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ABSTRACT Equation discovery methods enable modelers to combine domain-specific knowledge and
system identification to construct models most suitable for a selected modeling task. The method described
and evaluated in this paper can be used as a nonlinear system identification method for gray-box modeling.
It consists of two interlaced parts of modeling that are computer-aided. The first performs computer-
aided identification of a model structure composed of elements selected from user-specified domain-
specific modeling knowledge, while the second part performs parameter estimation. In this paper, recent
developments of the equation discovery method called process-based modeling, suited for nonlinear system
identification, are elaborated and illustrated in two continuous-time case studies. The first case study
illustrates the use of the process-based modeling on synthetic data while the second case-study evaluates
process-basedmodeling onmeasured data for a standard system-identification benchmark. The experimental
results clearly demonstrate the ability of process-based modeling to reconstruct both model structure and
parameters from measured data.

INDEX TERMS Machine learning, nonlinear system identification, equation discovery, process-based
modeling, computational scientific discovery, knowledge-based identification.

I. INTRODUCTION
Data-driven system identification [19] is omnipresent in
many scientific and engineering domains: Given time-series
data describing observed system behavior, the task is to find
a model, i.e., identify an appropriate model structure and
estimate the values of the model parameters. Identifying the
model structure is a challenging problem in many practical
applications, especially in domains where structure inference
from first principles is not an option. In such cases, one can
opt for the black-box or the gray-box modeling paradigm.

In black-box modeling, we conjecture that the appropriate
model structure belongs to a general class of structures,
such as neural networks and fuzzy models [16] or regres-
sion trees [1]. While nonlinear black-box models can
achieve highly accurate reconstruction of the observed
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system behavior, they do not reveal the structure of the
observed system. Namely, there is no clear correspondence
between the assumed model structure (e.g., neural network)
and the structure of the system at hand.

Gray-box models, on the other hand, aim primarily at
revealing the system structure. They are usually formalized
as equations that scientists and engineers can comprehend
and relate to [20]. To construct gray-box models, methods for
symbolic regression [15], [24] and equation discovery [32]
are commonly used. Symbolic regression addresses the gray-
box modeling task with evolutionary methods, i.e., genetic
algorithms [24]. Following these, equation structures are
evolved from an initial set of variables, operators, func-
tions and constants. Users have little or no control over the
space of equation structures considered during search. Thus,
the obtainedmodels often include too complex and incompre-
hensible equations that make little contact with the modeling
knowledge in the domain of use. Hence, themapping between
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the structure of the model equations and the system structure
is non-trivial and has to be inferred by human modelers.

Equation discovery methods [18], on the other hand, allow
the user to employ domain-specific knowledge and spec-
ify the appropriate space of candidate models. To this end,
different formalisms for specifying equation fragments as
components for buildingmathematical models have been pro-
posed [9]. While these formalisms can, in principle, be used
in the context of evolutionary methods [22], symbolic regres-
sion approaches rarely use them. Instead, equation discov-
ery approaches often rely upon exhaustive or greedy search
methods [31]. The most recent equation discovery approach,
process-based modeling (PBM), is based on a knowledge
representation formalism that establishes an explicit map-
ping between the model structure and the structure of the
observed system [5], [32]. It is closely related to component-
based approaches for computer-aided design of electronic
circuits [2], where models are composed from a library of
standardized, well-characterized circuit components. These
components have fixed constant parameters, used for manual
model construction, where the modeler establishes a configu-
ration of model components. PBM employs a library of simi-
lar components in the context of computer-aided input-output
modeling, where the selection of an appropriate configuration
of components (and the values of their parameters) is based
on output-error fit against measured data.

Process-based modeling has been applied in several prac-
tically relevant case studies. However, so far, it has only
been evaluated partially in a limited setting and has not yet
been systematically evaluated on a proper system identifi-
cation benchmark. On one hand, PBM has been used to
establish new models of aquatic ecosystems from data and
domain-specific knowledge, but with no reference to other
known or well-established models [3]. On the other hand,
PBM has been used to reconstruct the results of manual
modeling efforts in the domain of systems biology [29].
These efforts of establishing new and reconstructing exist-
ing models, used ProBMoT, a software tool for process-
based modeling [33]. Through the performed experiments,
we have identified a number of design decisions that lead to
an improved version of ProBMoT.

In this paper, we perform a systematic evaluation of the
latest version of ProBMoT on a cascaded water-tank sys-
tem [35], a well-known benchmark for nonlinear system iden-
tification. In particular, we analyze the robustness of PBM on
synthetic data with different noise variances obtained by sim-
ulating the benchmark model. Furthermore, we also evaluate
the PBM ability to reconstruct a valid model of the system
dynamics frommeasurement data. Therefore, we present here
the first proper evaluation of process-based modeling in the
context of non-linear system identification.

The remainder of the paper is organized as follows.
Section II discusses the relation of process-based modeling
to alternative gray-box modeling approaches. Section III
introduces the approach of process-based modeling by illus-
trating it on an example of modeling cascading water tanks.

Section IV elaborates the design of the modeling experi-
ments, the results of which are reported and discussed in
Section V. Finally, Section VI concludes the paper with a
summary and a brief outline of several directions for further
research.

