
Improving wind vector predictions for modelling of

atmospheric dispersion during Seveso-type accidents
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Abstract

In case of a major accident involving airborne emissions of harmful gases,
a temporary portable meteorological station may be used to improve atmo-
spheric dispersion modelling (ADM) for protection of people and the environ-
ment. While the meteorological station provides signal values for the past,
ADM results for the future are of particular interest for planning purposes.
It is possible to use the current measured value as a future input to the
ADM but it is suboptimal. It is also possible to use model output statis-
tics (MOS) to predict the future local weather information from numerical
weather prediction (NWP) models, while available operational NWP models
are in general too coarse to be used directly in fine-resolution ADM. MOS
models are obtained through machine learning and the training data sets in
most traditional uses of MOS are big, which is beneficial for modelling. We
envision using MOS in an emergency and for a location of a temporary mete-
orological station. We use windowing for online data selection to explore its
accuracy when the amount of available training data is very limited, which
is expected in an emergency situation. We show that MOS for wind vector
with 1 day of training data greatly improves on the numerical weather pre-
dictions and the persistence model, so its use in such an emergency would be
advantageous.
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1. Introduction

The European Commission reports that “major accidents involving dan-
gerous chemicals pose a significant threat to humans and the environment”
(The European Commission, 2020). In the European Union, such hazards are
prevented and controlled through Seveso Directive (The European Commis-
sion, 2020), which aims both at “the prevention of major accidents involving
dangerous substances” (The European Commission, 2019) and at “limiting
the consequences of such accidents not only for human health but also for
the environment” (The European Commission, 2019).“The Directive applies
to more than 12 000 industrial establishments in the European Union,” ac-
cording to (The European Commission, 2020).

An important component of limiting the consequences of a major acci-
dent with dangerous chemicals is atmospheric dispersion modelling. It is thus
included in the tool named Accident Damage Assessment Module (ADAM),
developed by the Joint Research Centre of the European Commission for
assessing the consequences of an industrial accident resulting from an un-
intended release of a dangerous substance (Fabbri and Wood, 2019). The
purpose of ADAM is implementation of the Seveso Directive (Fabbri and
Wood, 2019).

Atmospheric dispersion modelling benefits from good quality information
on local wind speed and direction (Barratt, 2013; Beelen et al., 2010; Breznik
et al., 2003). In certain accidents, installing a portable meteorological station
at the accident site is useful for protection of the human health and the envi-
ronment (O’Mahony et al., 2008), especially if emission into the atmosphere
is going on for a longer time. A couple such long duration scenarios, which
are covered by ADAM, are pool evaporation and fire (Fabbri and Wood,
2019).

However, the local measurements provided by a portable meteorological
station apply to the past. Information on expected winds in the future would
enable atmospheric dispersion modelling for the future, providing helpful
advice for protecting the human health and the environment.

Numerical weather prediction (NWP) models are predicting future winds
and other meteorological parameters in ever increasing spatial and temporal
resolution. They can be used for atmospheric dispersion modelling (Grašič
et al., 2018; Jones et al., 2007; Sigg et al., 2018). However, predicting local
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wind speed and direction in detail is still challenging, especially in complex
terrain. Local measurements are thus a more relevant source of data on local
winds than NWP model outputs are.

We propose a method for obtaining local wind signals at the
site of a portable meteorological station for the future. We train an
experimental model using the measurements of the portable meteorological
stations as the training data set. The model predicts the local horizontal
wind vector at the accident site from the NWP model predictions, the cur-
rent wind measurements from the portable station, and possibly from the
measurements of the other meteorological stations in the surrounding area.

The main focus of this work is on evaluating the quality of the proposed
models’ predictions and determining whether their quality is sufficient for
the intended use case. In particular, the predictions are compared to the
other available predictions, that is, to the predictions of the NWP model
and to the persistence predictions. The wind components at the location
of the temporary portable meteorological station are predicted with system
identification. Only the data that would be available in an accident is used.
Notably, the amount of historical data at the site of the temporary station
is severely limited to hours or at most days.

For experimental modelling, we use Gaussian process (GP) models (Ko-
cijan, 2016; Rasmussen and Williams, 2006; Shi and Choi, 2011), mainly
because they predict the expected variance of the model output. We com-
pare them to linear regression using least squares, which predicts variance
as well. Many mathematical structures that are in use as statistical mod-
els, such as GP models (Rasmussen and Williams, 2006), artificial neural
networks (Torrontegui and Garćıa-Ripoll, 2019), fuzzy models (Pal et al.,
2018), Volterra models (Carini et al., 2018), etc. are universal approximators
and would deliver similar results.

Experimental modelling of local weather parameters from NWP model
outputs is well established and is called model output statistics (MOS) par-
ticularly in the case the experimental model is linear (Bédard et al., 2013;
Glahn and Lowry, 1972; Kalnay, 2003). GP has been used for the purpose
before, often for wind power forecasting (Chen et al., 2013a,b; Hoolohan
et al., 2018; Yan et al., 2016; Zhang et al., 2016, 2019) but also for improving
atmospheric dispersion modelling (Kocijan et al., 2019; Perne et al., 2019).

The main original contribution of this work is experimental modelling of
meteorological parameters with small training data sets. For the established
uses of experimental modelling of local weather variables, big training data
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sets of months to years tend to be available, increasing the accuracy of the
model. In contrast, the available training data set for a temporary mete-
orological station during an accident with dangerous chemicals is days at
most. We show that it is possible to improve on both the numerical weather
predictions and the persistence model under this constraint.

To efficiently test the models and evaluate the influence of the training
data set size on their performance, we use online modelling method, namely
windowing or time-stamp method (Kneale and Brown, 2018).

