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Abstract. The concept of topographic steady state has substantially informed our understanding of the relation-
ships between landscapes, tectonics, climate, and lithology. In topographic steady state, erosion rates are equal
everywhere, and steepness adjusts to enable equal erosion rates in rocks of different strengths. This conceptual
model makes an implicit assumption of vertical contacts between different rock types. Here we hypothesize that
landscapes in layered rocks will be driven toward a state of erosional continuity, where retreat rates on either
side of a contact are equal in a direction parallel to the contact rather than in the vertical direction. For verti-
cal contacts, erosional continuity is the same as topographic steady state, whereas for horizontal contacts it is
equivalent to equal rates of horizontal retreat on either side of a rock contact. Using analytical solutions and
numerical simulations, we show that erosional continuity predicts the form of flux steady-state landscapes that
develop in simulations with horizontally layered rocks. For stream power erosion, the nature of continuity steady
state depends on the exponent, n, in the erosion model. For n= 1, the landscape cannot maintain continuity. For
cases where n 6= 1, continuity is maintained, and steepness is a function of erodibility that is predicted by the
theory. The landscape in continuity steady state can be quite different from that predicted by topographic steady
state. For n < 1 continuity predicts that channels incising subhorizontal layers will be steeper in the weaker rock
layers. For subhorizontal layered rocks with different erodibilities, continuity also predicts larger slope contrasts
than in topographic steady state. Therefore, the relationship between steepness and erodibility within a sequence
of layered rocks is a function of contact dip. For the subhorizontal limit, the history of layers exposed at base
level also influences the steepness–erodibility relationship. If uplift rate is constant, continuity steady state is
perturbed near base level, but these perturbations decay rapidly if there is a substantial contrast in erodibility.
Though examples explored here utilize the stream power erosion model, continuity steady state provides a gen-
eral mathematical tool that may also be useful to understand landscapes that develop by other erosion processes.

1 Introduction

The formation of landscapes is driven by tectonics and cli-
mate, and often profoundly influenced by lithology, the sub-
strate on which tectonic and climate forces act to sculpt
Earth’s surface. Much of our interpretation of landscapes,
and their relationship to climatic and tectonic forces, em-
ploys concepts of landscape equilibrium, or steady state.
Though there are a variety of types of landscape steady state
(Willett and Brandon, 2002), topographic steady state, in
which topography is constant over time, is perhaps most of-

ten used in the interpretation of landscapes. Understanding
of steady state also enables identification of transience within
the landscape. In particular, concepts of topographic steady
state and transient response to changes in climate or tectonics
are frequently used within studies of bedrock channel mor-
phology.

Bedrock channels are of particular geomorphic interest be-
cause they span most of the topographic relief of mountain-
ous terrains (Whipple and Tucker, 1999; Whipple, 2004),
providing the pathways through which eroded material is
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Figure 1. Topographic equilibrium in layered rocks. (a) Response of steepness to rock erodibility is typically derived from a perspective
of topographic equilibrium, with equal vertical incision rates in all locations that are balanced by uplift. Topographic equilibrium does not
occur in the case of non-vertical contacts. (b) For horizontal strata, horizontal retreat rates, rather than vertical incision, must be equal at the
contact. (c) In general, retreat in the direction parallel to the contact must be equal within both rocks to maintain channel continuity. Dashed
lines depict former land surface and contact positions, and arrows show the direction of equal erosion at the contact. Uplift is not depicted.

routed to lowlands and a primary means by which the land-
scape is dissected and eroded. Therefore, bedrock channels
exert important controls on the relief of mountain ranges and
set the pace at which mountainous landscapes respond to
changes in climate or tectonic forcing. Research on bedrock
channels has driven new understanding concerning the cou-
pling between mountain building, climate, and erosion (Mol-
nar and England, 1990; Anderson, 1994; Whipple et al.,
1999; Willett, 1999).

The elevation profiles of bedrock channels enable analysis
of landscapes for evidence of transience, contrasts in rates of
tectonic uplift, or the influence of climate (Stock and Mont-
gomery, 1999; Snyder et al., 2000; Lavé and Avouac, 2001;
Kirby and Whipple, 2001; Lague, 2003; Duvall et al., 2004;
Wobus et al., 2006; Crosby and Whipple, 2006; Bishop and
Goldrick, 2010; DiBiase et al., 2010; Whittaker and Boulton,
2012; Schildgen et al., 2012; Allen et al., 2013; Prince and
Spotila, 2013). Within this analysis, erosion rates are typi-
cally assumed to scale as power law relations of drainage
area and slope, as given by the stream power erosion model
(Howard and Kerby, 1983; Whipple and Tucker, 1999),

E =KAmSn, (1)

where E is erosion rate, K is erodibility, A is upstream
drainage area, S is channel slope, and m and n are constant
exponents. While the stream power model has known limita-
tions (Lague, 2014), it remains the most frequently used tool
for channel profile analysis and landscape evolution model-
ing. Under steady climatic and tectonic forcing, channels are
typically assumed to adjust toward topographic steady state
(Hack, 1960; Howard, 1965; Willett and Brandon, 2002;
Yanites and Tucker, 2010; Willett et al., 2014), where up-
lift and erosion are balanced and topography is constant with
time. This framework enables interpretation and comparison
of stream profiles to identify spatial contrasts in uplift rates or
transient responses to changes in tectonic or climatic forcing.

Topographic steady state has also been used to explain
channel response to substrate resistance, generally leading to
a conclusion that channels are steeper within more erosion-

resistant bedrock and less steep within more erodible rocks
(Hack, 1957; Moglen and Bras, 1995; Pazzaglia et al., 1998;
Duvall et al., 2004). However, this result depends on an im-
plicit assumption of vertical contacts between strata as in
Fig. 1a. Strictly speaking, topographic equilibrium does not
exist when channels incise layered rocks with different erodi-
bilities and non-vertical contacts (Howard, 1988; Forte et al.,
2016). In the case of non-vertical contacts, the contact posi-
tions shift horizontally as the channel incises, resulting in to-
pographic changes as shown in Fig. 1b, c. Studies of bedrock
channel morphology have primarily focused on regions with
active uplift, where rock layers are often deformed and tilted
from horizontal. However, a substantial percentage of Earth’s
surface contains subhorizontal strata. Many of these settings
also contain bedrock channels, with examples including the
Colorado Plateau, the Ozark Plateaus, and the Cumberland
and Allegheny plateaus. In such settings, intuition developed
from assumptions of topographic equilibrium does not nec-
essarily apply.

