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Abstract

The objective of the study is application of a new boundary meshless numerical method to geohydro-
logical problems. An application of the non-singular version of the method of fundamental solutions
(MFS) to moving boundary (Stefan) problems arising in Darcy flow from a conduit to isotropic and
homogeneous porous matrix is described. The motivation for the study represents assessment of a
suitable numerical method for porous media flow with free and moving boundaries. The solution
in two-dimensional Cartesian coordinates is represented in terms of the fundamental solution of the
Laplace equation. The desingularisation of the diagonal terms is achieved through boundary distributed
sources of fundamental solution and indirect calculation of the derivatives of fundamental solution. Re-
spectively, the artificial boundary, characteristic for the classical, singular MFS, does not need to be
present. This is advantageous, particularly in the treated free and moving boundary problems, since
only the geometry of the physical boundary needs to be manipulated. Several numerical examples,
exhibiting a moving boundary between the wetted and non-wetted porous media are shown. The novel
method is compared with the classical method of fundamental solutions and analytical solutions with
excellent agreement. A sensitivity study of model parameters is performed.

The new contribution of the study is application of the BDS method to free and moving boundary
problems and comparison of BDS with MFS for such type of problems.

Keywords: karst aquifer, Darcy flow, Stefan problem, moving and free boundary problems, method
of fundamental solutions, boundary distributed source method

1. Introduction

The exchange of flow and solutes between the
conduits and the surrounding matrix plays an im-
portant role in many engineering and geohydro-
logical problems [1]. A related example are karst
aquifers, where the conduits are usually embed-
ded into a fractured-porous medium. There, the
storage and the transport of potential pollutants
through the aquifer depends on the exchange pro-
cesses between the potentially polluted conduits
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and the matrix [2, 3]. It is therefore of impor-
tance to understand the dynamics of these ex-
change processes and to consider them in realistic
models of karst aquifer.

The analytical solutions of such models can
be obtained only for a very limited, geometrically
simple, linear two-dimensional cases [4, 5].

Different coupled continuum pipe-flow models
have been used in the past to numerically model
flow and solute transport in karst aquifers. These
models rely on finite difference method (FDM)
[6, 7] or finite element method (FEM) [8, 9] dis-
cretisation scheme. They have successfully cap-
tured the dynamics of flow and transport in cou-
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pled conduit-matrix systems. One has to consider
the presence of a water table, a moving (tran-
sient character) boundary or free (steady charac-
ter) boundary between the saturated and the un-
saturated zone in the case of unconfined aquifers.

In cases when the mesh based methods, such
as the FDM or FEM, are used for solving the
above mentioned problems, various mesh refine-
ment schemes are invoked to numerically account
for a suitable determination of the position of
the unfixed boundary. The principal bottleneck
in these types of numerical methods is the time
consuming re-meshing of the evolving water table
and wetted/unwetted domains which limits such
methods to problems with quite trivial geometri-
cal patterns [10].

In order to build effective models for such sit-
uations, computationally new and efficient, mesh-
free modelling concepts [11, 12, 13, 14], have to be
considered.

Meshfree methods have proven to be very effi-
cient in treating complex moving boundaries [15].
This work presents the use of such methods for
a computational model of a conduit embedded in
a matrix. It is focused on studying the exchange
between a conduit and unconfined matrix due to
a sudden change of pressure in the conduit. The
Method of Fundamental Solutions (MFS) and its
non-singular version, termed the Boundary Dis-
tributed Source method (BDS) proposed by Liu
in [16], are used to model a related moving bound-
ary problem. Our objectives are in demonstrating
the use of BDS in problems related to groundwa-
ter flow, achieving advantages over classical nu-
merical methods, and studying its sensitivity to
model parameters.

MFS is a numerical technique that falls in the
class of methods generally called boundary meth-
ods. The other well known representative of these
methods is the Boundary Element Method (BEM).
Both methods are best applicable in situations
where a fundamental solution to the partial differ-
ential equation under consideration is known. In
such cases, the dimensionality of the discretisation
is reduced. BEM for example requires polygonisa-
tion of the boundary surfaces in general 3D cases,
and boundary curves in general 2D cases. This

method requires solution of the complicated regu-
lar, weakly singular, strongly singular, and hyper-
singular integrals over boundary segments, which
is usually a cumbersome and non-trivial task [17].

Both, BEM [18, 19] and MFS [15, 20], are
well suited for unfixed boundary (Stefan) prob-
lems [21] due to the fact that only the bound-
ary discretisation needs to be moved, without any
connection with the domain discretisation.