2. Methods

The scenario we are simulating is an accident necessitating atmospheric
dispersion modelling, because of which a temporary meteorological station is
established at a relevant site after the beginning of the accident. The study
area has a high-resolution numerical weather prediction (NWP) model and
several weather stations. Past and current values of the weather parameters
are available from them as signals. We are interested in obtaining short-term
predictions of the local wind at the station location and we do it with an
experimental model. Experimental model is a mathematical model that uses
training data to learn the relationships between the variables of the system
and to predict the output signal. The output mathematically depends on
delayed values of the input signals which are called regressors and are assem-
bled in the regressor vector for any given moment. At any time, the training
data set of the model is limited to the data collected since the installation of
the temporary meteorological station. We study the effect of the extent of
the available training data set on the accuracy of multi-step predictions.

2.1. Study area and signals

The study is performed in a complex area of a basin and hills, shown in
Fig. 1. There are 6 available meteorological stations, listed in Table 1, located
up to 30 km apart and measuring 29 signals in total. All the measurements
are taken at ground level – that is, at the standard height of 10 m above
ground in the case of wind. We use one of these stations, Stolp at Krško NPP,
to represent the temporary one, while the others represent the permanent
stations. A NWP model for the area based on WRF-ARV version 3.4.1
(Skamarock et al., 2008) with 4 km horizontal resolution is available (Grašič
et al., 2018), providing 7 signals, and 1 additional signal is derived from
NWP signals using an artificial neural network. All the signals are 30-minute
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Figure 1: A panoramic view of the study area. Photo by Samo Grašič.

averages sampled every 30 minutes. We are predicting 30 minute averages
as well. Data for the year 2017 is used.

Table 1: Locations of meteorological stations.

Meteorological station locations

Name
UTM grid zone 33T WGS84

east north latitude longitude
Stolp at Krško NPP 539776 5087498 45.939900 15.513132
Brežice 546266 5083861 45.906760 15.596502
Cerklje 540614 5081216 45.883312 15.523411
Cerklje Airport 540035 5083159 45.900833 15.516111
Krško 538593 5088899 45.952577 15.497984
Lisca 522034 5101613 46.067735 15.284905

2.2. Mathematical tools

As the experimental models we use autoregressive models with exogenous
input (ARX), sometimes nonlinear (NARX), and describe the mathematical
form of the modelled relationships with GP. GP is a stochastic process con-
taining random variables f(z) with a normal probability distribution (Koci-
jan, 2016),

p (f (z1) , . . . , f (zN) |z1, . . . , zN) = N (m,Σ) . (1)
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The vectors zi are regressor vectors, f is the GP, m is the mean vector and
Σ is the covariance matrix of the Gaussian distribution N . In GP modelling,
we describe the GP with a mean function and a covariance function,

mi = m (zi) , Σij = C (zi, zj) , (2)

where m (zi) is the mean function and C (zi, zj) is the covariance function.
Functioning of a GP-NARX is described by the equation (Kocijan, 2016;

Nelles, 2001)

ŷ (t) = f (y (t− 1) , y (t− 2) . . . , y (t− n) ,u (t) ,u (t− 1) , . . . ,u (t−m))+ν,
(3)

where y is the output value, u is the input value, ŷ is the output prediction,
t is the time index, n is the maximum lag in the output values, m is the
maximum lag in the input values, and ν is Gaussian noise. The equation is
illustrated in Fig. 3.

The covariance functions used depend on parameters called hyperparam-
eters. For example, in the case of linear covariance function C (zi, zj) =
zTi Λ−1zj where Λ is a diagonal matrix with diagonal elements λ21, . . . , λ

2
D, we

use log (λ1), . . . , log (λD) as hyperparameters. We choose hyperparameters
through likelihood optimization with the toolbox of Rasmussen and Nickisch
(2010).

The regressors to be used are selected by identifying the significant terms
for a linear-in-the-parameters model (Li and Peng, 2007) as implemented in
ProOpter IVS (Gradǐsar et al., 2015).

2.3. Modelling choices

We are interested in the quality of predictions as a function of two design
parameters. One is the number of the training data points, which reflects
the time since the installation of the temporary meteorological station. The
other one is the number of time steps in advance from the time of prediction,
reflecting how much in advance the prediction is available. To analyse the
influence of these factors, we generate 672 multi-step predictions for the first
14 days of January 2017.

We use windowing for training data selection with windows of 12, 24,
48, 96, 144, 240, 336 time steps for the training data, imitating 7 different
amounts of the training data. The model is trained on the active dataset of
the chosen number of most recent data points (Kocijan, 2016) available at
the start of prediction. The start of prediction keeps moving throughout the

6



hyperparameter

optimization

hyper-

para-

meters

GP

formation

active set

regressor vector

formation and

windowing

covariance

function

optimiza-

tion

method

mean

function

start time
window

size

list of

regressors
data

Figure 2: Constructing the Gaussian process model. The yellow boxes represent the
choices regarding the modelling, and the green ones are the results. The modelled data
are provided and the start time sweeps through the test period. In a real event, the start
time would be the real time and the training data window size would match the time since
the start of the data collection.
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Figure 3: Formula of GP-NARX (Eq. 3) schematically after Kocijan (2016).
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test period by one time step. At each start of prediction, a new model is
trained on the new active set. The new active set differs from the preceding
one in only one data point, so the new model is similar to the previous one.
We thus use the previous model as the initial approximation in training the
new model, achieving important savings in computation time.

We study predictions for 1 to 5 time steps, that is, for 30 to 150 minutes,
in advance.

We use linear function as the covariance function in GP modelling. Other
stationary (Kocijan, 2016; Rasmussen and Nickisch, 2010), e.g., squared ex-
ponential, and nonstationary (Kocijan, 2016; Rasmussen and Nickisch, 2010),
e.g., sum of squared exponential and linear, covariance functions were tested,
but have not provided improved results. Constant mean function and exact
inference with Gaussian likelihood are used when constructing models. For
multi-step predictions of ARX models, we use naive method, that is, we feed
the predicted mean value to the model as the regressor.