Forte et al. (2016) used landscape evolution models to
demonstrate that erosion rates vary in space and time in po-
tentially complex ways as landscapes incise through layered
rocks with different erodibilities. These simulations also sug-
gest that deviation from topographic equilibrium is strongest
for rock layers that are horizontal. While topographic equi-
librium does not hold in general in layered rocks, here we ex-
plore whether landscapes incising layered rocks develop any
kind of steady-state form, and whether there are regular re-
lationships between steepness and rock erodibility. We show
that such a form does exist in some cases, and that it is a type
of flux steady state that can be derived from an assumption
of erosional continuity across the rock contacts. We further
examine how this steady state depends on the erosion model
employed and on the contact dip angle, focusing on the case
of subhorizontal layers.

Earth Surf. Dynam., 5, 85–100, 2017 www.earth-surf-dynam.net/5/85/2017/



M. Perne et al.: Steady state in layered rocks 87

Figure 2. Erosional continuity. (a) If the upper layer at a contact erodes slower, this produces a discontinuity at the contact and the resulting
steepening or undercutting of the upper layer will drive the system toward erosional continuity. (b) If the upper layer erodes faster, this
produces a low or reversed slope zone near the contact, which will also drive the system toward continuity (c) We hypothesize that, in
general, topography will tend to approach a state where continuity is maintained.

2 Erosional continuity and steady state

Conceptual models of land surface response to changing
rock type typically employ the concept of topographic steady
state, which makes an implicit assumption of vertical con-
tacts between the different rock types. In topographic steady
state, vertical incision rates are matched in the two rock
types (Fig. 1a). Considering the opposite limit, with hor-
izontal contacts between rocks, it seems natural to think
about horizontal retreat rates rather than vertical incision
rates (Fig. 1b). It is plausible that a similar steady state ex-
ists where steepness in each rock type is fixed, and horizon-
tal retreat rates are equal at the contact. This would not be
a topographic steady state, but steepness would maintain a
one-to-one correspondence with rock erodibility. The land
surface would retreat horizontally at a fixed rate above and
below the contact while undergoing continued uplift. Gener-
alizing between these two limiting cases, we consider a pos-
sible steady state for arbitrary rock contact dip where sur-
face erosion rates are equal in a direction paralleling the con-
tact plane (Fig. 1c). We refer to equal retreat in the direction
of the contact plane as erosional continuity. Mathematically
speaking, it means that retreat rate in the direction of a con-
tact is a continuous function across the contact.

Physical reasoning supports the idea that landscapes in
layered rocks would tend toward erosional continuity. If the
upper layer retreats slower than the lower layer in the direc-
tion of the contact, this produces a steep, or possibly over-
hanging, land surface at the contact (Fig. 2a). This steepen-
ing or undercutting will lead to faster vertical erosion in the
upper layer and drive the system towards continuity (Fig. 2c).
Similarly, if the upper layer retreats faster in the direction of
the contact, this produces a low slope or reversed slope zone
near the contact (Fig. 2b) that can also push the system to-
ward continuity. Therefore, the same types of negative feed-
back mechanisms between topography and erosion that drive
landscapes to topographic steady state (Willett and Brandon,
2002) can also plausibly drive landforms near a contact into a
state that maintains continuity. We refer to this hypothesized
type of equilibrium as continuity steady state.

There are cases in natural systems where continuity is not
maintained at all times. For example, caprock waterfalls are
similar to the case in Fig. 2a. However, even in this case
the discontinuity cannot grow indefinitely. If the waterfall
reaches a steady size then the system has once again ob-
tained a state where continuity is maintained in a neighbor-
hood near the contact. Numerical landscape evolution mod-
els do not typically allow cases such as Fig. 2a, b. Therefore,
numerical models are likely to maintain continuity even more
rigidly than natural landscapes. While these lines of reason-
ing suggest that both natural systems and landscape evolu-
tion models may be driven toward erosional continuity, here
we consider continuity steady state to be a hypothesis that we
test against landscape evolution models. Erosional continuity
makes quantitative predictions about steady-state landscapes
that are elucidated below and then tested against numerical
landscape evolution models.

Using the constraint of erosional continuity, one can write
a very general relationship between surface erosion rates and
slopes at a contact between two rock types,

E1

E2
=
S1− Sc

S2− Sc
, (2)

where Ei and Si are vertical erosion rates and slopes, respec-
tively, and the index refers to rock types 1 and 2. Sc is the
slope of the rock contact and is defined as positive in the
downstream direction. This relationship results from an as-
sumption of equal retreat rate at the contact within both rock
layers in a direction parallel to the rock contact plane, as il-
lustrated in Figs. 1c and A1. A similar relationship is used by
Imaizumi et al. (2015) to examine the parallel retreat of rock
slopes. If we consider the more specific case of stream power
erosion through a pair of weak and strong rocks, this leads to

KwSw
n

KsSs
n =

Sw− Sc

Ss− Sc
, (3)

where Kw is the erodibility of the weaker rock, Ks is the
erodibility of the stronger rock, Sw = tanθw and Ss = tanθs
are the slopes of the channel bed in each rock type, and
the contact slope is Sc =− tanφ (derivation in Appendix A).
Here we have assumed that erosion processes in both rock
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Figure 3. Channel slope response at a subhorizontal contact from
an assumption of continuity. The ratio of slope within the weaker
rock (Sw) and the slope within the stronger rock (Ss) near a hori-
zontal contact (solid line) with differing values of the exponent n
in the stream power model. Erodibility in the weaker rocks (Kw)
is twice that of the stronger rocks (Ks). This subhorizontal case ap-
plies when the dip of the contact is small compared to channel slope.
The dashed line displays the standard topographic equilibrium re-
lationship, which applies for cases where the contact slope is much
larger than the channel slope.

types can be expressed with the same exponent, n. While
n may vary with rock type if erosion processes are differ-
ent (Whipple et al., 2000), fixed n provides a useful starting
point to understand erosion of layered rocks and is also the
most common choice used in landscape evolution models.

The implications of the relationship in Eq. (3) are most
easily understood by examining two limiting cases, a ver-
tical contact limit, which applies whenever contact dip is
large compared to channel slope, and a subhorizontal limit,
which applies when contact dip is small compared to chan-
nel slope. When the contact slope is much larger than the
channel slopes (|Sc| � Sw,Ss) the right-hand side of Eq. (3)
is approximately one, and vertical erosion rates in both rock
types are roughly equal. Rock uplift can thus be balanced by
erosion in both segments, and the standard relationship be-
tween channel slopes in the two rock types, normally derived
from topographic equilibrium, is recovered, with

KwSw
n
=KsSs

n. (4)

If the contact slope is in this steep limit, but not vertical, the
contact position and topography will gradually shift horizon-
tally with erosion and vertically with uplift, while still obey-
ing this relation derived from topographic equilibrium.

