the sensitivity (or dis-
persion) of the model coefficients in the presence of small changes
in the data. That is, the sensitivity of the solution 4 of Eq. (3) found
by the investigated algorithm at some specific value of the data X is
described by the covariance matrix of model coefficients.38

Let us express the matrix of model coefficients 4 and the
matrix of data X in a vectorized form, denoted by 4V and XV.
For sufficiently small perturbation of the data XV → XV + δXV the
variation in 4V is linearly dependent on δXV, i.e.,

δ4V = DδXV + O(δX2
V) (18)

for some matrix D containing information about the model and
minimization procedure.

Suppose the perturbation δXV is originating from white Gaus-
sian noise N (0, b2) with zero mean and standard deviation b in the
data. The model sensitivity to such variations of the data is char-
acterized by the covariance matrix of model coefficients Cov[δ4V]
∈ R

Q×Q with Q = PN, i.e.,

Cov[δ4V] = DCov[δXV]DT = DDTb2, (19)

where we took into account the manifestly diagonal form of data
covariance matrix Cov[δXV] = Ib2.

The covariance matrix can be approximated well by iteratively
fitting the estimated model to data for several, say M random (δX)j

around a fixed X and from the resulting (δ4)j evaluating the sample
covariance matrix,39

Cov[δ4V] =
1

M − 1

M−1
∑

j=0

(δ4V)j(δ4V)T
j . (20)

The corresponding correlation matrix elements (Corr
[δ4V])q1 ,q2 , q1, q2 ∈ {0, 1, . . . , Q − 1} are calculated from the covari-
ance matrix as

(Corr[δ4V])q1 ,q2

= (Cov[δ4V])q1 ,q2

(

(Cov[δ4V])q1 ,q1
(Cov[δ4V])q2 ,q2

)− 1
2 . (21)

III. DATA GENERATION AND WORKFLOW

In order to provide context and clarity for the reader, the cur-
rent section outlines the workflow that was carried out and that we
propose along with the key details of our study. In short, we first
selected a specific model instance (i.e., L05 II at selected parame-
ters N, K, and F) and simulated the model noise-free to obtain time
series (i.e., discrete points along trajectories) on which we evalu-
ated certain characteristic functions. Subsequently, we added white
Gaussian noise to the L05 II’s time series, which can be viewed
as introducing measurement noise11 and then applied the STLSQ
algorithm to this modified data. The same characteristic functions
were then evaluated on the resulting estimated models generated
from the noisy data. The entire process is described in detail below:
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1. First, we chose our specific model to be the L05 II at the value of
model-specific parameters,

N = 30, K = 3, F = 30. (22)

The specific dimension parameter N = 30 along with the
forcing parameter F = 30 was carefully chosen so that the
dynamics of the system is complex enough (chaotic) and its
attractor is of higher dimensionality than in the examples dis-
cussed in previous studies.2,40 On the other hand, it was also
desirable to keep the computational complexity sufficiently low
for the program to be run on a personal computer.

The model-specific parameter K = 3 gave rise to 18 bilinear
terms on the RHS in every component, i.e., 20 terms in total. We
chose a polynomial library 4 of order 2, i.e., the space of all pos-
sible function terms to be the space of all constant, linear, and
bilinear terms, that equaled to P · N = 14 880 free parameters of
the estimated model. Thus, the vector representing components
of the source model’s ODE has an adequately sparse represen-
tation in this basis, supporting the use of a sparse regression
technique STLSQ. The algorithm did not produce satisfactory
results for polynomial libraries of higher orders.

The model-specific parameters of (22) were also chosen such
that the amplitudes of the coefficients in the ODE range from
roughly O(10−1) to O(101) posing another challenge for the
algorithm.

2. With a specific model in hands, we generated a random initial
condition as described in Lorenz’s paper1 and propagated it for-
ward 103 time units to reach the attractor, where we assumed the
dynamics to be sufficiently ergodic and thus the Lyapunov expo-
nents to be meaningfully defined. Furthermore, we supposed
the existence of a global attractor, a premise that was employed
also by other researchers of the L05 models.1,41 To support this
premise, we emphasize that different time averages (such as
moments, Lyapunov exponents, etc.) turned out to be indepen-
dent of initial conditions, a result that would in general not be
expected in the presence of multiple attractors. Moreover, the
L05 II satisfies the criteria of the long-term stability theorem,30