Hyperparameter optimization is limited to 5000 steps. When the training
data window is moved for one time step, hyperparameter optimization uses
the previous hyperparameter values as the initial values.

We explore two different approaches to experimental modelling:

Type 1 models. We use the surrounding weather station measurements in
addition to the NWP signals as inputs to the model. We use them with
a delay of at least 1 time step. The first prediction step could thus be
calculated in real time. For further time steps, we approximate the
missing measurements with NWP-predicted values that would also be
available in real time.

Type 2 models. We do not use the surrounding weather station measure-
ments as inputs to the model, only the NWP signals. The model has
all the necessary inputs available to do multi-step predictions without
any modification.

We hypothesise that the models of the type 1 will have better available infor-
mation on the initial weather situation and will perform better in the initial
time steps, while the suboptimal use of NWP signals in place of measure-
ments will harm it when making predictions for later times. In contrast,
the models of the type 2 will optimally use the available information that is
relevant for the more distant time steps and thus perform better for them,
while it will lack the information on the initial conditions compared to the
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model that uses measurements and thus not perform as good in the first time
steps.

The regressors are selected offline on downsampled data for the years 2012
through 2017. 15 best-ranking regressors are used in each model. For the
models of type 1, the regressor candidates are delays of 1 and 2 time steps
of the measured signals, and delays of 2, 1 and 0 time steps of NWP signals,
adding up to 70 candidates in total. For the models of type 2, the NWP
signals are delayed for 4, 3, 2, 1, 0 time steps, resulting in 44 candidates.
The number of data points used is 4440 for the type 1 models and 4546 in
the type 2 models. The selected regressors are listed in Appendix A.

Fig. 2 summarizes how the GP models are generated. We do a completely
separate computation for each combination of:

• the window size from one of the 7 options of 12 to 336 time steps,

• the Cartesian wind component we are predicting,

• the type of model, 1 or 2, determining the regressor list, and

• the covariance function,

while the mean function and the optimization method are constant through-
out the numerical experiments. At the start time, we construct the active
set the size of the chosen window from the most recent data. We determine
the hyperparameters from the training data using optimization. With the
training data and the hyperparameters, the GP is fully defined.

2.4. Evaluation

We use normalized root-mean-square error (NRMSE), mean standard-
ised log-loss (MSLL), and Pearson correlation coefficient (PCC) as figures of
merit, they are defined in Appendix B. For NRMSE and PCC, higher value
is better, while lower MSLL value is better. For each number of training
data points and each type of the model, they are calculated for each number
of steps ahead of the prediction from all the multi-step predictions.

A useful benchmark is persistence model: using the current measured
value as a prediction for a certain number of steps in advance. It is equivalent
to the assumption that the wind is not going to change in the modelled time
period. The goal of our modelling is to do better than persistence and better
than NWP.
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3. Results

Examples of predictions of the models are presented in Figs. 4 and 5.
Fig. 4 shows 5 steps ahead predictions of a model trained on 48 data points,
that is, 1 day of training data. Fig. 5 shows one step ahead predictions of a
model trained on 48 data points. The first graph is for a NWP-only type 2
model, the second one is for a type 1 using the measurements as inputs.

The predictions of wind speed and direction obtained from the 5 steps
ahead predictions of the NWP-only type 2 model in Fig. 4 and its S-N equiv-
alent are shown in Figs. 6 and 7. The direction is obtained from the ratio
of the components’ expected values and the estimate for the speed used is
v =

√
v2x + v2y + σ2

x + σ2
y, where vx,y are the predicted component expected

values and σ2
x,y are the predicted component variances.

The NRMSE value as a function of how many time steps in advance the
prediction is made are shown in Fig. 8 for type 1 models and in Fig. 9 for
type 2 models.

These and other numbers are also tabulated. For type 1 models, Tables 2
and 3 show the dependence of MSLL values for both components on the
number of training data points and the number of time steps in advance for
which the prediction is made. Tables 4 and 5 show the same for PCC, and
Table 6 gives NRMSE for both components treated as a vector. We notice
a strong contrast in model quality between the window sizes of 24 and 48 so
we mark it with a dashed line for easier readability.

For type 2 models, the same results are listed in Tables 7 to 11.
The available figures of merit for the persistence and NWP models are

collected in Table 12.
We have settled on GP models with linear covariance function because

this choice leads to best results. Some results using different choices are given
in Appendix C for comparison.
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Figure 4: 5 step ahead predictions of type 2 models not using measurements as inputs
with 48 training data points for W-E wind component.
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Figure 5: 1 step ahead predictions of type 1 models using measurements as inputs with
48 training data points for S-N wind component.
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Figure 6: Predicted wind speed obtained from 5 step ahead predictions of type 2 models
not using measurements as inputs with 48 training data points.
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Figure 7: Predicted wind direction obtained from 5 step ahead predictions of type 2 models
not using measurements as inputs with 48 training data points.

12



Figure 8: Graphical presentation of the data from Table 6 – dependence of NRMSE values
for wind vector predictions on the number of training data points and the number of time
steps ahead for type 1 models using measurements as inputs.

Figure 9: Graphical presentation of the data from Table 11 – dependence of NRMSE
values for wind vector predictions on the number of training data points and the number
of time steps ahead for type 2 models not using measurements as inputs.
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Table 2: Dependence of MSLL values (lower value corresponds to a better model) for W-E
component on the number of training data points and the number of time steps ahead for
type 1 models using measurements as inputs.