For the subhorizontal limit, where channel slopes are
much greater than the slope of the contact (Sw,Ss� |Sc|),
Eq. (3) simplifies to

KwSw
n−1
=KsSs

n−1 or
Sw

Ss
=

(
Kw

Ks

) 1
1−n
. (5)

In this case, continuity results in roughly the same rate of hor-
izontal retreat in both rocks at the contact, as in Fig. 1b. This

Figure 4. Channel profiles in subhorizontally layered rocks with
high uplift (2.5 mmyr−1). (a–c) Channel profiles in χ -elevation
space for cases where n= 2/3 (a), n= 3/2 (b), and n= 1 (c). (d–
f) Channel profiles as a function of distance from divide. Each panel
contains three time snapshots of the profile with uplift subtracted
from elevation so that the profiles evolve from left to right. Grey
bands represent the weak rock layers. The dashed lines (a, b) show
the profiles predicted by the continuity steady-state theory (Eqs. 5
and 8), with filled circles depicting predicted crossing points of the
contacts. Channel profiles obtain a steady-state shape except near
base level, where a constant rate of base-level fall is imposed. For
n 6= 1 the equilibrium profile steepness (slope in χ space) has a one-
to-one relationship with rock erodibility, with steeper channels in
weaker rock if n < 1. For n= 1 there is no unique relationship be-
tween erodibility and steepness, as continuity cannot be maintained
along the entire profile.

contrasts with the standard assumption of equal rates of verti-
cal erosion, and leads to unexpected behavior. Specifically, if
n < 1, since Kw >Ks, higher slopes are predicted in weaker
rocks, which is in strong contrast to intuition developed from
the perspective of topographic equilibrium. This results be-
cause the rate of horizontal retreat within a given rock layer
(dx/dt ∝KiSn−1

i ) is a decreasing function of slope if n < 1.
Steeper slopes can retreat more slowly horizontally because a
given increment of vertical incision produces less horizontal
retreat on a steeper slope than a shallower slope. For n < 1
vertical erosion does not increase quickly enough with slope
to offset this effect. Since horizontal retreat rate is an increas-
ing function of erodibility, continuity requires that increases
in erodibility are offset by increases in slope. For subhori-
zontal contacts with n > 1, higher slopes are once again pre-
dicted in stronger rocks.

The slope ratio (Sw/Ss) is depicted for the vertical and
horizontal limits in Fig. 3 as a function of n for an erodibil-
ity contrast of Kw = 2Ks. In general, contrasts in the slopes
within the two strata in the subhorizontal case (Eq. 5) are
larger than would be predicted using the standard formu-
lation for vertical contacts (Eq. 4). In subhorizontal rocks
(i.e., whenever rock dip is small compared to channel slope),
channel slopes may become sufficiently high or low to be

Earth Surf. Dynam., 5, 85–100, 2017 www.earth-surf-dynam.net/5/85/2017/



M. Perne et al.: Steady state in layered rocks 89

Table 1. Parameters used in the 1-D model runs.

Simulation Ks[m1−2m a−1
] Kw [m1−2m a−1

] m U [ma−1
]

High-uplift cases

n= 2/3 1× 10−4 2× 10−4 1/3 2.5× 10−3

n= 1 2× 10−5 2.4× 10−5 1/2 2.5× 10−3

n= 3/2 1.5× 10−6 3× 10−6 3/4 2.5× 10−3

Low-uplift cases

n= 2/3 4× 10−5 8× 10−5 1/3 2.5× 10−4

n= 1 2× 10−5 2.4× 10−5 1/2 2.5× 10−4

n= 3/2 3× 10−6 6× 10−6 3/4 2.5× 10−4

Figure 5. Channel profiles in subhorizontally layered rocks with
low uplift (0.25 mmyr−1). (a–c) Channel profiles in χ -elevation
space for cases where n= 2/3 (a), n= 3/2 (b), and n= 1 (c). (d–
f) Channel profiles as a function of distance from divide. Grey bands
indicate weaker rocks. The low-uplift simulations utilize longer dis-
tances and thinner rock layers in order to obtain a similar number
of rock layer cycles. These profile shapes are qualitatively similar
to the high-uplift cases (Fig. 4).

driven to values outside the range of validity of the stream
power model, particularly for cases of n≈ 1. Perhaps the
most common value of n used within landscape evolution
models is n= 1; therefore, it is also notable that the continu-
ity relation for subhorizontal strata contains a singularity at
n= 1 (Fig. 3). The slope ratio (Sw/Ss) diverges for n→ 1−

and approaches zero for n→ 1+. This suggests strong de-
pendence of channel behavior on n when n is close to 1.
The singularity results because for n= 1 the horizontal re-
treat rate is independent of slope and solely a function of
erodibility and drainage area. Therefore, the channel cannot
maintain continuity by adjusting steepness.

3 Continuity steady-state and stream profiles

The channel continuity relations above apply to channels
within the neighborhood of a contact. Though there are clear
long-term constraints on the relative retreat rates of any two
contacts, these are not sufficient to determine an entire pro-
file. However, we hypothesize that the continuity relation ap-
plies along entire profiles, and therefore that it can be used to
describe a type of equilibrium state that develops in layered
rocks. If this is correct then there is a one-to-one relation-
ship between erodibility and steepness that is predicted by
the continuity relations. Here we test this hypothesis using
simulations of channel and landscape evolution in horizon-
tally layered rock.

3.1 Methods for one-dimensional simulations and
analysis

We solve the stream power model using a first-order explicit
upwind finite-difference method. This method is condition-
ally stable, and the time step was adjusted to produce a stable
Courant–Friedrich–Lax number of CFL= 0.9. The explicit
upwind scheme has commonly been used for prior studies,
though it is also known to produce smoothing of channel
profiles near knickpoints (Campforts and Govers, 2015). The
simulations employed 2000 spatial nodes, though we also ran
a few cases with higher resolution that produced the same re-
sults. For simplicity, basin area was held fixed over time and
was computed as a function of longitudinal distance, with

A= kax
h, (6)

where ka = 6.69 m0.33 and h= 1.67. These parameter values
are representative of natural drainage networks (Hack, 1957;
Whipple and Tucker, 1999). Simulations were run with n=
2/3, n= 1, and n= 3/2. The value ofm in the stream power
model was adjusted according to the choice of n to assure that
the concavity m/n= 0.5, which is typical of natural chan-
nels (Snyder et al., 2000). Both high-uplift (2.5 mmyr−1) and
low-uplift (0.25 mmyr−1) cases were run. Simulation param-
eters were adjusted to provide a similar number of rock con-
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tacts in each case. For the high-uplift cases, rock layers were
50 m thick, whereas for the low-uplift cases rock layers were
10 m thick. Longitudinal distances were also adjusted, with
the high-uplift cases simulating 50 km long profiles and the
low-uplift cases simulating 200 km long profiles. Specific pa-
rameter values are provided in Table 1.