and, as a consequence, has a region of attraction clearly defined.
Once we obtained a new initial condition situated on the

attractor, we propagated it further in time for an additional 104

time units, sampling the trajectory at every 1t = 10−3, and stor-
ing the data in matrix X0. Using an ordinary Fourier Transform
(FT), we first estimated the Nyquist–Shannon critical sampling
frequency42 above which information loss becomes negligible.
This step is vital, as previous studies have emphasized that
undersampling can result in estimated models with less devel-
oped dynamics.22 Then, we employed Welch’s method to obtain
a smoothed PSD spectrum of the source system. On that very
same trajectory, we also determined the values of C(1) and C(2)

for the source system.
Next, we calculated the Lyapunov spectrum (with the initial

condition being the first point on the saved trajectory X0) and
tuned the parameters of the Benettin algorithm to values where
condition (9) was well approximated. The Benettin algorithm
parameters remained fixed for all future calculations.

To reduce the possible bias (deviation from the theoreti-
cal result in the statistical limit) presented by random initial

conditions, the whole procedure was repeated multiple times;
the results presented in the next chapter are averaged over
five different random initial conditions and corresponding tra-
jectories X

(β)

0 for β = 1, . . . , 5. Additionally, averaging over
five samples was enough to produce to considerably smooth
PSDs.

3. In the next step, we first selected one of the saved trajecto-
ries, say X

(β)

0 , as the data of the STLSQ algorithm. Specifi-
cally, the data were composed of the initial m samples from
the trajectory, selecting only every tenth data point. In other
words, we pruned the data by retaining only every tenth
row of X

(β)

0 . This approach effectively set our sampling fre-
quency to 1t = 10−2, a value determined in accordance with
the Nyquist–Shannon critical sampling frequency. Before pro-
ceeding with executing the STLSQ algorithm, white Gaussian
noise N (0, a2) with mean 0 and standard deviation a was
added to the data, i.e., to source system’s time series.43 For
the purpose of our current discussion, we will denote the data
that includes measurement noise with standard deviation a
as X(β)

a . The optimal number of supplied samples m and the
algorithm-intrinsic parameters (such as threshold λ and regu-
larization intensity α)44 were chosen through cross-validation,
suitable for the temporal nature of the data.45 Specifically, we
used scikit’s function TimeSeriesSplit46,47 that is a variation of k-
fold, which returns first k folds as train set and the (k + 1)th
fold as test set. The estimated model fitted on X(β)

a which we
will denote as Mest(a, β), was then obtained by refitting on
all m data samples at the found optimal algorithm-intrinsic
parameters.

4. Utilizing the STLSQ algorithm with the most effective intrinsic
parameters α and λ as determined from non-noisy data X

(β)

0 ,
we carried out a statistical evaluation of the estimator. In par-
ticular, we examined how the bias and dispersion (represented
by the covariance matrix) of the estimated models’ coefficients
varied across different levels of white Gaussian noise standard
deviation b, as discussed in Sec. II D. For each considered per-
turbation amplitude b, we selected one of the saved trajectories,
say X

(β)

0 , and ran the STLSQ algorithm M = 100 times on the
100 different realizations of X

(β)

b . Additionally, the results were
averaged over all β = 1, . . . , 5 saved trajectories. By using b to
denote the perturbation amplitude (i.e., small noise level) in
this part of the study (instead of a), we emphasize the statisti-
cal nature of the results from this evaluation of the estimator,
differentiating it from the specific example study concerning
properties of the estimated models addressed in the subsequent
step.

5. Step 3 was repeated for multiple values of white Gaus-
sian noise standard deviation a ∈ {0, 0.5, 1.0, 1.5} and for all
β = 1, . . . , 5 different data instances within each noise level,
resulting in a total of 20 different estimated models Mest(a,β).
We emphasize that the optimal values of the threshold and
regularization parameters λ and α were chosen through
cross-validation individually for each data instance. The
selected values of noise levels a approximately correspond to
a ∈ {0, 0.0093σA, 0.0185σA, 0.0277σA}. With σA, we denoted the
standard deviation of the m sampled points on the source
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system’s trajectory, i.e.,

σA =

√

√

√

√

1

m

N−1
∑

n=0

m−1
∑

i=0

(xn,i − x̄n,i)
2 (23)

and can be regarded as the measure for the size of the attractor.
The notation in the above equation is consistent with one intro-
duced in Sec. II C 3. The value of σA was averaged over all five
source system’s example trajectories X