Window Prediction for time step
size 1 2 3 4 5

12 -0.113 0.507 0.604 0.667 0.643
24 -0.202 0.473 0.604 0.681 0.739
48 -0.941 -0.644 -0.674 -0.670 -0.663
96 -0.983 -0.521 -0.722 -0.720 -0.714

144 -0.989 -0.576 -0.646 -0.643 -0.648
240 -0.960 -0.671 -0.783 -0.782 -0.780
336 -0.971 -0.452 -0.627 -0.624 -0.622

Table 3: Dependence of MSLL values for S-N component on the number of training data
points and the number of time steps ahead for type 1 models using measurements as
inputs.

Window Prediction for time step
size 1 2 3 4 5

12 -0.163 0.179 0.333 0.383 0.418
24 -0.130 0.065 0.183 0.254 0.311
48 -0.673 -0.518 -0.610 -0.594 -0.574
96 -0.646 -0.432 -0.577 -0.568 -0.559

144 -0.679 -0.407 -0.544 -0.525 -0.513
240 -0.681 -0.625 -0.615 -0.611 -0.609
336 -0.688 -0.556 -0.550 -0.546 -0.542
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Table 4: Dependence of PCC values for W-E component on the number of training data
points and the number of time steps ahead for type 1 models using measurements as
inputs.

Window Prediction for time step
size 1 2 3 4 5

12 0.258 0.129 0.092 0.088 0.089
24 0.344 0.283 0.227 0.197 0.177
48 0.922 0.935 0.884 0.843 0.814
96 0.927 0.897 0.896 0.855 0.826

144 0.929 0.929 0.884 0.841 0.810
240 0.928 0.941 0.895 0.849 0.815
336 0.931 0.898 0.869 0.830 0.799

Table 5: Dependence of PCC values for S-N component on the number of training data
points and the number of time steps ahead for type 1 models using measurements as
inputs.

Window Prediction for time step
size 1 2 3 4 5

12 -0.001 -0.003 0.026 0.020 0.009
24 0.240 0.296 0.243 0.214 0.206
48 0.872 0.968 0.879 0.775 0.727
96 0.865 0.952 0.867 0.753 0.703

144 0.872 0.923 0.855 0.743 0.693
240 0.876 0.986 0.866 0.755 0.709
336 0.879 0.961 0.845 0.738 0.692
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Table 6: Dependence of NRMSE values (higher value corresponds to a better model) for
wind vector predictions on the number of training data points and the number of time
steps ahead for type 1 models using measurements as inputs.

Window Prediction for time step
size 1 2 3 4 5

12 0.019 -0.008 -0.009 -0.008 -0.005
24 0.046 0.012 0.007 0.004 0.001
48 0.572 0.505 0.518 0.516 0.515
96 0.574 0.465 0.529 0.529 0.527

144 0.582 0.480 0.506 0.505 0.505
240 0.584 0.516 0.536 0.535 0.535
336 0.590 0.472 0.504 0.503 0.502

Table 7: Dependence of MSLL values for W-E component on the number of training data
points and the number of time steps ahead for type 2 models not using measurements as
inputs.

Window Prediction for time step
size 1 2 3 4 5

12 -0.207 -0.113 -0.017 0.077 0.155
24 -0.386 -0.258 -0.126 -0.022 0.075
48 -0.889 -0.867 -0.857 -0.858 -0.848
96 -0.957 -0.948 -0.940 -0.938 -0.934

144 -0.931 -0.925 -0.917 -0.911 -0.905
240 -0.913 -0.913 -0.911 -0.909 -0.907
336 -0.909 -0.908 -0.908 -0.906 -0.904
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Table 8: Dependence of MSLL values for S-N component on the number of training data
points and the number of time steps ahead for type 2 models not using measurements as
inputs.

Window Prediction for time step
size 1 2 3 4 5

12 -0.181 0.167 0.299 0.363 0.411
24 -0.166 0.062 0.222 0.341 0.437
48 -0.695 -0.678 -0.655 -0.643 -0.632
96 -0.678 -0.660 -0.623 -0.610 -0.597

144 -0.666 -0.654 -0.643 -0.630 -0.624
240 -0.660 -0.656 -0.641 -0.637 -0.635
336 -0.657 -0.653 -0.641 -0.638 -0.635

Table 9: Dependence of PCC values for W-E component on the number of training data
points and the number of time steps ahead for type 2 models not using measurements as
inputs.

Window Prediction for time step
size 1 2 3 4 5

12 0.396 0.410 0.386 0.367 0.337
24 0.701 0.728 0.692 0.663 0.640
48 0.915 0.985 0.928 0.884 0.848
96 0.922 0.995 0.926 0.878 0.841

144 0.920 0.993 0.922 0.874 0.837
240 0.921 0.996 0.922 0.872 0.835
336 0.922 0.993 0.921 0.875 0.840
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Table 10: Dependence of PCC values for S-N component on the number of training data
points and the number of time steps ahead for type 2 models not using measurements as
inputs.

Window Prediction for time step
size 1 2 3 4 5

12 0.007 0.047 0.002 -0.020 0.003
24 0.344 0.341 0.327 0.303 0.282
48 0.872 0.986 0.882 0.777 0.731
96 0.869 0.988 0.877 0.765 0.718

144 0.868 0.985 0.878 0.766 0.716
240 0.870 0.997 0.873 0.757 0.710
336 0.871 0.994 0.873 0.760 0.713

Table 11: Dependence of NRMSE values for wind vector predictions on the number of
training data points and the number of time steps ahead for type 2 models not using
measurements as inputs.

Window Prediction for time step
size 1 2 3 4 5

12 0.047 0.043 0.037 0.031 0.026
24 0.189 0.179 0.168 0.158 0.148
48 0.563 0.557 0.556 0.553 0.551
96 0.571 0.568 0.567 0.566 0.563

144 0.567 0.565 0.565 0.563 0.561
240 0.571 0.569 0.570 0.569 0.568
336 0.570 0.569 0.570 0.569 0.568
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Table 12: Available figures of merit for the persistence and NWP models.