Simulation results are most easily visualized in χ space
(Perron and Royden, 2013; Royden and Taylor Perron,
2013), where the horizontal coordinate x is replaced with a
transformed coordinate χ :

χ =

x∫
x0

(
A0

A(x)

)m/n
dx. (7)

One advantage of this transformation is that the effect of
basin area is removed such that equilibrium channels that
evolve according to the stream power model appear as
straight lines in this transform space. The relation predicted
by Eq. (5) is invariant under the transformation to χ space,
and therefore the relation also holds if slope is replaced with
steepness (gradient in χ -elevation space). Throughout this
work, we use a value of A0 = 1m2 in the χ transforms.

3.2 Comparison of continuity steady-state and
simulated profiles

For simulations where n 6= 1, as hypothesized, channel pro-
files far from base level approach a steady configuration, in
which channel slope in χ space is a unique function of rock
erodibility, and the profiles exhibit straight-line segments in
each rock type (Figs. 4, 5). For the horizontally layered case,
channel profiles evolve towards a state in which they are
maintaining the same shape in χ space while retreating hor-
izontally into the bedrock. For small changes in basin area,
this is equivalent to a channel maintaining constant horizon-
tal retreat rates. For non-horizontal rocks, profile shapes will
gradually change in χ space, as the slope of the contact plane
in χ space changes with basin area. Animations of the simu-
lations depicted in Figs. 4 and 5 are provided in the Supple-
ment.

For n= 1 there is no one-to-one relation between erodibil-
ity and steepness, and the profiles do not exhibit straight-line
segments in each rock type. The n= 1 case produces this re-
sult because the horizontal retreat rates are independent of
slope and purely a function of erodibility and basin area.
Consequently, adjustments of slope cannot produce equal
horizontal retreat rates along the channel. Instead, segments
within weaker rocks will retreat more quickly than those
within stronger rocks. This produces “stretch zones” as a
channel crosses from weak to strong rocks and “consum-
ing knickpoints” as a channel crosses from strong to weak
rocks (Royden and Taylor Perron, 2013; Forte et al., 2016).
The channels in the simulations ultimately reach a steady
stepped shape (Figs. 4c, 5c) in which weak rock layers retreat
until they intercept and undermine the contact with strong

layers. Near-vertical cliffs, containing both strong and weak
rocks, develop at the contact channels. These dynamics are
described in more detail by Forte et al. (2016). It is important
to note that channels in the n= 1 subhorizontal case con-
tain reaches that are sufficiently steep to negate assumptions
behind the stream power model. Additionally, the nature of
such profiles in simulations may be strongly dependent upon
the numerical algorithm employed as a result of numerical
diffusion of sharp features (Campforts and Govers, 2015).

The continuity relation (Eq. 3) predicts a slope ratio rather
than absolute values of slope in each rock type. The predicted
slope ratio matches the slopes in the simulation at sufficient
distances from base level. Notably, the counterintuitive pre-
diction that profiles would be steeper in weaker rocks for
n < 1 is confirmed by the simulations (Figs. 4a, 5a). How-
ever, absolute slopes, and therefore entire profiles, can be
predicted by realizing that continuity steady state is actually
a type of flux steady state (Willett and Brandon, 2002), where
the rate of uplift of rock into the domain is equal to the rate of
removal of material by erosion. First, it must be noted that the
weak and strong rocks experience different rates of vertical
incision in the equilibrium state (Forte et al., 2016). However,
since the shape of the landscape in χ space repeats with each
pair of rock layers, the long-term average incision rate must
be the same at all horizontal positions on the stream profile.
Furthermore, the topography is not growing or decaying over
time after continuity steady state is reached, which means
that the average incision rate at all positions is equal to the
uplift rate or, equivalently, that the system is in flux steady
state. This conclusion that the long-term average rate of ver-
tical incision at each point along the profile is equal to the
uplift rate leads to a relation for the erosion rate in a given
layer,

E1 = U
(H1/H2)+ (K1/K2)(S1/S2)n

1+H1/H2
, (8)

whereE1 is the erosion rate of one rock layer,Hi is the thick-
ness of the ith layer measured in the vertical direction, and U
is the uplift rate (see derivation in Appendix B). Entire theo-
retical profiles can be constructed using this relationship, in
combination with the stream power model and the continuity
relation (Eq. 5), which provides the slope ratio. At a suffi-
cient distance from base level, these profiles closely match
the simulations in cases where n 6= 1 (Figs. 4a, b, 5a, b), fur-
ther confirming that continuity state is a type of flux steady
state. In addition to describing behavior near contacts, con-
tinuity steady state also describes portions of the profile that
are distant from contacts. For subhorizontal rocks this often
produces a landscape that is quite different from that which
would be predicted by topographic steady state (Fig. 3).

In continuity steady state the slopes in both rock types are
different, in general, than the slopes that would be predicted
by topographic steady state. Combining Eqs. (1), (5), and (8)
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Figure 6. An example case of the ratio of slopes predicted by conti-
nuity and topographic steady states. This example assumes a choice
of equal rock thicknesses in both rock types and a weak rock erodi-
bility that is twice that of the strong rock. Contrasts are in general
strongest for n < 1 and gradually disappear for large n.

gives

S1,cont

S1,topo
=

(
H1/H2+ (K1/K2)1/(1−n)

1+H1/H2

)1/n

, (9)

where S1,cont and S1,topo are the slopes for rock layer 1
that would be obtained under continuity steady state and to-
pographic steady state, respectively. Setting the thicknesses
equal, H1 =H2, and using an example case of Kw = 2Ks,
we plot the ratio of continuity and topographic steady-state
slopes for both the weak and strong layers (Fig. 6). For n < 1
there is always a strong difference between the continuity and
topographic steady-state slopes in both rocks. For n > 1 the
weak rock in continuity steady state never has a slope more
than a factor of two different than the slope that would be pre-
dicted by topographic steady state. For large n the continuity
steady-state slopes of both weak and strong rock layers ob-
tain the same slope as they would in topographic steady state.
Additionally, if one layer is much thicker than the other (e.g.,
H1→∞), then the slope of this layer approaches the slope
that it would have under topographic steady state.