(β)

0 .
Further on, for each obtained estimated model Mest(a, β),

we calculated the selected dynamical and statistical properties
of the estimated models, i.e., Lyapunov spectra, PSD, C(1), and
C(2). The method-specific and other parameters of the utilized
methods (i.e., initial conditions, Benettin algorithm param-
eters, Welch’s method parameters, number of samples, and
sampling frequency) were kept the same throughout this proce-
dure. Finally, averaging the results over all five estimated model
instances within each noise level a, we plotted the graphs repre-
senting deviations of estimated models from the source system
in terms of all selected properties and for all chosen noise lev-
els a. For the sake of brevity, we will refer to the calculations
averaged over different estimated model instances β within one
noise level a as properties belonging to estimated model, Mest(a).

The results were calculated using program code written in
Python programming language (version 3.7.3.). Specifically, we used
scipy’s LSODA integrator with automatic stiffness detection and
switching.48,49 The data was represented and managed using numpy
library50 and the STLSQ algorithm is available on the official pysindy
repository.40

IV. RESULTS AND DISCUSSION

In this section, we will present the results of our study. In
Sec. IV A, we will first report on the bias in the estimated model
coefficients resulting from non-noisy data input to the estimator.
This will be followed by a discussion on the sensitivity of model
coefficients to small noise levels, quantified through the covariance
and correlation matrices of the estimated model coefficients. As
we shift focus to higher noise levels in Sec. IV B, we will illustrate
the influence of the measurement noise in the data with respect
to the dynamical and statistical properties of the estimated models,
outlined in Sec. II C.

A. Evaluation of the estimator

All the models trained on noise-free data [i.e., Mest(a = 0)]
turned out to be slightly biased. It is worth noting that in each exam-
ple, the threshold parameter λ (see Sec. II A), chosen accordingly to
cross-validation results, was two orders of magnitude smaller than
the smallest coefficient present in the source system’s ODE. Addi-
tionally, the regularization strength parameter α, which was also
determined through cross-validation, was non-zero in all noise-free
data cases. Consequently, the estimated model’s ODE contain some
additional non-zero linear terms, which contribute to the bias of
model coefficients.

Figure 3 shows the average and relative bias in estimated model
Mest(a = 0) coefficients corresponding to function terms that were

FIG. 3. Absolute (blue) and relative (red) bias in coefficients of the first component
of the Mest(a = 0) estimated model’s ODE (i.e., 4p,0 := 4est

p,0) with respect to

true coefficients [ones present in the first component of the source system’s ODE
(i.e., 4

org

p,0 ) that can be deduced from Eq. (5)]. The ticks on the abscissa label

the coefficients associated with different terms. First, f• denotes the estimated
model’s ODE component with the index “•.” Second, “1” denotes the constant
term, “x•” represents linear term with index “•,” and “x• x•” are the bilinear terms.

present in the first component of source model’s ODE. The absolute
bias is the greatest in the coefficient corresponding to the constant
term. Relative biases of estimated model coefficients (i.e., bias nor-
malized with coefficient values of the source model) are comparable
among all estimated model coefficients and are approximately of
order 10−2.

Studying the effect of white Gaussian noise in the data let
us first examine how the perturbation amplitude (i.e., noise level
b � 1) affects the noise-induced average bias in estimated model
coefficients Mest(b) (see Sec. II D and step 4 in Sec. III). The results
are depicted in Fig. 4. In the limit of small perturbation of the
data, the average (perturbation induced) bias in the estimated mod-
els’ coefficients 4 exhibits a linear dependence on the perturbation
amplitude b. We also see in Fig. 4 that in this limit, the covariance
matrix scales quadratically with the perturbation amplitude, a result
that is in agreement with Eq. (19).

The covariance matrices of model coefficients Cov[δ4V] [cal-
culated via Eq. (20)] are too large (matrices of size 14 880 × 14 880)
to be graphically displayed in full. Thus, only a part of the covari-
ance matrix containing the elements larger than 0.02 of its maximal
element are shown in Fig. 5 for the case of perturbation ampli-
tude b = 10−7. In this perturbation regime, the covariance matrix
is approximately diagonal with largest entries corresponding [as for
the case of the absolute bias (Fig. 3)] to the constant coefficient
terms, i.e., they are at least two orders of magnitude greater than
the coefficients belonging to linear and bilinear terms.