A comprehensive survey of the MFS and re-
lated methods for elliptic boundary value prob-
lems and inverse problems can be found in [22,
23]. The MFS has certain advantages over BEM,
that are mostly visible in the fact that pointisa-
tion of the boundary is needed only, that com-
pletely avoids any integral evaluations, and makes
no principal difference in coding between the 2D
and the 3D cases. The principal drawback of MFS
is the presence of artificial boundary which needs
to be constructed in cases with the singular fun-
damental solution (such as for example the funda-
mental solution of the Laplace equation) in order
to allow the solution to comply with the boundary
conditions. The MFS with the artificial boundary
has been previously used in the context of trans-
port of pollutants in porous media [24] and in the
context of free surface flow [25].

The determination of the distance between the
real boundary and the fictitious boundary is based
on experience, by balancing between the increased
accuracy and the increased ill-conditioning with
the larger distance. Quite recently, various efforts
have been made to remove this drawback of the
MFS, so that the source points can be placed on
the real boundary directly. Young et al. [26] were
the first to propose placing of the source points on
the boundary in the MFS. They proposed novel
ways to directly determine the diagonal coeffi-
cients for simple geometries or use the results from
the BEM, based on the fact that the MFS and the
indirect boundary integral formulation are simi-
lar in nature. In their approach, the information
of the neighbouring points before and after each
source point is needed in order to form the line
segments for integrating the kernels to obtain the
diagonal coefficients in general. This is essentially
the same information of the element connectivity
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as in a BEM mesh. Šarler [27] proposed a simi-
lar modified MFS, where the diagonal terms are
determined by the integration of the singular or
hypersingular fundamental solution on line seg-
ments, formed by using neighbouring points, and
the use of a constant solution to determine the
diagonal coefficients from the derivatives of the
related fundamental solution. This first attempts
have been followed by the formulation [16], where
in order to remove the singularities of the funda-
mental solutions, the concentrated point sources
are replaced by the distributed sources over ar-
eas (for 2D problems) or volumes (for 3D prob-
lems) covering the source points. The distributed
sources, associated with the derivatives of the fun-
damental solution, have been however calculated
as in [27]. Liu called his non-singular MFS ap-
proach BDS. It is the purpose of the present pa-
per to solve the moving boundary problem, asso-
ciated with the conduit and the porous matrix by
the BDS and compare it with the classical MFS
and analytical solutions.

2. Governing equations

Throughout the paper we consider the porous
matrix to be homogeneous and isotropic, we ne-
glect the capillary and evaporation effects, we con-
sider 2D situation, the flow follows Darcy law
[28, 29, 30, 31, 32, 33], hydraulic conductivity or
permeability of the fractured rock is constant and
isotropic. The liquid-saturated part of the matrix
is represented by a connected two-dimensional do-
main Ω with boundary Γ. The medium is de-
scribed by its hydraulic conductivity K̃ and poros-
ity Φ. The problem is tackled in Cartesian coor-
dinates p̃ = x̃ix + ỹiy, where x̃ and ỹ represent
the Cartesian coordinates and ix and iy the base
vectors. The gravity is directed toward −iy.

The quasi steady state fluid flow in Ω is de-
scribed by Darcy law

q̃ = −K̃∇̃h̃, (1)

where q̃ is flux and h̃ the hydraulic head. A length
scale l0 is selected. Dimensionless coordinates are
defined as x = x̃/l0 and y = ỹ/l0, p = p̃/l0.
Dimensionless flux q = K̃−1q̃ with h = h̃/l0 are

introduced in order that ∇ = l0∇̃. Eq. 1 can
afterwards be rewritten in dimensionless form

q = −∇h. (2)

Incompressibility is assumed and thus the specific
storage in comparison with the specific yield is
neglected. Incompressibility implies

∇ · q = 0 (3)

in the whole domain Ω. Eqs. 2 and 3 give Laplace
equation for the dimensionless hydraulic head in
Ω

∇2h = 0. (4)

Ω

ΓD

ΓN

ΓFS

Conduit

Unsaturated
part of the
porous medium

Saturated part
of the porous
medium

Impermeable
boundary

Figure 1: Schematics of the problem domain and the
boundary conditions.

The boundary is divided into three parts with
Dirichlet, Neumann and free surface boundary con-
ditions; i.e. Γ = ΓD∪ΓN∪ΓFS (see Fig. 1). On ΓD

there is a Dirichlet type of boundary condition.
The hydraulic head is specified with the forcing
function hD,

h (p) = hD (p) , p ∈ ΓD. (5)

On ΓN there is a Neumann type of boundary con-
dition. The hydraulic head gradient is specified
with the forcing function qN

∂h

∂nN
Γ

(p) = qN (p) , p ∈ ΓN, (6)

where nN
Γ is the outward normal to the bound-

ary ΓN and qN (p) is the normal component of
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flow. For the Laplace equation, the liquid surface
ΓFS represents a special case of Dirichlet boundary
condition. The free surface boundary condition is
defined through the height

h (p) = y (p) , p ∈ ΓFS. (7)