Continuity steady state predicts that the ratios of slopes in
the weak and strong layers are independent of layer thickness
(Eq. 5). However, it also predicts that erosion rates and abso-
lute slope values in both rocks are dependent on the thickness
of the layers (Eqs. 8, 9). To test this prediction, we resimu-
lated the high-uplift cases above with n= 2/3 and n= 3/2
and changed the layer thickness. For ease of comparison, the
total thickness of both layers was kept equal to 100 m, but the
weak layer thickness was increased to 90 m. As predicted, the
continuity steady-state slopes vary with relative layer thick-
ness (Fig. 7). The thicker of the two rock layers adjusts its
slope toward the slope that it would have under topographic
steady state. Increasing the percentage of weak rock adjusts
both slopes in such a way that it reduces the total topography
(Fig. 7).

Figure 7. The influence of relative layer thickness on slopes in con-
tinuity steady state. If the relative thickness of the strong and weak
layers is changed, the slopes that are far from base level in both
rocks adjust correspondingly (solid lines), as predicted by continu-
ity steady state. Grey bands depict the locations of weak rocks in the
differing thickness model. The dashed lines depict channel profiles
for simulations with equal layer thickness but the same erosional
parameters. Increasing the weak layer percentage reduces topogra-
phy overall.

3.3 Dynamics of base-level perturbations

Continuity steady state is perturbed near base level, because
a constant rate of base-level fall is imposed and continuity
steady state requires vertical incision at different rates in each
rock type. Despite this discrepancy between base-level topo-
graphic equilibrium and continuity steady state, theoretical
profiles produced using Eqs. (3) and (8) closely match the
shapes of the profiles for the cases where n is not one. There-
fore, these perturbations decay rapidly away from base level
in the simulated cases. However, a question remains as to
what controls this decay length scale, and how typical the
cases are that we have simulated.

In a horizontally layered rock sequence, a segment of
stream profile with erosion rate equal to uplift is continu-
ously developing at base level. The slope of this base-level
segment in χ -space is given by

dz
dχ
=

(
U

KAm0

)1/n

. (10)

The difference between this slope and the continuity steady-
state slope produces a knickpoint that propagates upstream
with a celerity in χ space given by

C =
U

dz/dχ
= U (n−1)/nK1/nA

m/n

0 . (11)

As the knickpoint crosses into the other rock type, continuity
demands that C does not change, because C is identical to
horizontal retreat rate and continuity requires this to be equal
across a horizontal contact. Since celerity is a monotonic in-
creasing function of erodibility, knickpoints formed at base
level in the stronger rock are slower than those formed in the
weak rock. Therefore, the weak rock knickpoints catch up
to the strong rock knickpoints, and the profile damps toward
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equilibrium as the two interact. Consequently, we can esti-
mate the damping length scale as the χ distance at which the
knickpoints generated in weak rock at base level catch up to
the knickpoints generated in strong rock at base level.

The strong rock knickpoint begins with a head start equal
to the χ distance spanned by the strong rock segment, which
we call χs,0 and is given by

χs,0 =Hs

(
KAm0
U

)1/n

. (12)

The strong rock knickpoint will travel an additional distance
χs,+ before the weak rock knickpoint catches up, and these
distances are related by

χs,0+χs,+

Cw
=
χs,+

Cs
, (13)

where Cs and Cw are the knickpoint celerities in the strong
and weak rocks, respectively. The damping length scale,
λ= χs,0+χs,+, is the distance from base level over which
the weak rock knickpoint catches the strong one and can be
solved for by combining Eqs. (11)–(13), leading to

λ=Hs

(
KsA

m
0

U

)1/n[
1+

(
(Kw/Ks)1/n

− 1
)−1

]
. (14)

To generalize the damping behavior of the base-level per-
turbations it is useful to analyze a dimensionless version of
λ, which is normalized by χs,0,

λ∗ =
λ

χs,0
= 1+

[(
Kw

Ks

)1/n

− 1

]−1

. (15)

It can be seen that the damping length scale is primarily a
function of the relative erodibilities of the two rock types.
When the contrast is large, damping occurs rapidly, whereas
when the contrast is small the damping length scale is large.
However, in this latter case there is also very little contrast in
steepness, since the erodibilities are similar. Since χs,0 is the
χ length of the strong rock reach near base level at the mo-
ment that the weak layer becomes exposed, χs,0 is less than
but on the same order of magnitude as the profile distance
spanned by a pair of weak and strong rock layers. Therefore,
λ∗ can be interpreted as a conservative order of magnitude
estimate of the number of pairs of weak and strong rocks
that are required to produce damping. That is, if λ∗ ∼ 1 then
damping should occur within a single pair. We show λ∗ as
a function of the erodibility ratio for several choices of n
in Fig. 8. Here it can be seen that if the erodibility ratio is
greater than about two or three then λ∗.2, or, equivalently,
damping occurs for parts of the profile that are separated
from base level by more than two sets of contacts between the
two rock types. If the erodibility ratio is greater than about
ten, then λ∗.1, and damping occurs within a single pair of
the two rock types.

Figure 8. The dimensionless damping length scale, λ∗, as a func-
tion of erodibility ratio. Damping of base-level perturbations is
strong when the erodibility ratio is greater than 3. λ∗ can be in-
terpreted as roughly the number of pairs of strong and weak rock
layers that base-level perturbations must pass through before sub-
stantial damping toward continuity steady state.

Figure 9. Simulations of knickpoint propagation and damping from
base level. Entire equilibrium profiles are depicted for cases where
n= 1.2 (a) and n= 0.8 (b). Panels (c) and (d) show zoomed-in
figures that depict three separate time steps (dotted, dashed, and
then solid) as fast knickpoints catch up with slow knickpoints at the
calculated damping length scale (λ, thick red line). The interaction
of the two knickpoints can be visualized as the reduction in size of a
slope patches that are at the topographic equilibrium slope as these
patches approach λ.

To illustrate this damping behavior, we run two simula-
tions with somewhat longer damping length scales. Both
simulations have profile lengths of 500 km, uplift rates of
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Table 2. Parameters used in the FastScape model runs.

Simulation Kfw[m1−3m a−1+m
] Kfs[m1−3m a−1+m

] m P [ma−1
] U [ma−1

]

n= 2/3 1.2× 10−4 0.5 ·Kfw 1/3 1 2.5× 10−3

n= 1 1.5× 10−5 0.83333 ·Kfw 1/2 1 2.5× 10−3

n= 3/2 1× 10−6 0.5 ·Kfw 3/4 1 2.5× 10−3

2.5 mmyr−1, repeating rock layers with a 50 m thickness,
and weak rock layers that have an erodibility of 1.5 times
the strong rock layers. One case uses n= 1.2, m= 0.6, and
Ks = 1.5×10−5, whereas the second case uses n= 0.8,m=
0.4, and Ks = 1× 10−4. For the n= 1.2 case, λ= 2.45, and
for the n= 0.8 case, λ= 2.25. Profiles are shown for these
simulations in Fig. 9. Fast knickpoints catch the slow knick-
points at roughly the calculated length scale (Fig. 9c, d). Note
that the knickpoints we are describing here are breaks in
steepness, which can be downstream decreases or increases
in steepness. The knickpoint interference can be seen as the
gradual reduction in the size of a topographic equilibrium
slope patch near base level that reaches zero size at approxi-
mately χ = λ. This process is visualized more clearly in an-
imations in the Supplement that depict the damping length
scale. Beyond this damping length scale, some minor pertur-
bations remain, and one can see fast and slow knickpoints
migrating through the upper parts of the profile as the system
evolves. However, beyond λ the theoretical profiles derived
from continuity and flux steady state are a good approxima-
tion to profile shape.