The correlation matrix at b = 10−7 indicates that there is a
higher correlation among function terms belonging to the same
component of the estimated model’s ODE. These terms are mostly
spatially adjacent linear terms and bilinear terms of type xn1xn2 and
xn3xn4 , where |n1 − n3| ≤ 3 and |n2 − n4| ≤ 3, as can be seen explic-
itly in Fig. 6, where we displayed the part of the correlation matrix
corresponding to the first ODE component f0. Considerable corre-
lation is also present between function terms of neighboring ODE
components, i.e., between terms belonging to ODE components fn1
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and fn2 with |n1 − n2| = 1. In short, the largest entries of the correla-
tion matrix primarily fall into blocks on the diagonal, corresponding
to the same or neighboring components of the estimated model’s
ODE. This result is influenced by the structure of the source model
L05 II, particularly its correlation property between neighboring
components of the source system’s state-space trajectory (as seen in
Fig. 2).

Returning back to Fig. 4, we see that the linear and quadratic
trend of bias and covariance amplitude breaks at a relatively small
perturbation amplitude (roughly below 10−6). Studying the covari-
ance matrices slightly above this threshold, one finds that a few
blocks on the diagonal, corresponding to the coefficients asso-
ciated with terms within a single ODE component fn, suddenly
become strongly correlated. As we slowly increase the perturba-
tion amplitude b toward 10−6 and above more and more of the
model coefficients become strongly correlated, that is, with coef-
ficients belonging to the same ODE component. A representative
example of the correlation matrix in this regime is shown in Fig. 7
for the case of b = 10−4. As soon as all N = 30 blocks on the diago-
nal, corresponding to each ODE component, assume values close
to 1 or −1, the correlations slowly start to decrease until reach-
ing the form comparable to the case of b = 10−7 that is shown in
Fig. 6. We also noticed an abrupt jump in the ratio between the
maximal and average covariance matrix element size at the pertur-
bation amplitude of about b = 1.25 × 10−7. Around this value of b,
the ratio suddenly increases by more than one order of magnitude.
As the perturbation amplitude b increases further, the ratio slowly
decreases in size until, at b ≈ 10−1, reaching a value comparable to
one at b = 10−7. A very similar trend can also be seen in the ratio
between maximal and average coefficient bias size. The reason for
this behavior is yet to be understood and will require further study in
future work. The second structural change in the trend of the aver-
age coefficient matrix and covariance matrix element size (as seen in
Fig. 4) occurs just above the value of b = 10−1. This indicates that
at higher noise values, the STLSQ algorithm converges to a different
set of function terms in the estimated ODE. Here, changes in the

FIG. 4. The dependence of the average element size of the matrix of noise-in-
duced bias of the estimated model coefficients avg(δ4p,n) and the average
element size of the covariance matrix of the estimated model coefficients
avg(Cov[δ4V ]q1 ,q2 ), with respect to the perturbation amplitude, i.e., standard
deviation of white Gaussian noise b. For sufficiently small perturbation amplitudes
b, the bias size shows a nearly linear trend (green line), while the covariance size
scales quadratically with b (red line).

FIG. 5. A part of the covariance matrix of model coefficients Cov[δ4V ] nor-
malized with its maximum element max(Cov[δ4V ]) ≈ 4.68 × 10−16 for the esti-
mated models trained on non-noisy data. The covariance matrix was calculated
following Eq. (20) for j = 0, . . . ,M − 1 = 99, with each (δ4V)j being a sample

of white Gaussian noise with standard deviation b = 10−7. The result is averaged
over five different estimated model instances, i.e., Mest(a = 0) (see Sec. III). Only
columns and rows which contain elements larger than 0.02 · max(Cov[δ4V ]) are
shown. Please refer to Fig. 3 for the notation used in labeling the elements of the
covariance matrix.

model structure are counterbalanced, to an extent, by alterations in
the estimated parameters. Yet, it is worth noting that the fundamen-
tal concern lies within the dynamics produced by the final model.
In this context, the estimated models trained on noisy data X(β)

a

with a ∈ 0.0093σA, 0.0185σA, 0.0277σA, which are to be discussed
in more detail in Sec. IV B, all reside deep within this altered model
structure regime.