The liquid surface represents a moving boundary.
The velocity of a point at the moving boundary
is

∂p

∂t
= −∇h (p) , p ∈ ΓFS, (8)

where t is dimensionless time, t = t̃K̃/(φl0), and
t̃ is time. Eq. 8 can be projected onto the normal
to the surface nFS

Γ = nxix + nyiy

nFS
Γ ·

∂p

∂t
= nFS

Γ ·
(

−∇h (p)
)

. (9)

The free surface is almost horizontal in all the
calculated cases so nx is much smaller to ny and
is neglected. The free surface is thus moved in
every timestep according to equation

∂y

∂t
= −

∂h

∂y
. (10)

It is the purpose of the present work to calcu-
late the hydraulic head (4) and the time evolution
of the boundary ΓFS as a function of the boundary
conditions (5–10) and initial position of ΓFS.

3. Solution procedure

3.1. Solution of Laplace equation

3.1.1. Method of fundamental solutions

The MFS is based on the basic theory of par-
tial differential equations (PDEs), stating that any
linear combination of the solutions of a linear PDE
is also a solution. The method belongs to the
class of boundary meshless methods for solving
various types of partial differential equations and
started to be increasingly applied in engineering
since 1964 [34].

The solution is built as a linear combination of
fundamental solutions of Laplace equation Gi(p).
By definition of a fundamental solution, Gi solves
the equation

∇2Gi = δ (pi) , (11)

where ∇2 = ∂2

∂x2 + ∂2

∂y2
and δ (p) is Dirac delta

function. Fundamental solution is also a solution
of Laplace equation (Eq. 4) outside pi. Its form
is [16]

Gi(p) = −
1

2π
log (‖p− pi‖) ,

‖p− pi‖ =
√

(p− pi) · (p− pi). (12)

The solution is built as the sum

h (p) ≈
N
∑

i=1

Gi (p) ci, (13)

where N is the number of all fundamental solu-
tions and ci are the coefficients. Note that the
positions of the singularities pi have to be outside
Ω + Γ so that h solves Laplace equation inside
Ω + Γ. The line that connects the singularities
is called artificial boundary (Fig. 2). The coeffi-
cients are determined by collocating the boundary
conditions. Each point with Dirichlet boundary
condition gives an equation

N
∑

i=1

Gijci = hj,

Gij = Gi(pj), hj = hD(pj), pj ∈ ΓD. (14)

In case of Neumann boundary conditions, the row

N
∑

i=1

Kijci = qj,

Kij =
∂Gi

∂n
(pj) = −

1

2π

(pj − pi) · n

‖pj − pi‖
2
,

qj = qN (pj) , pj ∈ ΓN (15)

follows from every boundary point. Both sets of
equations are solved together as one matrix equa-
tion. A square system of linear equations is as-
sembled from the rows (14) and (15) for solution
of N unknown coefficients ci.
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s∆x

Ω

Γ

Figure 2: Concept of MFS. Small white circles are colloca-
tion nodes with specified boundary condition, crosses are
the fundamental solution singularities, and the dashed line
is artificial boundary s∆x away from geometrical bound-
ary.

3.1.2. Boundary distributed source method

BDS method is conceptually similar to MFS
and the principal difference between both meth-
ods is in choice of the basis functions [16]. In
MFS, the fundamental solutions are used as ba-
sis functions, while in BDS, the solutions for dis-
tributed area sources are used. The chosen shape
of the source is a circle A of a radius r0 with uni-
form source density of 1/(πr20). The form of the
solution is equal to the integral of the original
fundamental solution G on A [16]

Ĝi(p) =






r2
0

2
log

(

1
‖p−pi‖

)

for ‖p− pi‖ > r0;

r2
0

2
log

(

1
r0

)

+
r2
0
−‖p−pi‖

2

4
for ‖p− pi‖ ≤ r0.

(16)
As the basis functions have no singularities,

they can be centred on the boundary points, thus
no separate choice of the source points pi is needed
(Fig. 3). The solution of Laplace equation is ap-
proximated as

h (p) ≈

N
∑

i=1

Ĝi (p) ci, (17)

where N is the number of all boundary points
and ci are the coefficients. The coefficients are

determined from the boundary conditions. Each
point with Dirichlet boundary condition gives an
equation

N
∑

i=1

Ĝijci = hj,

Ĝij = Ĝi(pj), hj = hD(pj), pj ∈ ΓD. (18)

The equation that follows from each boundary
point in the case of Neumann boundary condi-
tions is

N
∑

i=1

K̂ijci = qj, qj = qN (pj) , pj ∈ ΓN. (19)

A
r0

Ω

Γ

Figure 3: Concept of BDS. Small white circles are collo-
cation nodes with specified boundary condition, dark grey
circles A are distributed sources with radius r0.