Model
Figure Prediction for time step

of merit 1 2 3 4 5

Persistence
NRMSE 0.560 0.412 0.344 0.291 0.245

PCC W-E 0.922 0.870 0.831 0.797 0.767
PCC S-N 0.870 0.751 0.704 0.663 0.625

NWP
NRMSE -0.093 -0.093 -0.093 -0.093 -0.093

PCC W-E 0.637 0.637 0.637 0.637 0.637
PCC S-N 0.353 0.353 0.353 0.353 0.353
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4. Discussion

We demonstrate that experimental modelling is useful for predicting wind
speed and direction at a given location even when the available training data
set from the location is small and covers a short time period. Such modelling
could be applied in major accidents involving dangerous chemicals when a
temporary meteorological station is installed at a site and atmospheric dis-
persion modelling for near-term future is necessary. Models with 48 or more
training data points, corresponding to 1 day or more of training data, per-
form well, while window size of 24 or fewer data points is not sufficient. The
models perform better than the persistence model over the whole tested span
of 1 to 5 time steps in advance, the advantage is particularly pronounced for
the later time steps.

The demonstration of the benefits of system identification can, strictly
speaking, only apply to the study location. However, as the study area is
a fairly typical industrialized area, similar tests at other relevant locations
should give similar results:

• NWP models are available globally. For atmospheric dispersion mod-
elling in the case of an accident, one uses the best available NWP model
at the location as input. We use a state-of-the-art fine resolution model
in the study so that operational models at typical accident locations
may be comparable to it for some time to come.

• A dense meteorological station network is beneficial but not crucial,
type 2 models do not require permanent stations.

• Less complex terrain would benefit both the proposed method and its
competitors, i.e., NWP and persistence models.

For 2 to 5 time steps in advance, type 2 models that do not use mea-
surements from the surrounding weather stations are better in NRMSE than
type 1 models using measurements from the surrounding weather stations as
inputs. In the first time step, type 1 models are better than type 2 models.
The finding confirms the hypothesis that type 1 models should be better
than type 2 models for the initial time steps because they have better infor-
mation on the initial weather situation, and that type 2 models should be
better for later time steps because they better use the information relevant
for predicting those.
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The tested models with very small active data sets may suffer from a poor
ratio of the number of training data points to the number of regressors (Ana-
tolyev, 2012). Attempts at remedying this situation may be recommended
as a worthwhile further work, particularly because the smallest data sets are
the most common – every data set that grows big during the accident starts
as a small one.

In this work, we have avoided the effects of regressor selection. We have
selected them offline on the basis of data that would not be available in a
real use case. For real use, they would have to be selected either on the basis
of the available training data or heuristically.

Type 1 models are better than type 2 models in the first predicted time
step. In the steps from 2 on, they would benefit from use of MOS instead of
the raw NWP data for substituting the missing measurements of the input
signals. It would be doable for the use case of the model, because historic data
for training of the MOS models is available for the permanent meteorological
stations. We do not attempt it as the potential for improving on type 2
models in the further time steps is proportional to the advantage that type
1 models have over type 2 models in time step 1, which is close to negligible
at the current stage.

There is a major difference between the results of GP models with lin-
ear covariance function and of linear models determined by the least squares
method, even though both of these models are linear. The difference results
from the different assumptions regarding noise. The least squares method
leads to the best linear unbiased estimator if the noise on the output val-
ues satisfies the conditions of Gauss–Markov theorem (Puntanen and Styan,
1989), while likelihood optimization makes no such assumption.

5. Conclusion

We predict local wind speed and direction for the near future with a
method adapted for use in emergencies. The tested experimental models
use numerical weather predictions and measurements from the surrounding
weather stations as their inputs. Unlike experimental models of wind for
other purposes, they only have a small amount of training data available.
We find out that such modelling is feasible. We demonstrate that 1 day
of training data with a sampling interval of 30 minutes suffices for making
predictions that are much better than either using the current measured value
to approximate the future or using numerical weather predictions to predict
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the local wind. Such predictions can be used for atmospheric dispersion
modelling in case of a major accident involving dangerous chemicals for which
a temporary meteorological station is installed. The best results are achieved
with GP models using linear functions as covariance functions. The presented
method in the test location fails to produce good predictions with 12 hours
of training data or less. Any additional decrease in the necessary amount
of training data would be highly valuable, so we recommend exploring the
possibilities of achieving it.
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Grašič, B., Mlakar, P., Božnar, M.Z., Kocijan, J., 2018. Validation
of numerically forecasted vertical temperature profile with measure-
ments for dispersion modelling. Int. J. Environ. Pollut. 64, 22–34.
doi:10.1504/IJEP.2018.099143.

Hoolohan, V., Tomlin, A.S., Cockerill, T., 2018. Improved near surface wind
speed predictions using Gaussian process regression combined with numer-
ical weather predictions and observed meteorological data. Renew. Energy
doi:10.1016/j.renene.2018.04.019.

Jones, A., Thomson, D., Hort, M., Devenish, B., 2007. The U.K. Met Office’s
Next-Generation Atmospheric Dispersion Model, NAME III, in: Borrego,
C., Norman, A.L. (Eds.), Air Pollution Modeling and Its Application XVII,
Springer US, Boston, MA. pp. 580–589.

23



Kalnay, E., 2003. Atmospheric modeling, data assimilation and predictabil-
ity. Cambridge university press.

Kneale, C., Brown, S.D., 2018. Small moving window calibration models for
soft sensing processes with limited history. Chemom. Intell. Lab. Syst. 183,
36–46. doi:10.1016/j.chemolab.2018.10.007.

Kocijan, J., 2016. Modelling and Control of Dynamic Systems Using
Gaussian Process Models. Springer International Publishing, Cham.
doi:10.1007/978-3-319-21021-6.