4 Full landscape simulations

To determine whether continuity steady state is obtained
within whole landscape models, or whether addition of hills-
lope processes might eliminate it, FastScape V5 (Braun and
Willett, 2013) was used to simulate stream power erosion
coupled to an entire landscape model. All simulated cases
employ a constant rock uplift rate and horizontal rock layers
with alternating high and low erodibility.

The stream power model used in FastScape has the form

E =Kf8
mSn, (16)

where 8 is discharge, calculated as the product of the
drainage area and the precipitation rate P . Each of the three
presented model runs uses two different erodibility coeffi-
cients, Kfw for the weak rock and Kfs for the strong rock, in
place ofKf. For each one of them, a grid of 3000× 3000 pix-
els representing 100 km× 100 km is simulated. The initial
condition used is a slightly randomly perturbed flat surface
at base level. The boundary condition is open on all sides.
15 000 m of uplift is simulated in 60 000 time steps. The
weaker rock is exposed for the first 10 800 m of the uplift, al-
lowing an initial drainage network to establish. Afterwards,

a layered rock structure starts to be exposed, with alternat-
ing layers of 200 m of the stronger rock and 300 m of the
weaker rock. The main difference between the model runs
is in the slope exponent n, with cases using n= 2/3, n= 1,
and n= 3/2. A listing of numerical parameters is provided
in Table 2. The necessary time step was calculated from the
uplift rate and the ratio of total uplift to the number of time
steps.

Floating-point digital elevation models (DEMs) were pro-
duced for the final time step for each FastScape simulation.
Using the Landlab landscape evolution model (Tucker et al.,
2013) to calculate flow routing, channel profiles were ex-
tracted from the FastScape DEMs for each case of n. Land-
lab was extended to enable calculation of χ values for each
channel. χ plots were then generated for 50 channels in each
simulation and are shown in Fig. 10. The continuity equilib-
rium state described above is also reflected within the full
landscape evolution model, and plots of elevation versus χ
for channels within each model demonstrate similar relation-
ships as displayed in Fig. 4a, c, e.

5 Discussion

Topographic steady state is not attained within layered rocks
with non-vertical contacts since the spatial distribution of
erodibility changes in time (Howard, 1988; Forte et al.,
2016). Forte et al. (2016) show that departures from topo-
graphic steady state are greatest when the layers have con-
tacts that are near horizontal. They use simulations of land-
scape evolution with a stream power erosion model with
n= 1. These simulations demonstrate that erosion rates vary
across the landscape in complex ways, that there is no direct
relationship between rock erodibility and erosion rate, and
that erosion rates can be greater or less than the uplift rate.
They also detect distinct differences in landscape develop-
ment between cases where either the strong or weak rock is
exposed first. In the case of a weak rock on top of a strong
rock, a tapered wedge of weak rock forms on top of a steep
retreating escarpment in the strong rock. When strong rock
is on top of weak rock, the weak rock undercuts the strong
rock and forms an extremely steep zone near the contact.

Our simulations and analysis support the conclusions of
Forte et al. (2016) on the dynamics of the n= 1 case. How-
ever, we also show that these dynamics result specifically
because the rate of horizontal retreat, or equivalently the
knickpoint celerity, is independent of slope when n= 1. Con-
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Figure 10. Results of the FastScape simulations. Lines in the left-hand panels are profiles extracted from the DEMs. Simulations were
run at constant uplift with alternating bands of weak and strong rocks. Grey bands indicate the weaker rocks. The individual panels show
simulations where n= 2/3 (a), n= 3/2 (c), and n= 1 (e). The dashed lines (a, c) show the equilibrium profile predicted by the theory, with
circles depicting predicted crossing points of the contacts. Profiles obtain similar shapes as in the 1-D simulations (Fig. 2b–d). Panels (b),
(d), and (f) show DEMs of the landscapes formed in each simulation. Color represents elevation, with white being high.

sequently, the topography is unable to maintain a state of
erosional continuity, and therefore topography is unable to
reach continuity steady state. Landforms developed in lay-
ered rocks are driven toward continuity steady state by the

same type of negative feedback mechanisms between topog-
raphy and erosion that generate topographic steady state.
In fact, topographic steady state is a special case of con-
tinuity steady state. For stream power erosion with n 6= 1,
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landscapes are able to adjust slope to maintain continuity
across multiple rock layers. Therefore, a type of equilibrium
landscape form does develop sufficiently far from base level
when n 6= 1.

If we compare the n 6= 1 case with the conclusions above
concerning the n= 1 cases, several similarities and differ-
ences emerge. For both cases, it is true that topographic
steady state is only strictly reached if contacts are vertical.
Also, for both cases the patterns of steepness in the landscape
diverge most strongly from those predicted by topographic
steady state when rocks are horizontally layered. However,
for n 6= 1, erosion rates and steepnesses do exhibit one-to-
one relationships with rock erodibility. In our simulations,
we do not see any dependence of topography on the order of
exposure of the layers, unlike with the n= 1 case. Consider-
ing two rock types, one strong and one weak, erosion rates
bracket the uplift rate, with one rock exhibiting erosion rates
higher than uplift and the other lower than uplift. For the sub-
horizontal case, the weak rock erodes faster when n < 1 and
the strong rock erodes faster when n > 1 (Fig. 6). Contrasts
in erosion rates become small for large n (Fig. 6) and very
large when n≈ 1.

As noted by Forte et al. (2016), variability in erosion rates
across the landscape can produce bias in detrital records,
as zones exhibiting faster erosion will contribute a larger
proportion of the exported sediment than would be calcu-
lated based on areal estimates. Since the framework devel-
oped predicts a regular relationship between erosion rates
and erodibility for n 6= 1, it may help constrain uncertain-
ties in such records. The long-term average erosion rate at
any location is equal to uplift rate, and therefore continuity
steady state is a type of flux steady state. Because of this,
there is also a simple rule that emerges when considering
erosion rates as a function of rock type. For the portion of
the landscape that is in flux steady state, the amount of mate-
rial removed from a given rock layer within a period of time
will be proportional to the fraction of the topography that is
spanned by that layer, as opposed to its areal extent. For ex-
ample, in our simulations where each rock type makes up
half of the topography, there is an approximately equal vol-
ume of material eroded from each rock type within a given
time step.