Typically K̂ij is taken to be the normal compo-

nent of the gradient of Ĝi: K̂ij = ∂Ĝi (pj) /∂n (pj).
By this definition, the diagonal terms of the ma-
trix, corresponding to the collocation points with
Neumann boundary conditions, would always equal
zero. However, an indirect method is used in-
stead of it [27]. First, Dirichlet boundary condi-
tion h(pj) = 1 is used for all the boundary points
in Γ and coefficients cci are obtained. As the nor-
mal component of gradient is presumably zero in
the case of the solution for a constant value, the
diagonal terms can be expressed as

K̂ii = −
1

cci

N
∑

j=1
j 6=i

K̂ijc
c
j . (20)
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Both sets of equations are solved together as
one matrix equation. A square system of linear
equations is assembled from the rows (18) and
(19) for solution of N unknown coefficients ci.

3.2. Free parameters of the methods

In MFS, the free parameter of the method
represents the distance of the artificial boundary
from the geometrical boundary. In BDS, the free
parameter of the method represents the radius of
the desingularisation circle.

3.3. Symmetry

Consider a situation where the geometry and
the fields exhibit reflection symmetry. Let us dis-
tribute the sources of the basis functions consis-
tently with this symmetry. Respectively, for ev-
ery basis function, there is another one centred
on its mirror image. In the solution sum, both
basis functions are multiplied by the same coef-
ficient. The sum of such a symmetric couple of
basis functions is effectively treated as a single
basis function.

All the cases considered in the present paper
exhibit the reflection symmetry. The coordinate
system is always positioned so that the axis of
symmetry lies at x = 0. When a basis function is
centred on (xi, yi) its mirror image is centred on
(−xi, yi). The calculations are performed only for
x ≥ 0, on x < 0 half-plane no boundary points
have to be prescribed.

3.4. Treatment of moving boundary

To calculate the displacement of the moving
boundary, the head gradient is needed according
to Eq. 10. The equation for the head gradient has
the same form as the equation given by the Neu-
mann boundary condition. In the case of MFS,
its y component is

∂h

∂y
(pj) =

N
∑

i=1

∂Gi

∂y
(pj) ci, (21)

and in the case of BDS

∂h

∂y
(pj) =

N
∑

i=1

Fijci. (22)

Here,

Fij =
∂Ĝi

∂y
(pj) , i 6= j (23)

and

Fii = −
1

cci

N
∑

j=1
j 6=i

Fijc
c
j (24)

The boundary points are moved together with
the boundary, as follows from Eq. 10 and Euler
backward formula

ynewj = yj −
∂h

∂y
(pj)∆t. (25)

ynewj represents the coordinate of the boundary
point in the next timestep. The derivative ∂h/∂y (pj)
is calculated by Eq. 21 or 22. In MFS, the artifi-
cial boundary and the singularities are moved by
the same amount, while in BDS the basis func-
tions remain centred on the moved boundary points.

3.5. Overview of the solution procedure

The flowchart of the solution procedure is pre-
sented schematically in Fig. 4. First, the geome-
try and the boundary conditions are defined. Then
they are discretised – represented by the coordi-
nates of the boundary points, the boundary con-
ditions for all the boundary points and, in the
case of MFS, the coordinates of the singularities
of the basis functions, or in the case of BDS, the
radii of the desingularisation circles.

The Laplace equation Eq. 4 is solved next, by
using MFS or BDS.

From the solution of Laplace equation, the
head derivative ∂h/∂y at the liquid surface is de-
termined according to Eq. 21 in case of MFS or
Eq. 22 in case of BDS. The displacement of the
surface in a timestep ∆t is calculated according
to Eq. 25. The new shape of the liquid surface
(and in the case of MFS of the artificial bound-
ary) is determined. In particular, the new posi-
tions of the boundary points, the new boundary
conditions at the boundary points and in the case
of MFS the new positions of the singularities at
the end of the timestep are calculated. They are
used as discretised geometry and boundary con-
ditions for the next timestep. At the same time,
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START

Define geometry
and boundary
conditions

Solve
Eq. 4
for h

Move the
boundary nodes
of the water

surface according
to Eq. 25 (and

artificial boundary
nodes in MFS)

Save the new
node positions

(and artificial boundary
nodes in MFS)

END

Final t
reached?

Yes

No

Discretise boundary
(and artificial boundary in MFS,

source radii in BDS)

Figure 4: Flowchart of the solution procedure.

the total amount of liquid that enters the matrix
is calculated from the displacement of the bound-
ary points.