B. Evaluation of the estimated models

The Lyapunov spectrum of the source system is depicted in
Fig. 8(a) and has its maximum value at λmax ≈ 3.08. Selected Benet-
tin algorithm parameters were: initial perturbation size δstart was
set to 10−7, the propagation time before each renormalization was
2 time units and the trajectories were renormalized 103 times. For
this set of Benettin algorithm parameters, the calculated sum of all
exponents in the source system’s spectrum was roughly equal to the
negative of the dimension of the source system’s ODE, i.e., −N (see
Table I), a result that is in agreement with Eqs. (9) and (11).

The Lyapunov spectra of the estimated models are shown in
Fig. 8(b). First of all, we observe a deformation of the Lyapunov
spectrum even for an estimated model fitted on non-noisy data. This
observation could be linked to the bias in the estimated model’s coef-
ficients that is displayed in Fig. 3. Higher noise levels, where the bias
of the estimated model’s coefficients is even larger, result in even
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FIG. 6. The correlation matrix Corr[δ4V ] of the estimated model coefficients cal-
culated from the covariance matrix at b = 10−7 that is partially depicted in Fig. 5.
Only the non-zero elements corresponding to the first component of the estimated
model’s ODE are shown. Please refer to Fig. 3 for the notation used in labeling
the elements of the correlation matrix.

more pronounced gradual uniform deformation of the Lyapunov
spectrum, and in effect, a greater change in the relevant tracked
quantities, i.e., λmax, dL and

∑

i λi. However, we are in no position to
assert the direct effect of the bias in estimated model coefficients on
the model’s dynamics as it is well known that correlation does nec-
essarily imply causation. Taking a closer look, the Lyapunov spectra
of all estimated models have smaller values of λmax; moreover, the
majority of the exponents tend to lie closer to 0, i.e., we observe a
decrease in |λi| for the vast majority of exponents in the spectrum
of each estimated model. This property becomes pronounced for
greater noise levels a in the data as can be seen in Fig. 8(b).

Since the maximal Lyapunov exponent λmax directly deter-
mines the system’s sensitivity to initial conditions, we see that the
noise masks an important feature of the source system’s dynam-
ics, i.e., the estimated models generated from noisier data will
behave less chaotically. This observation aligns with established
understandings in the modeling of chaotic systems, as discussed by
Schreiber and Kantz.11 In the case, the estimated models would be
used to simulate real data, e.g., as meteorological models (L05 II is in
essence designed to capture some of the basic properties of general
meteorological models) to generate ensemble forecasts, the lower
sensitivity to initial conditions of the estimated model may lead to
an overestimation of the forecast reliability.

FIG. 7. The part of the correlation matrix that corresponds to the elements of
the covariance matrix at perturbation amplitude b = 10−4, which are larger than
0.02 · max(Cov[δ4V ]). Please refer to Fig. 3 for the notation used in labeling the
elements of the correlation matrix.

The increase in the sum of the exponents that is mainly due
to the decrease of the absolute values of the negative part of the
Lyapunov spectrum suggests a fundamental change of the system’s
dynamics in two following ways. First, as a consequence, an arbitrary
control state-space volume somewhere in the vicinity of the attrac-
tor will be pushed toward the local stable manifold more slowly. In
effect, one intuitively expects the increase in the fractal dimension
as the results on Lyapunov fractal dimension dL confirm. Second,
the deviation of the sum

∑

i λi from the value of the minus of the
system’s dimension N as discussed in Secs. II B and II C 1 [Eqs. (9)

TABLE I. A table representing the change in investigated variables between the origi-

nal (source) system (labeled with Morg) and estimated models Mest(a), trained on noisy

data with noise level a.

λmax
∑

i λi dL

∫

S̃est(ν)dν
∫

S̃org(ν)dν

Morg 3.082 −29.99 17.03 1.000
Mest(a = 0) 3.027 −29.79 16.96 1.000
Mest(a = 0.93% σA) 3.021 −29.18 17.07 1.000
Mest(a = 1.85% σA) 2.979 −27.41 17.66 1.011
Mest(a = 2.77% σA) 2.959 −24.13 18.91 1.043
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FIG. 8. (a) Lyapunov spectrum for the L05 II at parameters (22). (b) The devi-
ations of the Lyapunov spectra of the estimated models Mest(a) from the source
system. Estimated models were obtained from noisy L05 II time series with white
Gaussian noise of levels of a ∈ {0, 0.0093σA, 0.0185σA, 0.0277σA}.