II. RELATED WORK
A. SYMBOLIC REGRESSION APPROACHES
A number of gray-box modeling approaches to system iden-
tification aim at both structure and parameter identification
of an observed system. Most notably, symbolic regression
performed with genetic programming [17] has often been
used to approach system identification [15]. The basic idea
of performing symbolic regression with genetic program-
ming is to evolve populations of equations, where the fitness
function being optimized measures the discrepancy between
the observed data and the simulation of the equations. The
equations are represented as tree structures, where the internal
nodes correspond to mathematical operations and functions,
while terminal nodes correspond to system variables and
model parameters.

The modeler can control the space of candidate models
considered by genetic programming, by specifying the set
of primitive operators and functions that can be used in the
internal nodes of the evolving trees. In addition, the modeler
can also specify a heuristic for model selection that goes
beyond the usual degree-of-fit measure mentioned above.
Madar et al. [21] propose the use of a parsimony prin-
ciple when designing the fitness function by introduc-
ing a penalty for the complexity of the model equations.
Rodriguez-Vazquez et al. [23] and Ferariu & Patelli [12]
propose multi-objective approaches to follow the parsimony
principle, where different aspects of degree-of-fit and model
complexity are considered as objective functions.

The common limitation of these methods is the coarse
control given to the modeler over the space of candidate mod-
els. Often, modeling assumptions can not be easily or com-
prehensibly encoded as inputs to the genetic programming
approaches: This leads to a risk of inferring models with
implausible structure and/or parameter values. To address
this issue, Whigham & Recknagel [34] and Cao et al. [7]
propose approaches where the space of model structures,
considered by genetic programming, is constrained by using
grammars [22]. While the grammars allow for flexible speci-
fication of the space of candidate models, their use is cum-
bersome and different for systems’ modelers. In addition,
the mapping between the structure of the obtained model and
that of the observed system is non-trivial to establish: The
inference of the mapping is left to the human modeler.

B. COMPONENT-BASED APPROACHES
On the other hand, the mapping between the structure of the
model and the observed system is explicit in component-
based approaches [2], where models are composed from a
library of standardized, well-characterized circuit compo-
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nents. Note that the components have fixed constant param-
eter values, that correspond to physical circuit components
and are used for manual construction and design of electrical
circuits. No attempts have been made to use libraries of
components in the context of computer-aided modeling from
knowledge and input/output observational data.

While component-based approaches rely on physical com-
ponents, block-oriented nonlinear approaches [14] build
models out of domain-independent linear, dynamic and non-
linear, static components. In turn, such blocks can be com-
bined into different structures, where each block models
a certain aspect of the system dynamics. While some of
these combinations are well known and correspond to phys-
ical phenomena [27], in principle, different combinations
and variations of such components can yield a large num-
ber of different structures without a direct mapping to the
structure of the observed dynamics at hand. Also, block-
oriented approaches usually focus on the manual construc-
tion of models, where the block configuration is a priori
prescribed by the modeler [26]. Schoukens et al. [28] and
Schoukens et al. [25] propose an approach that requires some
modeler’s decisions regarding model construction by decom-
posing the structure identification task. Here, an initial model
structure is established first by evaluating the performance
of different combinations of linear components using best
linear approximation against the nonlinear measured output.
The identified initial structure is then used by the modeler as
the basis for subsequent steps of adding additional nonlinear
blocks to complete the model structure.

C. BLACK-BOX APPROACHES FOR GRAY-BOX MODELING
Recently, some approaches to nonlinear black-box mod-
eling have been also applied in the context of inferring
gray-box models. In particular, Brunton et al. [6] combine
linear regression with the construction of nonlinear terms
and Lasso regularization to obtain nonlinear equations-based
models that can be considered gray-box. The system SINDy
introduces nonlinear terms by using a set of user-specified
parameter-free transformations of the original system vari-
ables. These nonlinear terms are linearly combined with
parameters estimated using simple linear regression. In this
respect, SINDy is similar to the early equation discovery
system LAGRANGE [11]. A novelty in SINDy with respect
to LAGRANGE is the use of Lasso regularization to select
terms that are relevant for modeling the observed data. Note,
however, that both methods are limited to inferring models
with a structure that is linear with respect to the parameters.
Genetic programming, grammar-based equation discovery
and process-based modeling are more general approaches
that can infer models with a structure that is nonlinear with
respect to the model parameters.

III. PROCESS-BASED MODELING
Process-based modeling (PBM) is an approach to Equa-
tion Discovery that allows the modeler to formalize
and use modeling knowledge specific to the domain

of interest. We are going to introduce the PBM approach in
the two following subsections. The first subsection introduces
a general framework for representing modeling knowledge.
In the second subsection, we present the method that employs
the formalized knowledge to discover continuous-time mod-
els from observation data.

A. FORMALIZATION OF THE MODELING KNOWLEDGE
The PBM framework for formal representation of modeling
knowledge is based on the two general concepts of entities
and processes. Entities correspond to the static components
of the observed system, while processes relate to the dynamic
interactions among entities. Each entity includes variables
and constants that denote time-varying and time-invariant
properties of the corresponding system component, respec-
tively. While entity constants correspond to constant (time-
invariant) model parameters, entity variables correspond to
the state, input and output variables of the model. The system
state is therefore represented with the set of the state variables
included in the model entities. On the other hand, each
process specifies the interacting entities, process constants
and equations. The latter provide the mathematical model of
the process influence on the interacting entities, more specif-
ically, on the temporal change, i.e., time derivatives of their
state variables. Each process equation can include constants
and (both system and input/output) variables of the interact-
ing entities, as well as process constants. When several pro-
cesses influence the same system variable, the mathematical
models of the processes are summed up to obtain the equation
that models the dynamics of the system variable at hand.