4. Numerical examples

To test the methods, two cases for which an-
alytical results exist, were selected. In Case 1,
a steady state inflow into an underground tun-
nel is calculated. In Case 2, a simple one dimen-
sional problem of matrix-infilling due to a pres-
sure change at lower boundary is calculated. The
numerical results for both cases are compared with
the analytical results. In Case 3, a transient ex-
change between the conduit and the matrix in
two dimensional domain is calculated by MFS and
BDS. Since this case is a main motivation for the
study, several examples with different parameters
are calculated.

The numerical procedures are written in C++
language and compiled with g++ 4.5.2 compiler.
The matrix equations are solved using LU method
implemented in Meschach++ library by Stephen
Roberts. The OS used is Ubuntu 11.04 with Linux
kernel 2.6.38-11-generic, 2.0 GiB of RAM and In-
tel® Core�2 Duo CPU E8400 with 3.00 GHz
clock cycle. A calculation of a typical MFS ex-
ample with N = 200 and 1500 steps takes ap-
proximately 10 s of CPU time.

4.1. Case 1: steady state inflow into a tunnel

Steady state inflow into an underground tun-
nel is investigated. The geometry of the problem
and some parameters are presented in Fig. 5. R
is the radius of the tunnel, H is the distance be-
tween its center and the water level surface. The
water surface is flat and horizontal. The density
of the boundary points and, in the case of MFS,
of the singularities of the basis functions, is con-
stant along all the straight boundaries. ∆x is the
distance between the boundary points. The dis-
tance between the geometrical and the artificial
boundary in the case of MFS is expressed as s∆x
(Fig. 2). X is the distance between the symme-
try axis and the outer edge of the domain, and Y
between the water level and the lower edge.
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The first boundary point at the bottom is on
the symmetry axis x = 0, then a new one fol-
lows every ∆x in +x direction until x < X . The
boundary condition on all these points is no flow,
Neumann type, ∂h/∂y = 0. For every boundary
point there is a singularity in MFS that is at the
same x and −s∆x away from it in y direction.

There is no boundary point at the outside lower
corner, the points along x < X start one ∆x
above the bottom, the next one is one ∆x in +y
direction until the water surface is reached. The
boundary condition is again no flow, ∂h/∂x = 0.
For every boundary point there is a singularity in
MFS that is at the same y and s∆x away from it
in x direction.

On the water surface, the points start at x =
X and follow until x = 0 at the distance ∆x. The
boundary condition is of Dirichlet type, h = y.
For every boundary point there is a singularity in
MFS that is at the same x and s∆x away from it
in y direction.

The points on the conduit wall are distributed
uniformly along the semicircle of radius R, the
first and the last ones are at both cross-sections
with x = 0. The singularities in MFS are dis-
tributed the same way on a semicircle around the
same center, only with radius R/2. The boundary
condition is of Dirichlet type, h = y.

The analytical solution for the case is obtained
by standard methods and is given in classical text-
books [5, 35] on groundwater hydrology. The in-
flow per unit length of tunnel is

q′ =
2πKH

log (2H/R)
, (26)

where K is the hydraulic conductivity, R is the
radius of the tunnel, and H is the depth of the
centerline of the tunnel below the steady water ta-
ble [35]. Expressed with dimensionless variables,
the inflow is

q′ = −2l0K
∂V

∂t
, (27)

where the numerical factor 2 comes from bilat-
eral symmetry (there is another half of space in
addition to the modelled half). Both equations

together give

−
∂V

∂t
=

πH/l0
log (2H/R)

. (28)

H

Y

R

X

∆x

r0

Figure 5: Case 1: Scheme of the numerical approach for
BDS. Empty circles are points with the specified boundary
condition, dark grey circles are the distributed sources, and
the dot-dashed line is the symmetry axis.

Both MFS and BDS are applied to test the
agreement with the analytical solution. The left
hand side of Eq. 28 is calculated numerically and
is found out to be equal to 5.888 using MFS and
to 6.165 using BDS. The parameters of the calcu-
lation used are X = 100, Y = 97, R = 1, H =
4, N = 181,∆x = 2, in MFS s = 5, in BDS
r0 = ∆x/4. There are 32 points in the conduit.
The parameters on the right hand side in this ge-
ometry are H/l0 = 4 and R/l0 = 1 so the right
hand side evaluates to 6.043. The agreement of
our result with the textbook is thus very good.

4.2. Case 2: one-dimensional time-dependent case

A one-dimensional time-dependent case with a
fixed head boundary condition on the lower end,
a free surface boundary condition on the upper
end, and gravity pointing downwards, depicted in
Fig. 6, is investigated. In one-dimensional Darcy
flow in homogeneous medium, the gradient of h
is independent of y. If the boundary condition at
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the lower boundary y = 0 is h = H , its relation
to water depth P is

dh

dy
=

H − P

P
. (29)

By Darcy law,
dP

dt
=

dh

dy
. (30)

By eliminating the gradient of h from the equa-
tions, and integrating, we get

t = P0−P −H
[

ln (H − P )− ln (H − P0)
]

, (31)

where P0 = P (t = 0).
The case is solved numerically using BDS. The

discretised geometry, presented in Fig. 7, is sim-
ilar to Case 1, only without a conduit, and the
node at x = X on the water surface is left out.