Kocijan, J., Perne, M., Mlakar, P., Grašič, B., Božnar, M.Z., 2019. Hybrid
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Appendix A. Lists of regressors

The selected regressors are listed in Tables A.13 and A.14.
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Table A.13: Regressors used in type 1 models using measurements as inputs. Delay
is measured in time steps. The regressors are listed from best to worst as ranked by
ProOpter IVS LIP method.

Best regressors for W-E wind
source variable delay
Stolp at Krško NPP W-E wind 1
NWP W-E wind 0
Cerklje Airport W-E wind 1
Brežice W-E wind 1
Krško W-E wind 1
Stolp at Krško NPP W-E wind 2
Krško relative humidity 1
Cerklje Airport S-N wind 1
Lisca air pressure 2
NWP cloudiness 1
Brežice W-E wind 1
NWP global solar radiation 0
Cerklje Airport air pressure 2
Cerklje Airport temperature 2
Krško relative humidity 2

Best regressors for S-N wind
source variable delay
Stolp at Krško NPP S-N wind 1
Brežice S-N wind 1
Cerklje Airport S-N wind 1
NWP global solar radiation 0
Cerklje Airport W-E wind 1
Krško temperature 1
Cerklje Airport S-N wind 2
Krško S-N wind 1
Krško temperature 2
Cerklje temperature 2
NWP S-N wind 0
NWP diffuse solar radiation 1
NWP W-E wind 2
Lisca S-N wind 2
Stolp at Krško NPP S-N wind 2
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Table A.14: Regressors used in type 2 models not using measurements as inputs. Delay is
measured in time steps. The regressors are listed from best to worst as ranked by ProOpter
IVS LIP method.

Best regressors for W-E wind
source variable delay
Stolp at Krško NPP W-E wind 1
NWP W-E wind 0
Stolp at Krško NPP S-N wind 1
NWP air pressure 3
NWP global solar radiation 2
Stolp at Krško NPP S-N wind 2
NWP cloudiness 1
NWP S-N wind 1
NWP diffuse solar radiation 1
NWP S-N wind 0
NWP global solar radiation 0
NWP temperature 3
NWP diffuse solar radiation 0
NWP air pressure 0
Stolp at Krško NPP W-E wind 2

Best regressors for S-N wind
source variable delay
Stolp at Krško NPP S-N wind 1
NWP S-N wind 1
NWP global solar radiation 0
Stolp at Krško NPP W-E wind 1
NWP air pressure 2
NWP temperature 4
NWP air pressure 1
Stolp at Krško NPP W-E wind 2
Stolp at Krško NPP S-N wind 2
NWP W-E wind 1
NWP air pressure 0
NWP S-N wind 3
NWP W-E wind 4
NWP relative humidity 4
NWP diffuse solar radiation 2
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Appendix B. Figures of merit

Appendix B.1. NRMSE

NRMSE (Ljung and Singh, 2012) is defined as

NRMSE = 1− ‖y − µ‖
‖y − E (y)‖

, (B.1)

where y is the vector of measured values, E (y) is the mean of the measured
value, and µ is the vector of predicted values. NRMSE varies between neg-
ative infinity and 1, where 1 corresponds to perfect fit and 0 is the value
achieved if the prediction is the mean of the measured value. It can be cal-
culated for vector quantities. We use it to evaluate predictions of horizontal
wind as a 2D vector.

Appendix B.2. MSLL

MSLL is defined as (Rasmussen and Williams, 2006)

MSLL =
1

2N

N∑
i=1

[
ln
(
σ2
i

)
− ln

(
σ2
y

)
+

(E (ŷi)− yi)2

σ2
i

− (yi − E (y))2

σ2
y

]
,

(B.2)
where yi is the measured value, σ2

y is the variance of the measured value,
E (ŷi) is the mean prediction, and σ2

i is the predictive variance. The summa-
tion includes all the test samples and the index i corresponds to the sample.
MSLL takes the predictive variance into account. A lower MSLL value cor-
responds to a better model, the values are typically negative.

Appendix B.3. PCC

Pearson correlation coefficient is defined as

PCC =
cov(y, µ)

σyσµ
, (B.3)

where cov is covariance and σµ is the standard deviation of the predicted
(mean) value.
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Appendix C. Additional results

Results of GP models with two covariance functions other than linear and
of linear models based on least squares are provided for comparison.

Appendix C.1. Squared exponential covariance function

Results of GP models with squared exponential covariance function are
provided in Tables C.15 to C.17.

Table C.15: Results of linear models based on least squares. Dependence of NRMSE
values for wind vector predictions on the number of training data points and the number
of time steps ahead for type 1 models using measurements as inputs and type 2 models
not using measurements as inputs.

Model Window Prediction for time step
Type size 1 2 3 4 5

1

12 0.135 0.069 0.058 0.056 0.049
24 0.072 0.008 0.002 -0.002 -0.004
48 0.389 0.238 0.169 0.161 0.153
96 0.497 0.238 0.191 0.173 0.161

144 0.512 0.195 0.161 0.146 0.132
240 0.560 0.376 0.379 0.365 0.352
336 0.531 0.336 0.368 0.359 0.351

2

12 0.031 0.024 0.018 0.014 0.012
24 0.026 0.020 0.014 0.006 0.003
48 0.476 0.384 0.337 0.301 0.273
96 0.512 0.457 0.423 0.403 0.385

144 0.537 0.489 0.465 0.439 0.417
240 0.545 0.507 0.488 0.468 0.450
336 0.532 0.515 0.486 0.463 0.442
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Table C.16: Results of GP models with squared exponential covariance function. Depen-
dence of MSLL values for each component on the number of training data points and the
number of time steps ahead for type 1 models using measurements as inputs and type 2
models not using measurements as inputs.