Figure 1 provides an illustrative example of a process-
based model of a dynamic system consisting of two cascaded
water tanks. It consists of three entities and three processes as
shown in Figure 1b. The three entities correspond to the three
system components depicted in Figure 1a: the two tanks and
the water pump that fills the upper tank. Each tank entity
includes a single state (endogenous) variable h, correspond-
ing to the height of the water level in the tank, as well as two
constants A and a denoting the areas of the tanks and their
effluent areas, respectively. The third entity pump includes
the input (exogenous) variable v representing the input volt-
age signal u(t) applied to the pump: the higher the voltage –
the higher the water inflow in the upper tank. The voltage-to-
flow conversion constant of the pump is denoted with k. The
three processes correspond to the entity interactions, which,
in this particular example, represent the water flow between
the tanks and the pump. The first process INFLOW models the
flow from the pump to the upper tank, the second process
VALVETRANSFERFUNCTIONmodels the flow from the upper to
the lower tank, and the third models the OUTFLOW of water
from the lower tank and the system. The latter two processes
assume a square-root influence of the height of the water
in the tanks on the intensity of the tank valve outflow. The
single constant parameter of these two processes specifies
the valve transfer constant G that equals

√
2 g (where g is the

gravitational acceleration).
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FIGURE 1. (a) The diagram of the three components of the water-tanks system; (b) The process-based model of the water-tanks system; (c) The
equation-based model of the water-tanks system.

Process-based models provide additional structure to the
model equations with a modular decomposition of the equa-
tions into building blocks. These correspond to the knowl-
edge about building models in the domain of interest. In the
particular example, the correspondence between the physical
structure of the system and the process-based model structure
is obvious and explicit. The benefits of this property are
twofold. On one hand, it improves the descriptive power of
the equations by adding an explanatory layer on top of them.
In particular, the equations in Figure 1c do not explicitly
reveal the meaning of the repetitive expression a1

√
2 g
√
h1.

In contrast, the process-based model ties that expression to
the flow from the upper to the lower tank. On the other hand,
and even more importantly, the decomposition into building
blocks provides means for formulating the task of inducing
a process-based model from data as a combinatorial opti-
mization task. The latter is then constrained to those models
that have plausible structure and are therefore acceptable to
domain experts. Note, finally, that the process-based models
can be easily and automatically rewritten into the standard
mathematical form of differential equations that allows for
model simulation and analysis.

The process-based formalism for representing modeling
knowledge follows the model decomposition into building
blocks. In particular, a modeling expert can specify the set
of available building blocks in the domain of interest as a
library of entity and process templates. The templates rep-
resent generic building blocks that, in a particular model-
ing scenario, can be instantiated into specific components
of the model of the observed system. Each entity template
prescribes the set of constant and variable properties impor-
tant for modeling the corresponding static system component

TABLE 1. Library of template entities and processes for modeling an
arbitrary configuration of water tanks with three alternative valve transfer
functions and three alternative outflow functions.

in the domain. Similarly, the process templates are generic
interactions and prescribe template mathematical expressions
for modeling them.

Table 1 provides an example library of template entities
and processes for modeling systems of connected water tanks
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and pumps. The two generic entities of Tank and Pump can
represent an arbitrary component of any system in the water-
tanks domain. The entitiestank1 andtank2 in the example
process-based model from Figure 1b represent two specific
instances of the template entity Tank. Note that the modeling
knowledge encoded in the template entities include specifi-
cations of the constant and variable properties of the corre-
sponding system components with their operational ranges
rather than specific values. The aggregation: sum dec-
laration specifies that when an entity Tank participates in
more than one process, themultiple influences of the different
processes on the entity variable h are summed up.
The template processes are organized in a hierarchy.

In Table 1, the VALVETRANSFERFUNCTION template represents
the root node of a hierarchy with three descendants, i.e.
SQUAREROOT, LINEAR and EXPONENTIAL, that correspond to
three alternative mathematical models of valve transfer. The
first assumes the square-root, the second linear and the third
exponential influence of the water level in the tank on the
tank-valve outflow. Similarly, the OUTFLOW hierarchy of tem-
plate processes specifies three alternative models of water
flow from the system to its environment.

The process-based library provides a general recipe for
building models in the domain of use. Following the encoded
knowledge, models of arbitrary complexity can be estab-
lished: They can include an arbitrary number of entities
and interactions among them. In particular, the library from
Table 1 can be re-used for modeling water-tanks systems
with an arbitrary number and configurations of tanks, pumps
and flows among them and the system environment. Such
knowledge also allows the modeler to explore various mod-
eling assumptions. In situations where the valve transfer
function is known, one can prescribe that the specific pro-
cess should be an instance of, e.g., the SQUAREROOT tem-
plate. On the other hand, if the valve transfer function is
unknown and should be induced from the observational data,
one should prescribe the root template of the hierarchy,
i.e., VALVETRANSFERFUNCTION.
The alternative configurations of model components and

corresponding mathematical expressions can be automati-
cally explored by the algorithm for inducing process-based
models from data and knowledge, introduced in the following
subsection.