The boundary conditions at the bottom bound-
ary points are of Dirichlet type, h = H . For the
outward boundary, the boundary condition is no
flow, the same as in Case 1. The upper bound-
ary is a free surface. The boundary condition for
the Laplace equation is of Dirichlet type, h = y,
where y is the vertical coordinate of the boundary
point at the particular instant.

P

0

H

y

Figure 6: Case 2: The geometry of the one-dimensional
time-dependent test case.

The parameters used are X = 101, Y = 10,
∆x = 1,∆t = 0.1, r0 = ∆x/4, the calculation is

Y

X

∆x

r0

Figure 7: Case 2: Scheme of the numerical approach for
BDS. Empty circles are points with the specified boundary
condition, dark grey circles are the distributed sources, and
the dot-dashed line is the symmetry axis. Note that some
of the nodes at x = X are initially located above the water
table.

run until t = 100. The bottom boundary is lo-
cated at y = 0, the boundary condition is Dirich-
let with h = 20. The outward boundary extends
from y = 0 to y = 20. That is, the boundary
points are positioned at every ∆x in y direction
until y = 20 even if they are above the initial wa-
ter table. The y coordinate of the central point
is used as P in Eq. 31 with P0 = 10 and H = 20
and t (P ) is calculated. The difference between
the numerically obtained t and t (P ) from Eq. 31
is presented in Fig. 8. The methods are compared
in this way because Eq. 31 offers an explicit form
for t (P ) and not for P (t). The duration of the
calculation is sufficient to approach the equilib-
rium, the change of P during the calculation is
99.6 % of the way toward P = H . It can be seen
that the agreement is good.

4.3. Case 3: Conduit-matrix exchange

The geometry of the problem and some pa-
rameters are presented in Fig. 9. R is the radius
of the conduit, H is the distance between its cen-
ter and the water level surface at the beginning.
Initially, the water surface is flat and horizontal.
The density of the boundary points and, in the
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Figure 8: Case 2: Difference between t of the BDS calcula-
tion and t (P ) calculated from the BDS result for P using
Eq. 31. The difference stays below 1% of t in the whole
calculation.

H

Y

R

X

∆x

s∆x

Figure 9: Case 3: Scheme of the numerical approach for
MFS. Circles are points with the specified boundary con-
dition, crosses are poles of basis functions lying on the ar-
tificial boundary, and the dot-dashed line is the symmetry
axis.

case of MFS, of the singularities of the basis func-
tions, is constant along all the straight bound-
aries. ∆x is the distance between the boundary
points. The distance between the geometrical and
the artificial boundary is fixed during time. The
ratio between this distance and ∆x is labelled s.
X is the distance between the symmetry axis and
the outer edge of the domain, and Y between the
initial water level and the lower edge.

Discretisation is exactly the same as in Case
1. The boundary conditions at the bottom and
at the outer edge are the same as in Case 1, too.
At the water surface, the free surface boundary
condition is used. The boundary condition for
the Laplace equation is of Dirichlet type, h = y,
where y is the vertical coordinate of the boundary
point at the particular instant. In MFS, the sin-
gularities above the free surface keep constant x
and move in y direction to keep the distance from
their boundary points equal to s∆x. The bound-
ary condition at the conduit wall is of Dirichlet
type, h = H +∆h.

An example of the MFS solution of the Laplace
equation is presented in Fig. 10. The parameters
of this example are X = 100, Y = 97, R = 1, H =
4,∆h = 2, t = 150, N = 181,∆x = 2, s = 5,∆t =
0.1. As already defined, t is dimensionless time,
∆t dimensionless timestep, and N the number of
all basis functions. Note that due to the nature of
Laplace equation there is no initial condition, its
role is taken by the initial geometry and bound-
ary conditions. The example is calculated with 32
boundary points in the conduit so that s in the
conduit is approximately the same as along the
straight edges. This example is taken as the MFS
standard example. The resulting hydraulic head
is quite uniform around the boundaries far from
the conduit, while near the conduit it rises to the
prescribed h = −1.

An example where all the parameters are the
same as for Fig. 10 but is calculated using BDS
with r0 = ∆x/4 is presented in Fig. 11. It is taken
as the BDS standard example. As the gradient of
h is low in some areas, comparison of equipoten-
tial lines is a sensitive method for checking the
similarity of potentials calculated with different
methods. It can be seen that some equipotential
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lines are noticeably different even if the potentials
are quite similar.
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Figure 10: Case 3: Potential h at t = 150, calculated using
MFS. The other parameters are X = 100, Y = 97, R =
1, H = 4,∆h = 2, N = 181,∆x = 2, s = 5,∆t = 0.1. The
lines represent constant h and are spaced 0.05 apart. The
boundary points are denoted by circles and the crosses
mark the poles of the fundamental solutions.