Type Component
Window Prediction for time step

size 1 2 3 4 5

1

W-E

12 22.413 222.820 16.588 307.091 23.304
24 1642.799 3.582 16.211 5.299 1.610
48 -0.515 -0.020 0.007 0.042 0.083
96 -0.898 -0.033 -0.050 -0.014 0.008

144 -0.832 0.671 0.796 0.827 0.849
240 -0.914 -0.248 -0.263 -0.233 -0.204
336 -0.916 -0.382 -0.416 -0.399 -0.381

S-N

12 82186034.977 7.023 0.769 0.659 0.501
24 -0.071 0.159 0.271 0.352 0.409
48 -0.043 19.627 0.150 0.229 0.257
96 -0.400 0.096 0.659 0.759 0.763

144 -0.499 -0.005 0.033 0.096 0.142
240 -0.616 -0.409 -0.426 -0.396 -0.364
336 -0.560 -0.272 -0.277 -0.245 -0.209

2

W-E

12 0.030 0.391 0.493 0.535 0.561
24 -0.152 -0.004 0.092 0.211 0.269
48 -0.678 -0.494 -0.368 -0.276 -0.242
96 -0.834 -0.720 -0.640 -0.596 -0.559

144 -0.891 -0.863 -0.837 -0.819 -0.800
240 -0.885 -0.852 -0.822 -0.789 -0.767
336 -0.874 -0.833 -0.798 -0.766 -0.743

S-N

12 70371.527 0.245 0.373 0.376 0.409
24 982808.577 4941.409 70.513 0.697 0.793
48 -0.380 -0.050 0.061 0.177 0.286
96 -0.620 -0.514 -0.464 -0.428 -0.386

144 -0.598 -0.483 -0.421 -0.360 -0.305
240 -0.583 -0.498 -0.464 -0.454 -0.419
336 -0.544 -0.481 -0.442 -0.416 -0.374
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Table C.17: Results of GP models with squared exponential covariance function. Depen-
dence of PCC values for each component on the number of training data points and the
number of time steps ahead for type 1 models using measurements as inputs and type 2
models not using measurements as inputs.

Type Component
Window Prediction for time step

size 1 2 3 4 5

1

W-E

12 0.609 0.467 0.448 0.460 0.450
24 0.480 0.228 0.199 0.189 0.173
48 0.848 0.741 0.738 0.723 0.710
96 0.915 0.733 0.736 0.704 0.675

144 0.908 0.664 0.652 0.637 0.618
240 0.919 0.809 0.755 0.723 0.697
336 0.922 0.834 0.807 0.773 0.746

S-N

12 0.249 0.229 0.102 0.090 0.059
24 -0.003 -0.014 0.019 0.016 0.014
48 0.691 0.586 0.274 0.254 0.255
96 0.767 0.591 0.435 0.422 0.375

144 0.810 0.656 0.498 0.390 0.315
240 0.859 0.876 0.805 0.725 0.677
336 0.814 0.769 0.746 0.651 0.598

2

W-E

12 0.323 0.311 0.306 0.294 0.286
24 0.317 0.302 0.284 0.256 0.244
48 0.887 0.894 0.863 0.833 0.806
96 0.903 0.939 0.895 0.867 0.841

144 0.914 0.986 0.922 0.881 0.849
240 0.916 0.976 0.912 0.868 0.834
336 0.915 0.973 0.913 0.874 0.843

S-N

12 0.037 0.031 0.039 0.033 0.020
24 0.098 0.070 0.054 0.070 0.056
48 0.791 0.730 0.701 0.655 0.614
96 0.818 0.858 0.783 0.699 0.654

144 0.835 0.865 0.754 0.668 0.616
240 0.845 0.893 0.798 0.707 0.658
336 0.828 0.891 0.828 0.737 0.706
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Appendix C.2. SE+LIN covfunc

Results of GP models with sum of squared exponential and linear covari-
ance function are provided in Tables C.18 to C.20.

Table C.18: Results of GP models with sum of squared exponential and linear covariance
function. Dependence of MSLL values for each component on the number of training data
points and the number of time steps ahead for type 1 models using measurements as inputs
and type 2 models not using measurements as inputs.

Type Component
Window Prediction for time step

size 1 2 3 4 5

1

W-E
48 -0.921 -0.760 -0.798 -0.802 -0.792

240 -0.946 -0.525 -0.640 -0.633 -0.633
336 -0.944 -0.294 -0.447 -0.438 -0.440

S-N
48 -0.473 -0.196 -0.278 -0.230 -0.211

240 -0.634 -0.483 -0.487 -0.478 -0.461
336 -0.655 -0.404 -0.381 -0.382 -0.370

2

W-E
48 -0.902 -0.877 -0.863 -0.861 -0.852

240 -0.901 -0.885 -0.861 -0.845 -0.834
336 -0.888 -0.869 -0.852 -0.847 -0.840

S-N
48 0.463 0.409 0.318 0.463 0.325

240 -0.562 -0.476 -0.439 -0.427 -0.416
336 -0.637 -0.601 -0.561 -0.567 -0.551
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Table C.19: Results of GP models with sum of squared exponential and linear covariance
function. Dependence of PCC values for each component on the number of training data
points and the number of time steps ahead for type 1 models using measurements as inputs
and type 2 models not using measurements as inputs.