B. INDUCING PROCESS-BASED MODELS
Figure 2 outlines the ProBMoT algorithm for inducing
process-based models, which takes three inputs. The first
input is the process-based library introduced in the previous
subsection. The second input specifies the modeling scenario
including the specific entities that appear in the observed
system, the partially known configuration of the interactions
among them and the modeling assumptions. The third is the
training and validation data sets of measurements of the state
and input/output variables of the observed system. Given its
inputs, ProBMoT proceeds in three steps: (1) instantiating
templates from the library into specific model components,

(2) generating candidate model structures corresponding to
combinations of the model components, and (3) estimat-
ing constant parameters and the fit of each model structure
against the data. Finally, the output of ProBMoT is a list of
continuous-time process-based models ranked according to
their performance, e.g. the discrepancy between the model
simulation and the validation data set.

In the first step, given the entities of the observed sys-
tem and the modeling assumptions, each template process
is instantiated into a number of specific instance processes.
For example, given two tank entities, the template process
VALVETRANSFERFUNCTION has six instances. The first three
of them correspond to the situation where the water flows
from the first to the second tank, with each of the three
corresponding to one valve transfer form. The remaining
three correspond to the flows from the second tank to the
first. Table 2 introduces a specific modeling scenario for
an observed system consisting of a cascade of a pump and
two water tanks: the pump fills the first tanks, there is a
flow between the first and the second tank, and the water
of the second tank outflows into the system environment.
In this particular scenario, the INFLOW generic process has a
single instance and each of the VALVETRANSFERFUNCTION and
OUTFLOW processes has three instances.

The seven individual process instances represent the com-
ponents for building process-based models of the observed
system in the second step of the algorithm. Finding an optimal
model is equivalent to the task of finding an optimal combina-
tion of the model components. This is a task of combinatorial
optimization, which can be approached by an arbitrary algo-
rithm for combinatorial search. In the particular modeling
scenario, from the seven model components, we need to com-
pose a model that has an INFLOW, VALVETRANSFERFUNCTION
and an OUFLOW component. This leads to 1×3×3 = 9 candi-
date combinations, so we employ exhaustive search, i.e., enu-
merate all the candidates. Alternatively, when facing more
complex modeling scenarios leading to large search spaces,
one can employ a scalable method for combinatorial opti-
mization that performs incomplete, heuristic search through
the space of candidate combinations. To this end, symbolic
regression methods often employ evolutionary approaches,
such as genetic algorithms [24], while equation discovery
methods typically employ greedy search algorithms [31].

In the final (third) step of the algorithm, ProBMoT evalu-
ates each candidate model structure by estimating the values
of its constant parameters. Recall that the list of constant
parameters and the ranges of their values are included in the
process-based library. ProBMoT approaches parameter esti-
mation as a numerical optimization task. The objective func-
tion for numerical optimization is the output error, i.e., the
discrepancy between the simulated model response and the
measured system response in the training data set [4], defined
as:

RRMSE(y) =

√∑n
t=0(yt − ŷt )2∑n
t=0(ȳ− ŷt )2

. (1)
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FIGURE 2. Workflow of the ProBMoT algorithm for inducing process-based models from knowledge and data. The knowledge specifies
two types of entities (P and T) that refer to a pump and a tank, as well as three types of processes (INFLOW, VALVETRANSFERFUNCTION and
OUTFLOW). Given the process-based library and the modeling scenario, 9 candidate models structures are constructed, listed in Table 3.
These structures are mapped to equations, have their parameters estimated and are finally ranked based on model validation error.
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TABLE 2. Modeling scenario for the system of two cascaded water tanks
and a pump.

In Eq. (1) n denotes the number of measurements, yt and
ŷt correspond to the measured and simulated values of the
output variables y and ȳ denotes themean value of y in the data
set. Note that the RRMSE takes the total squared error (the
numerator of the fraction on the right-hand side of Eq. (1))
and normalizes it by dividing it with the total squared error
of the trivial model that predicts the average of the observed
values. Thus, the model with the RRMSE of 1 has the same
error as the error of the trivial model, while smaller values
indicate the relative improvement over it.

ProBMoT employs the CVode library [8] for simulating
continuous-time models in the form of ordinary differential
equations. CVode implements a general-purpose ODE solver
with linear multi-step variable-coefficient methods for inte-
gration. Note that we perform long-term simulation of the
model equations given the initial conditions only: This is in
contrast to most simulation approaches that rely on value-
corrections of the simulation response at each simulation
step [36]. Given that the objective function includes simu-
lation of non-linear continuous-time models and an output-
error objective function, ProBMoT employs nonlinear meth-
ods for numerical optimization. In particular, it uses the Dif-
ferential Evolution algorithm as implemented in the meta-
heuristic optimization framework jMetal [10]. Differential
evolution is arguably a powerful stochastic optimization algo-
rithm with encouraging results related to its asymptotic con-
vergence towards global optima [13].

IV. EXPERIMENTAL DESIGN
To properly test the hypothesis that the process-based mod-
eling approach can accurately perform nonlinear system
identification, we propose investigating the two aspects of
(1) structure identification and (2) parameter estimation.
To this end, the experiments consider modeling a cascading
water tank system with two tanks as shown in Figure 1a,
where we focus on modeling the dynamics of the lower
tank h2. In the first line of experiments, we investigate

ProBMoT’s ability to discriminate among different instan-
tiated candidate structures. Next, we analyze its ability to
correctly reconstruct the values of the model parameters.