Fig. 12 represents temporal evolution of the
water table. Note that the graph is cropped in Y
direction so that only the interesting part is seen.
All the parameters except for t are the same as in
the standard example (see Fig. 10).

The area between the original water table and
the water table at time t was calculated and la-
belled V . It represents the volume of water that
left the conduit under the assumptions of Darcy
flow. The result for V (t) for the standard ex-
ample is presented in Fig. 13. Note that in the
limit t → ∞, the volume approaches ∆hX , as
expected.

4.3.1. Sensitivity analysis

Behaviour of MFS and BDS in calculating Case
3 is investigated. MFS is checked first, as it is the
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Figure 11: Case 3: Potential h at t = 150, calculated using
BDS. The other parameters are X = 100, Y = 97, R =
1, H = 4,∆h = 2, N = 181,∆x = 2,∆t = 0.1, r0 = ∆x/4.
The lines represent constant h and are spaced 0.05 apart.
The boundary points are denoted by circles.
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Figure 12: Case 3: The shape of Ω at different t calculated
using MFS. Ω is delimited by boundary points, the singu-
larities are outside Ω and fall outside the graph except
in the conduit along the left edge (the circular conduit is
not circular in the figure due to different x and y scaling).
The parameters are X = 100, Y = 97, R = 1, H = 4,∆h =
2, N = 181,∆x = 2, s = 5,∆t = 0.1.
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Figure 13: Case 3: Volume as a function of time, calcu-
lated until equilibrium, using BDS. The parameters are
X = 100, Y = 97, R = 1, H = 4,∆h = 2, N = 181,∆x =
2,∆t = 0.1, r0 = ∆x/4.

more established of the two methods. BDS results
are then compared to MFS results. A thorough
sensitivity study of BDS is performed afterwards.

The correct result depends only on physical
parameters (X, Y,R,H,∆h) so the numerical re-
sult should not strongly depend on the chosen
internal parameters of MFS (N,∆x, s,∆t). In
Fig. 14, the results for different values of s near
s = 5 are presented. It can be seen that influence
of s is small in the range considered.
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Figure 14: Case 3: Volume as a function of time, calcu-
lated for different s in MFS. The other parameters are
X = 100, Y = 97, R = 1, H = 4,∆h = 2, t = 150, N =
181,∆x = 2,∆t = 0.1 as in the standard example.

The distribution and the number of boundary
points is also varied. The result for the standard
example, X = 100, Y = 97, R = 1, H = 4,∆h =
2, t = 150, N = 181,∆x = 2, s = 5,∆t = 0.1,
is V = 123.253. If the number of points in the
conduit is reduced to 3 so that ∆x in the conduit
is comparable to the one at the straight edges, the
result is very similar, V = 123.013. Here, N =
152, while the other parameters stay the same.
On the other hand, if the conduit is left with 32
points and ∆x is enlarged to 4, then N = 107 and
V = 123.173.

If the timestep is enlarged to ∆t = 1 and the
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other parameters are left the same as in the stan-
dard example, the result is V = 123.497.

In Fig. 15, the standard example is calculated
by both MFS and BDS. In Fig. 16, the same is
done for twice as big density of points along the
straight edges. The agreement between MFS and
BDS is better in the later case.
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Figure 15: Case 3: Volume as a function of time, compar-
ison between MFS and BDS. The parameters are X =
100, Y = 97, R = 1, H = 4,∆h = 2, t = 150, N =
181,∆x = 2, s = 5, r0 = ∆x/4,∆t = 0.1.

Sensitivity of BDS with respect to timestep
∆t, source radius r0, and the distance between the
boundary points ∆x is analysed. The results for
sensitivity regarding ∆t are presented in Fig. 17.
Calculated V at t = 150 is more or less indepen-
dent of the choice of ∆t until above a critical value
of ∆t when it no longer converges to the correct
value.

The sensitivity to r0/∆x is presented in Fig. 18.
The sensitivity to ∆x is shown in Fig. 19. For
the cases with ∆x ≥ 2, the number of boundary
points in the conduit is 3 as the circular conduit
shape cannot be resolved well enough with too few
points. For smaller ∆x, the number of nodes in
the conduit is increased so that the distance be-
tween them is similar to ∆x. In the conduit, there
are 5 nodes for ∆x = 1, 8 nodes for ∆x = 0.5,
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Figure 16: Case 3: Volume as a function of time, compar-
ison between MFS and BDS. The density of the bound-
ary points is larger than in Fig. 15, the parameters are
X = 100, Y = 97, R = 1, H = 4,∆h = 2, t = 150, N =
329,∆x = 1, s = 5, r0 = ∆x/4,∆t = 0.1.

and 14 nodes for ∆x = 0.25. The analysis for
∆x > 8, where the calculated V is expected to be
very different, was not performed. In these cases,
the distance between the conduit and the liquid
surface would fall below 1/3 of the distance be-
tween the nodes, while the nodes in the conduit
part would be less than ∆x/5 apart.