and (11)] suggests a gradual departure from the L05 II’s ODE form,
specifically from the skew-symmetry of the tensor of the quadratic
terms Qnninj

and the negative definiteness of matrix Lnni
. As a con-

sequence, for a sufficiently large level of standard deviation of white
Gaussian noise added to the L05 II time series, the estimated mod-
els lose an essential property of L05 II, i.e., the property of having a
global region of attraction.30

The results showed that the PSDs of estimated models Mest(a)
resemble the PSD of the source system (Fig. 9). However, the oscil-
lations with frequencies that dominated the signal of the source
system were even more pronounced in the PSDs of the estimated
models. This is not solely due to a shift toward lower frequencies
(as can be seen in Fig. 9), as the total power

∫

S̃est(ν)dν carried by
the waves produced by Mest(a 6= 0) also increases with respect to the
total power carried by the waves in the source system

∫

S̃org(ν) dν

(see Table I). As a result, the estimated models trained on data with
higher noise levels exhibit more regular dynamics, which is accom-
panied by a decrease in chaoticity as indicated by lower values λmax.
On the other hand, frequencies that were absent in the source system
are also absent in the estimated models. This is a positive finding,
as the presence of frequencies in the estimated models that were not
present in the source system would imply the existence of some kind
of new physics that the source system does not possess.

Using PSD, calculated with Welch’s method, as a way to eval-
uate the estimated models can be very helpful, particularly when
dealing with noisy signals from real-life dynamical systems. Welch’s
method is highly resistant to noise in the signal, making it a reli-
able characteristic to consider when searching for an appropriate
estimated model.

Spatial correlation functions C(1)
k and C(2)

k of the source system
and estimated models Mest(a) are shown in Figs. 10(a) and 10(b).
In the first, we observe a minimum at k = 6 that corresponds to
anti-correlation between components with indices n1 and n2 at
|n1 − n2| = 6. This minimum can be linked to the shape of typical

FIG. 9. (a) Power spectral density (PSD) for the L05 II at parameters (22), aver-

aged over all system’s components, i.e., S̃(ν) [Eq. (12)]. (b) Relative deviations of

S̃(ν) of the estimated models Mest(a) from the source system. The window func-
tion as a parameter of Welch’s method was chosen to be the Hanning window
with a length of 3 × 104 data points. The overlap between windows was maximal,
i.e., 50%.

waves (Fig. 2); the prominent peaks are mostly followed by deep val-
leys. The position k = 6 is conditioned by the speed of travel of the
wave along the chain of N nodes.

It is clear that the estimated models approximately retain the
form of C(1)

k , i.e., the correlation between the system’s components
at distance k on average does not change much. The same does not
hold for C(2)

k [Eq. (17)], which, as discussed in Sec. II C, represents
the variance of the set Cn,n+k at fixed k and can be understood as a
measure of the violation of the translation symmetry of the source
model [and, thus, violation of (15)]. Increasing noise level a in the
data, we found that C(2)

k assumes increasingly higher values, indicat-
ing the disparities among the components of the estimated model’s
ODE [Fig. 10(b)]. Nevertheless, it is evident that for lower noise
levels a, the translation symmetry is well respected, at least in the
context of C(2)

k .

FIG. 10. Spatial correlation functions C
(1)

k (a) and C
(2)

k (b) for the source system
and estimated models Mest(a) for different noise levels a. The errorbars indicate
the standard deviation of the results obtained from multiple simulation iterations.
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To conclude, it is evident that for small noise levels in the data,
the STLSQ algorithm performs fairly well, that is to say, it mimics
the source system, at least in terms of the investigated dynamical
and statistical properties. It is about the value of Gaussian noise level
a = 1.85% σA, where the estimated models start to notably devi-
ate from the source system. The upper value of noise level where
the properties of the estimated models were thoroughly inspected
was a = 2.77% σA. At greater noise levels, such as a = 3.5% σA, we
found that the STLSQ algorithm only produced estimated models
whose trajectories were unbounded; thus, these models were classi-
fied as inappropriate. This is to be expected, as our estimator lacks
any stringent constraints—the second-order polynomial library pro-
vides a flexible framework capable of addressing a multitude of
physical problems. Our only true assumption here is the sparsity
of the estimated ODEs. Nevertheless, the intriguing question is
whether the instability in estimated models primarily arises from
the change in model structure (i.e., variations in the set of function
terms present in the estimated ODE) or from the poor estimation
of the coefficients corresponding to these terms. The stability of the
Lorenz model is grounded on an analytical result30 that assumes cer-
tain symmetry within the model, as discussed in the Sec. II B. Given
that our employed estimator does not inherently preserve this sym-
metry, it gets disrupted in the estimated models even with non-noisy
data. In the absence of such symmetry in the estimated model, it
becomes challenging to isolate the contributions of model structure
change and poor parameter estimation to the emergence of diver-
gent trajectories. Addressing this issue might be within the scope
of more advanced SINDy methodologies, such as the Constrained
SR327 or Trapping SR3,51 which allow for the incorporation of addi-
tional model constraints. However, as these methodologies employ
a more sophisticated regression52 than the STLSQ, conducting such
an analysis would necessitate a separate study.