In particular, we consider two modes of operation of
ProBMoT: (1) multi-stage mode – MULTI-STAGE PROBMOT
and (2) single-stage mode – SINGLE-STAGE PROBMOT. The
former relates to a standard approach in system identifica-
tion where the problem is decomposed so that the dynamics
of each signal is modeled separately [25]. Namely, using
ProBMoT we first attempt to establish the structure and
parameters of the model of the first tank, using the sig-
nal h1 in the learning process. In turn, the best performing
(intermediate) model is used for establishing the structure
and parameters of the lower-tank model using the signal h2.
On the other hand, SINGLE-STAGE PROBMOT refers to the
standard operation of ProBMoT, where it attempts to learn the
complete model for both signals h1 and h2 simultaneously.
Regarding the data, in our experiments, we consider both

synthetic data, by varying the values of the signals h1 and
h2 at each time point, as well as measured data. The latter
consists of 2500 measurements of the input signal u(t) and
the two output signals, i.e., the water levels of the two tanks,
h1 and h2. Further details on themeasurement procedures per-
formed on a real water-tank system are given by Wigren and
J. Schoukens [35]. To properly evaluate model performance,
we split these data into a train, a validation, and a test set,
consisting of 1000, 500 and 1000measurements, respectively.
In particular, we learn the model structure and parameters
using the train data, we select an optimal model with respect
to its performance on a validation data set and evaluate the
performance of the selected model on the test set.

The synthetic data is generated by simulating the model
from Fig 1b using arbitrarily selected parameter values of
a1 = 0.65, A1 = 20, a2 = 0.7, A2 = 12 and k = 5. For the
input signal u(t), we used the real measurements, while for h1
and h2, we used the simulated responses with Gaussian noise
added following the equation ynoise(t) = y(t) · (1+ N (0, v)),
where N (0, v) denotes a normal-distribution random variable
with mean 0 and variance v. Note that we do not add noise
to the input signal, since it comes from the measurements.
We generate five different train/validation sets of synthetic
responses with variance of 0.01, 0.02, 0.05, 0.1 and 0.2, where
the uncorrupted responses correspond to variance 0. This
yields six different synthetic experimental cases/data sets.

In both the single-stage and the multi-stage modes,
ProBMoT uses the process-based library of domain knowl-
edge for modeling cascading-tank dynamics, presented
in Table 1. The library combined with the modeling scenario
given in Table 2, yields 9 candidate model structures shown
in Table 3. For instance, S-S denotes the model where the
processes VALVETRANSFERFUNCTION and OUTFLOW have sub-
linear SQUAREROOT dynamics. Note that, the artificial data
was generated with the model S-S with the parameter values
stated in the previous paragraph. The different modeling
scenarios used in the experiments with single-stage and
multi-stage ProBMoT are given in Appendix.
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TABLE 3. The list of nine candidate model structures considered by ProBMoT. The acronyms correspond to the different components included in the
respective interaction. For example, Model S-S denotes a model structure with SQUAREROOT modeling alternative for both processes,
VALVETRANSFERFUNCTION and OUTFLOW. All model structures include the INFLOW process.

.

Furthermore, the following parameter settings for Differ-
ential Evolution were used: a population size of 60, strategy
rand/1/bin, differential weight (F) and a crossover proba-
bility (Cr) of 0.9. The limit on the number of evaluations
of the objective function is 5 · 104 per parameter. This par-
ticular parameter setting of DE is based on previous stud-
ies [30]. Finally, for simulating the models, we used the
CVode simulator [8] with a standard setting of absolute and
relative tolerances, 10−8 and 10−4, respectively. For generat-
ing the synthetic data as well as perform model simulation in
ProBMoT, we use the backward differentiation method com-
bined with Newton iteration and a preconditioned Krylov
method with 105 steps as implemented in CVODE [8].

V. RESULTS
We investigate the ability of ProBMoT to reconstruct the
correct models in both a synthetic and a real-world setting.
In the first line of experiments, we examine ProBMoT’s abil-
ity to recover the ground-truth model S-S from synthetic data.
In particular, we present performance comparisons between
the two modes of ProBMoT, MULTI-STAGE PROBMOT and
SINGLE-STAGE PROBMOT, in terms of RRMSEvalidation and
RRMSEtest on the six synthetic experimental cases. Next,
we investigate the ability of the two modes of ProBMoT
to estimate the ground-truth parameters from the synthetic
data. In the second line of experiments, we test the ability
of ProBMoT to identify the structure and parameter of the
model from measurements of the water-tanks system.

A. RESULTS ON SYNTHETIC DATA
Figure 3 depicts the errors of the models learned with
MULTI-STAGE PROBMOT. The top two graphs in Figure 3
refer to the errors of the three ‘‘intermediate’’ candidate
models of the dynamics of h1 considered in the first stage.
Figure 3a shows that ProBMoT can identify the structure
of the process VALVETRANSFERFUNCTION for h1 correctly.
Moreover, Figure 3b shows that the identified intermedi-
ate model with a SQUAREROOT alternative of the process
VALVETRANSFERFUNCTION for the top tank has a constant
and substantially better test performance than the other two
models (with the LINEAR or EXPONENTIAL alternative).
The two bottom graphs in Figure 3 depict the errors of

the three final models that complete the correctly identified
intermediate model of h1 in the first stage. Figure 3c shows
that ProBMoT selects the correct complete model S-S for
all noise variances. In particular, the validation error of the
model S-S in the noise-free scenario is almost 40 percentage

FIGURE 3. MULTI-STAGE PROBMOT: Top- Performance comparison of the
simulation error (RRMSE) of the h1 signal obtained from the
3 intermediate model structures on the (a) validation and (b) test
synthetic data sets in the six different synthetic cases. Bottom-
Performance comparison of the simulation error (RRMSE) of the output
signal h2 obtained from the remaining 3 model structures on the
(c) validation and (d) test synthetic data sets in the six different synthetic
cases.

points lower than the second-ranked model S-L, and almost
20 percentage points lower for the 0.2 noise variance. This
result is also in-line with the test performance of the S-S
model, depicted in Figure 3d, which, in general, performs up
to 30 percentage points better than the second-ranked model
S-L and up to 90 percentage points better than the third-
ranked S-E.