We see that the results, when solving the Laplace
equation by MFS, do not depend strongly on s,
∆x or ∆t. The results obtained by BDS in place
of MFS are also not significantly different. At the
same time, BDS is not sensitive to ∆t, r0 or ∆x
in the range considered.

4.4. Discussion

BDS [16] is applied in the present paper to
solve the moving/free boundary problems asso-
ciated with the transport of water from the con-
duit to the porous matrix. The method essentially
gives the same results as the classical MFS. It has
the advantage that the artificial boundary is not
present. This advantage is particularly welcome
in the treated unfixed boundary problems, since
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Figure 17: Case 3: Influence of the timestep on the BDS
method. The other parameters are X = 100, Y = 97, R =
1, H = 4,∆h = 2, t = 150, N = 181,∆x = 2, r0 = ∆x/4.
It can be seen that the results are fairly consistent up
to ∆t = 1.875 while at ∆t = 2 the result is obviously
incorrect. The full diamond corresponds to the standard
example.
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Figure 18: Case 3: Influence of the source radius r0 on the
BDS method. The other parameters are X = 100, Y =
97, R = 1, H = 4,∆h = 2, t = 150, N = 181,∆x = 2,∆t =
0.1. When r0 changes for a factor of 700, the change in
the result is a few percent. The full diamond corresponds
to the standard example.

the artificial boundary does not need to be recal-
culated along with the physical boundary, as in
the classical MFS. In BDS, only the points on the
unfixed physical boundary are moved.

MFS and BDS are used to calculate water ex-
change between a conduit and the surrounding
matrix, which is a situation, important in karst
hydrogeology.

We consider a water filled conduit that is ini-
tially in equilibrium with the surrounding matrix.
A step change in hydraulic head is applied and
time dependent exchange flow is calculated. The
results obtained by MFS and BDS are compared
to each other. Sensitivity analyses of the influence
of density of points, distance between the real
and the artificial boundary in MFS, source radii
in BDS, and timestep are done. MFS is bench-
marked against a textbook solution, and BDS against
a time-dependent example with analytical solu-
tion. The textbook solution is for steady state
inflow into an underground tunnel. The only dif-
ference between our conduit and the tunnel is
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Figure 19: Case 3: Influence of the boundary point spac-
ing ∆x on the BDS method. The other parameters are
X = 100, Y = 97, R = 1, H = 4,∆h = 2, t = 150, r0 =
∆x/4,∆t = 0.1. The number of boundary points varies
from N = 41 for ∆x = 8 to N = 1202 for ∆x = 0.25. The
result is changing slowly as a function of ∆x and is steady
for ∆x → 0. The full diamond corresponds to ∆x of the
standard example.

the boundary condition on the tunnel wall, where
seepage face h = y is used. The time-dependent
analytical example is one-dimensional, oriented
along gravity with fixed head boundary condition
on the lower end and free surface on the upper
end. It is compared to a modelled 2D rectangle
with fixed head boundary condition at the lower
and free surface at the upper face, no flow bound-
ary condition at the sideways face and a symmetry
axis just like the conduit-matrix exchange exam-
ples. The agreement with the benchmarks and
between different runs is excellent in all the cases.

5. Conclusion

Both MFS and BDS are found to be efficient
and reliable when applied to computation of mov-
ing boundary/free surface Darcy flow problems.
Water exchange between a conduit and the sur-
rounding matrix is dealt with successfully. The
BDS method is applied to free and moving bound-
ary problems for the first time and compared with
MFS and analytical solutions for such type of
problems. A new boundary meshless numerical
method is applied to geohydrological problems and
found to be suitable for the purpose.

It should be noted that in BDS the govern-
ing equation is not satisfied in the parts of the
domain overlapping with the circles [16]. The
method can potentially be applied to multiply-
connected-domain problems [36] while it is not
certain if any modifications would be needed [16].
However, the problem tackled here is essentially
simply-connected due to the consideration of the
symmetry.

The BDS method presented in this paper is
very general and it can be adapted or extended to
handle many related problems, discussed in the
present paper. We will address the anisotropic
and the three dimensional situations in our future
publications. We are also searching for the possi-
bility to calculate the diagonal coefficients for the
Neumann boundary condition in a direct way.
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