When contacts between rocks dip at slopes much greater
than the channel slope, then the vertical contact limit from
Eq. (4) applies and topography approaches the form that
would be predicted by topographic steady state. The consid-
erations introduced here become important as rock dips ap-
proach values comparable to or less than channel slope. This
subhorizontal limit, given by Eq. (5), is most likely to apply
for rocks that are very near horizontal and/or channels that
are very steep. Therefore, these considerations are most ap-
plicable in cratonic settings, in headwater channels, or when
considering processes of scarp retreat in subhorizontal rocks
(Howard, 1995; Ward et al., 2011). In the subhorizontal limit,
slope contrasts are larger than would be predicted by topo-

graphic steady state (Fig. 3). In the case of n < 1, slope pat-
terns in continuity steady state are also qualitatively differ-
ent than those predicted by topographic steady state, with
steeper channel segments in weaker rocks. Since the relation-
ship between erodibility and steepness within layered rocks
is a function of contact dip, this may complicate the determi-
nation of erodibility using channel profile analysis in settings
where the subhorizontal limit applies.

For n≈ 1, slope contrasts become extreme, which is par-
ticularly important since n= 1 is the most common value
used in landscape evolution models. In this case, large slope
contrasts at contacts may accentuate numerical dispersion.
It also must be realized that n= 1 is quite a special case
in subhorizontal rocks, and the rest of the parameter range
for n results in substantially different dynamics and steady
state. Field studies have suggested that n= 1, where knick-
point retreat rate is independent of slope, can explain the dis-
tribution of knickpoints within drainage basins (Crosby and
Whipple, 2006; Berlin and Anderson, 2007). However, it is
also clear from our analysis that with n= 1 in subhorizontal
rocks channels near contacts obtain a steep state, where the
stream power model will break down.

During constant uplift, channels cannot attain continuity
steady state at base level, because it requires different vertical
incision rates in each rock type. However, the perturbations
introduced by stream segments in topographic equilibrium at
base level rapidly decay over a length scale that is primar-
ily a function of the ratio of rock erodibilities, with larger
erodibility contrasts resulting in shorter decay lengths. Prac-
tically speaking, for rocks that have erodibilities sufficiently
different to have a strong effect on the profile, base-level per-
turbations of continuity steady state decay after a couple rock
contacts are passed.

Though steepness ratios are a fixed function of rock erodi-
bility in continuity steady state, absolute steepness values
depend on rock layer thickness. Since natural systems will
not generally have regular patterns of thickness or erodibility,
this has implications for the ability of natural systems to ap-
proach continuity steady state. As new rock layers with dif-
ferent thicknesses or erodibilities are exposed at base level,
the absolute steepness values that would represent continuity
steady-state change. Therefore, continuity steady state may
often represent a moving target, where the landscape is con-
stantly adjusting toward it but never reaching it. The intro-
duction of rock layers with varying thickness and erodibility
can produce transience in landscapes that are experiencing
otherwise stable tectonic and climate forcing. This only ap-
plies, however, for absolute steepness values. Steepness ra-
tios, and their relationship to erodibility, would be expected
to be relatively constant in time if sufficiently far from base
level. Since the relationship between erodibility and steep-
ness will change in both time and space as new layers are
exposed at base level, this may confound attempts to identify
erodibility values using channel profiles within steep chan-
nels in subhorizontal rocks. However, since steepness ratios
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do not depend on these dynamics, analysis of steepness ratios
derived from profiles, rather than absolute steepness values,
may enable quantification of the relative erodibility of layers.

We speculate that the simulated dynamics in subhorizontal
rocks provide a potential means to generate caprock water-
falls, a feature that has long fascinated geologists (Gilbert,
1895). Caprock waterfalls, such as Niagara Falls, have a
resistant caprock layer that is underlain by a weaker rock.
The waterfall has the caprock at its lip, followed by a verti-
cal, or often overhanging, face within the weak rock. This
is a case of a very steep channel within a highly erodi-
ble rock, which would not be predicted from topographic
equilibrium and stream power erosion. Such a state is pre-
dicted by the continuity relation developed here for subhori-
zontal layers with n < 1, and somewhat similar features de-
velop in the case of n= 1. Values of n might be expected
to be less than one for erosion processes active in the weak
rock layer, such as plucking (Whipple et al., 2000). Further-
more, caprock waterfalls typically form in relatively hori-
zontal strata, and are common within steep headwater chan-
nels, which are the settings where differences between topo-
graphic and continuity steady state become important. The
stream power model arguably does not apply to waterfalls
(Lamb and Dietrich, 2009; Haviv et al., 2010; Lague, 2014),
and a variety of erosion mechanisms that are independent of
stream power can act in such an oversteepened reach, such
as gravity failure, freeze–thaw, shrink–swell, and seepage
weathering. However, starting from an initial condition of
low relief, topographic equilibrium and stream power erosion
would not predict a channel to evolve toward the caprock wa-
terfall state. In contrast, the framework presented here natu-
rally produces features resembling caprock waterfalls from
considerations of landscape equilibrium. While further work
would be needed to test this hypothesis, it remains plausi-
ble that caprock waterfalls are the result of channels steep-
ened within weaker rocks to maintain continuity, even if,
once the channel becomes sufficiently steep, stream power
erosion no longer provides a good approximation to ero-
sion rates. The concept of continuity could also be applied
to other, more mechanistic, erosion models, as the relation
provided by Eq. (2) is independent of erosion model. How-
ever, continuity relations are most likely to provide insight
for simple erosion models where analytical solutions can be
derived, as with stream power erosion. With more complex
models, the results of numerical landscape evolution mod-
els could be compared against the continuity relation to test
whether a similar continuity steady state is attained.

Though the focus of this work is on bedrock channel pro-
files in layered rocks, the concepts of continuity and flux
steady state can be applied in general to any mathematical
model for erosion. Much like topographic steady state, both
continuity and flux steady state result from negative feedback
within the uplift-erosion system that drives it toward steady
state as uplift and erosion become balanced. Such feedback
mechanisms are likely to be present within most erosional

models. Though topographic steady state has been a power-
ful theoretical tool to understand landscapes, the generalized
concept of erosional continuity may prove more useful in in-
terpreting steep landscapes in subhorizontal rocks.