While MULTI-STAGE PROBMOT is able to correctly identify
the ground-truthmodel, it follows a procedure that requires an
intermediate intervention by the modeler. The decomposition
and the ordering of stages are to be provided by a human
expert that, in turn, has to run ProBMoT for each stage sepa-
rately. In contrast, SINGLE-STAGE PROBMOT does not require
any intervention by a modeler. Its identification capabilities
are presented in Figure 4. SINGLE-STAGE PROBMOT explores
the complete space of nine candidate model structures, using
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FIGURE 4. SINGLE-STAGE PROBMOT: (a) Performance comparison of the
summed validation errors of both signals h1 and h2
(RRMSEh1 + RRMSEh2) from the 9 obtained models across 6 different
synthetic cases. (b) Performance comparison test errors of the output
signal h2 (RRMSEh2) from the 9 obtained models across 6 different
synthetic cases.

FIGURE 5. comparison of the errors of the three candidate models
considered with SINGLE-STAGE PROBMOT (SStage) and MULTI-STAGE
PROBMOT (MStage), measured on the response of the output signal h2.

both signals h1 and h2 as input, and ranks the models accord-
ing to the summed error RRMSEh1 + RRMSEh2.
Figure 4a shows that SINGLE-STAGE PROBMOT is able

to reconstruct the correct model structure S-S: In particu-
lar, based on the performance on a separate validation set,
SINGLE-STAGE PROBMOT accurately identifies the correct
structure for all 6 synthetic cases. Note that here the relative
difference in performance between the best-identified struc-
ture and the remaining structures is substantial and higher
than 20 percentage points. Moreover, in terms of performance
on unseen test data, SINGLE-STAGE PROBMOT exhibits sta-
ble behavior, where for all synthetic cases the discrepancy
between the model’s response of the output signal h2 and the
actual response (in the synthetic test data) remains stable and
lower than 0.05.
In sum, both modes of using ProBMoT accurately identify

the correct structure of the model. Figure 5 presents a com-
parison of the errors of the three candidate models considered
with MULTI-STAGE PROBMOT and SINGLE-STAGE PROBMOT,
measured on the output signal h2. Figure 5 shows that both
methods lead to models with virtually identical errors on both
validation (Figure 5a) and test (Figure 5b) data. This means

that for the task of structure identification, SINGLE-STAGE
PROBMOTwithout any intervention by a modeler, explores the
complete (and larger) space of candidate model structures,
and performs almost identically to MULTI-STAGE PROBMOT.
The latter embodies a typical approach in system identifica-
tion, where the modeling task is tackled via decomposition
into multiple stages and requires intervention by a modeler.

Finally, we assess the capability of both MULTI-STAGE
PROBMOT and SINGLE-STAGE PROBMOT to reconstruct the
values of the model parameters from noisy data. Figure 6
depicts the relative difference between the estimated param-
eter values in the learned models and the original parame-
ter values used for generating the synthetic data. To obtain
reliable parameter estimates, we performed 100 repetitions of
parameter estimation with Differential Evolution (by varying
the random seed) for each of the six synthetic cases. Note
that, while the model structure has 5 parameters, in Fig 6,
we present the relative errors for the constants that appear
in the equation from Fig 1c, i.e. the ratios of the parameters
a1/A1, k/A1, a2/A2 and a1/A2, respectively.
As we can see from Fig 6, both modes of using ProB-

MoT can accurately estimate the original parameter values
regardless of the noise variance. In general, the relative dif-
ference between the estimated and the original parameter
values for both methods is lower than 5% across all exper-
imental cases. Note, however, that SINGLE-STAGE PROBMOT
performs much better, lowering the variance of the parameter
estimates to below 1%. In the learning phase, SINGLE-STAGE
PROBMOT considers models with more degrees of freedom
allowing more parameters in the model structures to be esti-
mated simultaneously leading to a better fit. In the case of
MULTI-STAGE PROBMOT, while the final model has the same
number of parameters, it is sequentially constructed from
models with fewer parameters. Such an approach constraints
the parameter search space (notably in the latter learning
stages) which ultimately affects the fit.Moreover, any (likely)
fitting errors that accumulate in the former stages are also
propagated to the subsequent stages, thus impairing the final
performance. Nevertheless, for the particular modeling task
at hand, the differences in the parameter values obtained with
the two modes of ProBMoT are not substantial, since both
sets of parameter values can accurately model the dynamics
of the water-tanks system.

B. RESULTS ON MEASURED DATA
Herewe focus on testing the ability of the process-basedmod-
eling approach to accurately model the benchmark system
from measured data. Note that, for this modeling attempt,
we assume that the correct structure of the system corre-
sponds to the one given in Figure 1c while the parameters
are unknown and remain to be found. More specifically, since
both MULTI-STAGE PROBMOT and SINGLE-STAGE PROBMOT
performed identically on the synthetic experiments, here we
only use SINGLE-STAGE PROBMOT to find the structure of the
model and estimate the model’s parameters. Table 4 presents
the results of this experiment.
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FIGURE 6. Relative error between the ground-truth and the fitted parameter values estimated at various levels of noise using (Top) MULTI-STAGE
PROBMOT and (Bottom) SINGLE-STAGE PROBMOT. Here the relative errors are measured on the ratios of the 5 parameters : (a,e) a1/A1, (b,f) k/A1,
(c,g) a2/A2 and (d,h) a1/A2.