Type Component
Window Prediction for time step

size 1 2 3 4 5

1

W-E
48 0.918 0.969 0.910 0.865 0.830

240 0.928 0.917 0.877 0.836 0.804
336 0.927 0.883 0.853 0.817 0.786

S-N
48 0.807 0.829 0.786 0.720 0.693

240 0.863 0.923 0.840 0.736 0.693
336 0.864 0.893 0.810 0.703 0.660

2

W-E
48 0.916 0.988 0.921 0.874 0.838

240 0.919 0.983 0.922 0.880 0.848
336 0.915 0.981 0.927 0.886 0.854

S-N
48 0.705 0.631 0.607 0.566 0.502

240 0.864 0.933 0.837 0.749 0.701
336 0.861 0.950 0.868 0.773 0.729

Table C.20: Results of GP models with sum of squared exponential and linear covariance
function. Dependence of NRMSE values for wind vector predictions on the number of
training data points and the number of time steps ahead for type 1 models using measure-
ments as inputs and type 2 models not using measurements as inputs.

Model Window Prediction for time step
Type size 1 2 3 4 5

1
48 0.524 0.463 0.468 0.460 0.451

240 0.572 0.470 0.494 0.491 0.487
336 0.573 0.428 0.449 0.448 0.446

2
48 0.464 0.404 0.385 0.368 0.349

240 0.563 0.543 0.532 0.521 0.514
336 0.555 0.542 0.535 0.532 0.525
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Appendix C.3. Least squares linear models

Results of linear models based on least squares are provided in Tables C.21
to C.23.

Table C.21: Results of linear models based on least squares. Dependence of NRMSE
values for wind vector predictions on the number of training data points and the number
of time steps ahead for type 1 models using measurements as inputs and type 2 models
not using measurements as inputs.

Model Window Prediction for time step
Type size 1 2 3 4 5

1

12 -2.134 -19.538 -417.830 -12536.585 -417550.192
24 -0.466 -6.890 -10.691 -15.663 -19.024
48 0.416 -0.166 -1.080 -1.248 -1.228
96 0.537 0.129 -0.189 -0.453 -0.470

144 0.561 0.238 0.061 -0.150 -0.209
240 0.581 0.286 0.169 0.074 0.038
336 0.588 0.310 0.231 0.175 0.147

2

12 -19.695 -4283.499 -976890.794 -223019107.998 -50911751152.568
24 -11.993 -24.546 -48.804 -62.648 -74.886
48 0.360 -0.113 -0.432 -0.793 -1.576
96 0.517 0.334 0.232 0.163 0.109

144 0.542 0.384 0.297 0.234 0.183
240 0.558 0.416 0.342 0.288 0.244
336 0.564 0.429 0.365 0.320 0.286
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Table C.22: Results of linear models based on least squares. Dependence of MSLL values
for each component on the number of training data points and the number of time steps
ahead for type 1 models using measurements as inputs and type 2 models not using
measurements as inputs.

Type Component
Window Prediction for time step

size 1 2 3 4 5

1

W-E

24 -0.198 0.691 2.084 1.977 2.015
48 -0.783 0.076 0.971 1.146 1.056
96 -0.933 0.236 0.576 1.121 1.148

144 -0.938 0.217 0.387 0.913 1.045
240 -0.926 0.235 0.609 0.997 1.145
336 -0.968 0.119 0.517 0.804 0.924

S-N

24 -0.107 0.575 0.698 0.733 0.760
48 -0.498 0.100 0.235 0.262 0.312
96 -0.670 -0.090 0.225 0.367 0.425

144 -0.686 -0.058 0.375 0.639 0.789
240 -0.708 -0.074 0.318 0.605 0.775
336 -0.685 -0.087 0.357 0.666 0.847

2

W-E

48 -0.656 -0.097 0.298 0.559 0.727
96 -0.865 -0.399 -0.023 0.258 0.509

144 -0.871 -0.397 0.025 0.382 0.713
240 -0.894 -0.536 -0.261 -0.034 0.193
336 -0.905 -0.579 -0.356 -0.180 -0.017

S-N

24 0.045 0.455 0.638 0.750 0.869
48 -0.458 0.111 0.389 0.553 0.690
96 -0.573 0.004 0.283 0.459 0.632

144 -0.650 -0.129 0.147 0.350 0.524
240 -0.659 -0.126 0.149 0.360 0.518
336 -0.660 -0.146 0.078 0.248 0.370
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Table C.23: Results of linear models based on least squares. Dependence of PCC values for
each component on the number of training data points and the number of time steps ahead
for type 1 models using measurements as inputs and type 2 models not using measurements
as inputs.

Type Component
Window Prediction for time step

size 1 2 3 4 5

1

W-E

12 0.339 0.029 -0.016 -0.005 -0.003
24 0.524 0.080 0.089 0.025 0.025
48 0.862 0.544 0.350 0.334 0.340
96 0.916 0.611 0.472 0.380 0.389

144 0.922 0.683 0.636 0.557 0.551
240 0.925 0.704 0.581 0.491 0.463
336 0.930 0.727 0.648 0.589 0.559

S-N

12 0.215 0.081 0.014 -0.002 -0.001
24 0.526 0.153 0.118 0.075 0.012
48 0.789 0.467 0.377 0.368 0.327
96 0.844 0.687 0.632 0.614 0.604

144 0.863 0.734 0.647 0.581 0.533
240 0.879 0.776 0.691 0.611 0.558
336 0.878 0.787 0.684 0.596 0.532

2

W-E

12 0.049 -0.011 0.013 -0.013 0.013
24 0.051 0.025 0.011 0.005 0.001
48 0.834 0.663 0.578 0.466 0.310
96 0.904 0.873 0.839 0.799 0.760

144 0.909 0.880 0.844 0.806 0.772
240 0.916 0.897 0.868 0.837 0.806
336 0.918 0.903 0.881 0.858 0.837

S-N

12 0.223 0.027 0.013 0.016 -0.010
24 0.187 0.059 0.029 0.026 0.028
48 0.777 0.583 0.451 0.374 0.305
96 0.837 0.770 0.725 0.695 0.666

144 0.859 0.811 0.766 0.728 0.693
240 0.866 0.827 0.783 0.742 0.704
336 0.868 0.841 0.804 0.764 0.727
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