6 Conclusions

Topographic steady state has provided a powerful tool for un-
derstanding the response of landscapes to climate, tectonics,
and lithology. However, within layered rocks, topographic
steady state is only attained in the case of vertical contacts.
In topographic steady state, vertical erosion rates are equal
everywhere, and steepness adjusts with rock erodibility to
produce equal erosion. Here we generalize this idea using
the concept of erosional continuity, which is a state where
retreat rates of the land surface on either side of a rock con-
tact are equal in the direction parallel to the contact rather
than in the vertical direction. Using a stream power erosion
model with n= 1, prior work showed that erosion rates ex-
hibit transient and complex relationships with rock erodibil-
ity (Forte et al., 2016). Our work suggests that these complex
and transient effects result because adjustments in steepness
cannot produce a state of erosional continuity when n= 1. In
cases where n 6= 1, erosional continuity can be attained, and
the landscape sufficiently far from base level exhibits one-to-
one relationships between steepness and erodibility that are
predicted by continuity. We refer to this as continuity steady
state, and show that it is a type of flux steady state. Results
from 1-D and 2-D landscape evolution models confirm the
predictions of the erosional continuity equations.

For continuity steady state, the relationships between rock
erodibility and landscape steepness differ most from topo-
graphic steady state when the rock contacts are subhorizon-
tal, that is, when contact dips are less than channel slope. In
the subhorizontal case, contrasts in steepness are larger than
predicted by topographic steady state. These contrasts are
largest when n≈ 1, and in fact may create sufficiently steep
channels in one of the rock layers to negate the applicabil-
ity of the stream power erosion model. For n≈ 1, numerical
dispersion may also influence the time evolution of the to-
pography because of the large slope contrasts. When n < 1,
steepness patterns are also qualitatively different than those
predicted by topographic steady state, with steeper channel
segments in weaker rocks. In continuity steady state, erosion
rates bracket the uplift rate and display a regular relation-
ship with erodibility. This may assist in quantifying the un-
certainty and bias within detrital records that can result from
different erosion rates in different rock types (Forte et al.,
2016). Relationships between erodibility and steepness are
both a function of rock dip and the history of layers ex-
posed at base level, which may confound attempts to iden-
tify erodibility values using stream profile analysis in some
settings. For subhorizontal rocks, continuity steady state is
not attained at base level. However, the perturbations to con-
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tinuity steady state that are introduced at base level decay
rapidly when there is a contrast in erodibility of more than a
factor of 2 to 3. We speculate that the framework developed
here provides a possible mechanism for the development of
caprock waterfalls, since it predicts steep channel reaches
within weak rocks. Though we focus on stream power ero-
sion, the concept of erosional continuity is quite general, and
may provide insight when applied to other erosion models.

7 Data availability

The simulation inputs, the code used to run the 1-
D simulations, and the code to create the figures in
the manuscript are archived in a GitHub repository
(doi:10.5281/zenodo.259475; Covington et al., 2017).
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Appendix A: Derivation of the continuity relation

Here we detail how the constraint of channel continuity can
be used to derive the relationship given in Eq. (3). Consider a
planar contact between rock types with different erodibilities.
We label the downstream and upstream erodibility with K1
and K2. Downstream and upstream slopes are S1 and S2; the
slope of the contact is Sc; and their respective slope angles
are θ1, θ2, and φ (see Fig. A1).

Figure A1. Geometric relationships used to derive the equation for
continuity of the channel at a contact between two rock types. Note
that the slope of the contact plane (Sc =− tanφ) is defined as posi-
tive when the contact dips in the downstream direction.

In this section we use the subscript i to denote either 1 or
2, as the relationships are valid for the channel within both
rock types. Erosion at a rate Ei in the vertical direction, as
is calculated by the stream power model, can be transformed
to an erosion rate Bi that is perpendicular to the channel bed
using the slope of the channel bed, θi , with Bi = Ei cosθi
(see Fig. A1). The contact and the channel intersect at angle
θi +φ, and thus the rate of exposure of the contact plane is

Ri =
Bi

sin(θi +φ)
=

Ei cosθi
sin(θi +φ)

. (A1)

For the case where θi +φ > π/2 the diagram changes, but
these same relationships can be recovered using sin(π−θi−
φ)= sin(θi +φ). Continuity of the channel bed requires that
the contact exposure rates R1 and R2 are equal, which gives

E1 cosθ1

sin(θ1+φ)
=

E2 cosθ2

sin(θ2+φ)
. (A2)

Using a trigonometric identity for angle sums leads to

E1 cosθ1

sinθ1 cosφ+ cosθ1 sinφ
=

E2 cosθ2

sinθ2 cosφ+ cosθ2 sinφ
. (A3)

Simplifying the fractions and multiplying both sides of the
equation with cosφ we get

E1

tanθ1+ tanφ
=

E2

tanθ2+ tanφ
. (A4)

Solving for the ratio of erosion rates in the two rock types
and converting to slopes rather than angles, using a sign con-
vention where both contact and bed slopes are positive in the
downstream direction, the relation becomes

E1

E2
=
S1− Sc

S2− Sc
. (A5)

If erosion rates are given by the stream power model, then it
follows that

K1S
n
1

K2S
n
2
=
S1− Sc

S2− Sc
, (A6)

which is identical to Eq. (3) with the general subscripts 1 and
2 replaced with s and w for strong and weak.

Appendix B: Derivation of the erosion relation

Using the stream power model, erosion rates in two channel
segments above and below a contact are

E1 =K1A
mSn1 and E2 =K2A

mSn2 , (B1)

where A is the recharge area. Taking the ratio of both equa-
tions at an arbitrary basin area, we get

E1

E2
=
K1

K2

(
S1

S2

)n
. (B2)

We define H1 and H2 to be the thicknesses of the rock layers
measured in the vertical direction. If flux steady state is as-
sumed, then the average erosion rate equals the uplift rate U .
Therefore, the time needed to uplift a distance equal to the
sum of the thicknesses of the two layers equals the sum of
the times needed to erode through the two layers:

H1+H2

U
=
H1

E1
+
H2

E2
. (B3)

Combining Eqs. (B2) and (B3) gives an expression for the
erosion rate in a given rock:

E1 = U
H1/H2+K1/K2(S1/S2)n

1+H1/H2
. (B4)

While flux steady state seems like a reasonable assumption,
simulations also confirm that the erosion rates predicted by
Eq. (B4) are approached within a few contacts above base
level. Similarly, simulations that alternate uplift rate over
time to match the erosion rate of the rock type currently at
base level, as given by Eq. (B4), obtain straight-line slopes
in χ -elevation space all the way to base level. This confirms
that the disequilibrium seen in the profiles in Fig. 4b–d is
produced by the difference between the constant uplift rate
and the equilibrium incision rates experienced in each layer.
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