TABLE 4. The summed validation error for both signals h1 and h2
(RRMSEh1 + RRMSEh2) and the test error for the output signal h2
(RRMSEh2) from the 9 models obtained from measured data.

From Table 4, we can see that SINGLE-STAGE PROBMOT
struggles to identify the assumed correct structure from the
measured data. Namely, we can see that the L-S model per-
forms better than the S-S model in terms of the summed
RRMSE for both signals. Nevertheless, in terms of test per-
formance, the S-S model has the best performance on the
test set with the model L-S being second. Note, however,
that the difference in test performance between S-S and
L-S remains low and insignificant, even if in favor of the
model S-S. To properly assess the behaviors of the two mod-
els, Fig 7 presents the simulation responses on the test data
of the S-S and L-S models. From the figure, we can see that
the simulated responses are indistinguishable. We conjecture
that this is due to implicit noise in the data, possibly due to

FIGURE 7. Simulation responses on the test data of the two top-ranked
models S-S and L-S obtained from measured data.

unforeseen nonlinearities in themeasuring set-up, which have
not been included in the knowledge provided at input.

C. DISCUSSION
In general, the results from the empirical analyses show that
process-based modeling can be successfully applied to the
task of nonlinear systems identification. In particular, from
the experiments performed in the synthetic cases, we can
conclude that ProBMoT, using domain knowledge and data,
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can accurately identify the correct structure of the system
as well as estimate the model’s parameter values with high
accuracy, regardless of the signal corruption present in the
data. In the measured-data experiments, however, ProBMoT
performs moderately well by discarding the majority of the
models with incorrect structures, but nevertheless struggling
to identify the ‘‘correct’’ one among the top two ranked.
We conjecture that such a performance might be an artifact
of nonlinearities in the measuring set-up, not captured in
the domain knowledge provided at input. Such a lack of
knowledge can be explicitly handled by the modeler, where
one can additionally decide on the correct structure. However,
in the case of process-based modeling, such behavior can also
be handled by extending the modeling knowledge provided at
input: This can be achieved either by encoding new processes
in the library of domain knowledge or by weakening some of
the constraints that relate to the dynamics of the individual
processes.

For this particular task, we extend the modeling knowl-
edge by weakening the constraint on the two processes
VALVETRANSFERFUNCTION and OUTFLOW. Given that ProB-
MoT mostly struggled to differentiate between strictly linear
and nonlinear (square-root) components for the interactions
that involve the two tanks h1 and h2, we add a compo-
nent that allows for all sub-linear interactions. We encode
this in the process-based library Table 5, by adding a
new process alternative POWER to each of the processes
VALVETRANSFERFUNCTION and OUTFLOW. These two alter-
natives in turn are instantiated to two additional compo-
nents which allow for modeling any sub-linear dynamics
in VALVETRANSFERFUNCTION and OUFLOW. In particular, both
processes introduce two additional parameters Ph1 and Ph2,
where:

0 < Ph1,Ph2 < 1,

which correspond to the exponents of the two signals h1 and
h2, respectively, in the equations. Table 6 presents the results
of the modeling experiment given the extended process-based
library. To test this extension, we perform experiments using
measured data, where we evaluate the performance of a new
model P-P and compare its performance against the models
S-S and L-S.

The results reported in Table 6 show that themodel P-P per-
forms substantially better on the validation set (RRMSEh1 +
RRMSEh2) than both the S-S and L-S models. This result
confirms our hypothesis that, for this particular modeling
task, extending the modeling knowledge allows for better
identification. Note that the estimated parameter values of
Ph1 and Ph2 for the signals h1 and h2 are 0.68 and 0.66,
respectively. This result is also in-line with our hypothesis
that there are some implicit sub-linear dynamics captured in
the measured data, which does not correspond to the orig-
inal theoretical model from Figure 1c. Moreover, Figure 8
presents the simulated responses on the test set of the three
models P-P, S-S and L-S. From the figure, we can see that,
for some of the trends where S-S and L-S struggle, P-P is

TABLE 5. Extension of the library for cascaded water tank systems with
new process alternatives.

TABLE 6. The summed validation errors of both signals h1 and h2
(RRMSEh1 + RRMSEh2) and test errors of the output signal h2 (RRMSEh2)
from the new established model P-P and the two models S-S and L-S
constructed from measured data.

FIGURE 8. Simulation responses on the test data of the constructed
models P-P, S-S and L-S obtained from measured data.

able to capture themwith high accuracy. In turn, this accuracy
translates to lower predictive error on the output signal h2 of
RRMSEh2 = 0.164 in the case of P-P, as compared to the
errors RRMSEh2 = 0.23 of the model S-S and RRMSEh2 =
0.249 of the model L-S.
In sum, we have shown that by weakening the constraints

of the processes VALVETRANSFERFUNCTION and OUTFLOW in
the process-based library, ProBMoT is able to discriminate
among the model structures P-P, on the one hand, and the
remaining two model structures, on the other. This yields
more accurate models of the benchmark system from mea-
sured data. Note that, while we implemented this extension by
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FIGURE 9. Estimated values of the two parameters Ph1 and Ph2 across
the six synthetic data sets.

adding two additional parameters, the performance improve-
ment is a direct result of changing the structure of the model.
To test this hypothesis, we performed an additional parameter
estimation experiment for estimating the values of Ph1 and
Ph2 using the synthetic data sets. For this task, we performed
100 repetitions for each of the 6 different synthetic cases. The
results for both parameters are given in Figure 9.