V. CONCLUSION

Our work demonstrates a methodology for the estimation of
high-dimensional ODE models, assuming an ideal case where there
are no hidden variables left unmeasured, and furthermore, a coor-
dinate basis in which the estimated model assumes a sparse repre-
sentation. Specifically, we considered the task of extracting complex
model parameters from time series burdened by noise using the
SINDy estimator,2 with the intention to understand the results, par-
ticularly the influence of measurement noise on the dynamical and
statistical properties of the corresponding estimated models. To this
end, we examined the dependence of dynamical properties of esti-
mated dynamical models, derived using a STLSQ variant of the
SINDy algorithm, on the strength of Gaussian noise present in the
data. These data were generated by a multidimensional dynamical
system, specifically the Lorenz 2005 type II model1 (L05 II) in the
chaotic regime with a finite attractor.

The dynamical properties of interest were Lyapunov spectrum,
Fourier power spectral density, and spatial correlation function C(2)

k .
We found that the dynamical and statistical properties of the esti-
mated models are quantitatively comparable to those of the source
system for noise levels at which the two models have a similar attrac-
tor in size and space. The Lyapunov spectrum of the estimated

models is with increasing noise level moving closer to zero, espe-
cially for negative values, resulting in decreasing chaoticity of the
estimated model. This is supported by the comparison of power
spectral densities obtained in both, source and estimated, models
where we can see an increase of power at lower frequency end with
increasing noise level. The spatial correlation function shows that
as the noise increases, the estimated models increasingly break the
translation symmetry inherent in the source system. Nevertheless,
the symmetry is broken noticeably just below the value of noise
amplitude at which STLSQ algorithm fails to give an estimated
model that has a finite global attractor.

Additionally, we studied properties and evaluated the sen-
sitivity of the STLSQ variant of SINDy algorithm by examining
how small random perturbations of data affect the model coeffi-
cients (through coefficient covariance matrices). We noticed that the
estimated model equations of motion for algorithm-intrinsic param-
eters (threshold λ and regularization strength α) chosen through the
standard cross-validation procedure agree only approximately with
the source model equations even for long sampling times, meaning
that the STLSQ algorithm has a slight bias.

The covariance matrices of model coefficients turned out to be
nearly diagonal for the whole range of tested perturbation ampli-
tudes. They have expected quadratic dependence on noise level
in the limit of small perturbations. The corresponding correlation
matrices were approximately block diagonal, with the considerable
off-diagonal elements corresponding to coefficients belonging to
the same or spatially neighboring components of the model. The
quadratic trend is broken well below the noise level, where we
observe a qualitative change in the set of non-zero estimated model
coefficients in comparison to the source model. Correlation matri-
ces in this noise level range show an excessively strong correlation
between coefficients belonging to the same estimated ODE compo-
nents. The reason for such behavior is yet to be understood and will
be studied in future work.

This paper provides a starting point for deeper investigations
into the dynamical properties of the estimated dynamical models
obtained from noisy data, as well as properties of inference algo-
rithms when applied to such data. While this paper focused on the
most physically relevant form of white Gaussian noise, similar anal-
yses could be conducted for other forms of physically relevant noise.
Furthermore, similar studies can be carried out for some of the other
variants of SINDy, such as SR3,52 Constrained SR3,27 and, in partic-
ular, Trapping SR3,51 which searches for regression solutions in the
parameter space that restrict the dynamics of the estimated models
to a finite volume of state-space.

Expanding on this research, it is essential to consider more
complex systems where conventional sparse optimization methods
might reach their limits. In these scenarios, alternative approaches,
such as machine-learning models,53,54 may provide more effective
solutions for system identification and prediction.
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