From Figure 9, we can see that ProBMoT estimates the
values of both parameters to be in the range from 0.5 (with
standard deviation σ = 10−4), in the synthetic case with
noise variance 0, to 0.51 (with standard deviation σ = 10−3)
in the case with noise variance 0.2. This stable behavior
means that, in a controlled scenario where the appropriate
amount of knowledge is present in the process-based library,
ProBMoT is able to identify a structure identical to the under-
lying correctmodel structure (S-S) regardless of the corrupted
responses of the input/output signals.

VI. CONCLUSION
In this paper, we present the first proper evaluation of
process-based modeling in the context of system identifi-
cation. Process-based modeling, a recent equation discovery
approach, addresses the task of computer-aided modeling of
nonlinear dynamic systems from measurements and domain-
specific modeling knowledge. We perform a systematic eval-
uation of its utility for reconstructing a standard system
identification benchmark model of a cascaded water-tank
system. To this end, we test the latest implementation of
process-based modeling, i.e. the ProBMoT system, which
allows for computer-aided construction, long-term simulation
and evaluation of process-based models of dynamic sys-
tems. More specifically, we first analyze the robustness of
ProBMoT on a series of identification tasks involving syn-
thetic data with different noise variances, obtained by simu-
lating the benchmarkmodel. Next, we investigate ProBMoT’s
ability to establish a valid model of a real benchmark system
from measurement data.

The empirical evaluation shows that ProBMoT can recon-
struct both the structure and the parameters of a system
from synthetic data with various levels of corruption, as well
as from measured data. In particular, in the synthetic-data
experiments, ProBMoT is able to accurately identify the
correct structure of the system, as well as to estimate the

model’s parameter values with high accuracy, regardless of
the signal corruption present in the data. On the other hand,
in the measured-data experiments, where ProBMoT initially
struggled to discriminate between the two top-rankedmodels,
we were able to identify implicit nonlinearities that were
present in the data and not in the modeling knowledge pro-
vided at input. Consequently, with a minimal extension of
the process-based library, we showed that ProBMoT can
successfully reconstruct both the structure and the parameters
of the model from measured data.

The process-based modeling approach, and in particular
its application to the task of nonlinear system identification,
is the main contribution of this paper. Namely, PBM has
several distinguishing properties. First, PBM is a ‘‘white-
off’’ gray-boxmodeling approach [20] that constructs models
from components with a clear mapping to the modeled phys-
ical phenomena. Next, the resulting process-based models
retain the utility of mathematical models and therefore can
be simulated and analyzed using well established numerical
approaches. Finally, PBM is general and can be, in principle,
applied to any domain and to any other task of system identi-
fication. Moreover, the process-based modeling knowledge
employed by PBM is domain-specific in the sense that it
captures the basic modeling principles in a given domain and
can be reused for different modeling applications within the
same domain.

Note, however, that the necessity to formalize process-
based modeling knowledge for the domain of interest can
also represent a serious obstacle for application of the PBM
approach. Domain-specific knowledge about decomposition
of the models of dynamical systems into entities and pro-
cesses might be unavailable or out of reach of the user
of ProBMoT. In this context, general symbolic regression
approaches [6], [24] are much easier to apply to a new
domain, since they are purely data-driven and do not require
formalization of domain-specific knowledge. Note, however,
that, in many cases, the equations obtained with symbolic
regression approaches are unnecessarily complex and often
hard to comprehend by the domain experts, since they do not
make direct contact with the existing knowledge and models.
Moreover, PBM employs nonlinear optimization methods
for parameter estimation, which might lead to suboptimal
values of the constant parameters of the model. An alterna-
tive approach would be to adapt (sparse) linear regression
methods suggested in [6]. This would, however, impose a
requirement that the process-based model structures are lin-
ear with respect to the parameters, which might obscure the
clear mapping between the model processes and the physical
processes of the modeled phenomena.

Several directions for further work can be followed. While
our empirical study is limited to one task, i.e. modeling the
dynamics of a cascaded water tank system with two tanks,
the proposed approach to learning process-based models can
be applied to many other tasks of system identification,
both from the same domain as well as from other domains.
An immediate continuation of the work presented here would
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be to investigate whether the findings of this paper also apply
to other standard nonlinear benchmark systems in both real-
world and synthetic settings. Next, we intend to compare
the process-based modeling approach to other state-of-the-art
gray-box modeling approaches, both in terms of accuracy of
reconstructing dynamics of a nonlinear system and in terms
of the comprehensibility of the models that these approaches
can provide.

TABLE 7. Modeling scenario with SINGLE-STAGE PROBMOT. The initial
values of h1 and h2 are taken from the measured data.

TABLE 8. Modeling scenario with MULTI-STAGE PROBMOT, for both the first
stage (top) and the second stage (bottom). The initial values of h1 and h2
are taken from the measured data, while the parameter values of the
upper tank in Stage 2 are the outcome of Stage 1.

APPENDIX
MODELING SCENARIOS
See Tables 7 and 8.
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