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Abstract

Proton exchange membrane (PEM) fuel cells are considered as one of the power sources of the future.

However, there are still challenges facing hydrogen technologies, such as costs, efficiency and reliability.

Accurate and timely quantification of the fuel cell’s performance indices has two main benefits: (i) it enables

conducting appropriate mitigation control actions, and (ii) time evolution of the indices can be exploited

for prognostics. This in turn contributes to the overall safety, prolonged durability, and increased reliability

of fuel cell systems.

Condition deterioration of PEM fuel cells affects their electrochemical impedance characteristic, thus a

multitude of condition monitoring approaches are based on electrochemical impedance spectroscopy (EIS).

By employing recent results of statistical characterisation of impedance components, it becomes possible

to describe the complete impedance characteristic through a multivariate distribution that belongs to the

exponential family of distributions. As a result, the complete process of condition monitoring of fuel cells

can be performed by quantifying the changes of the multivariate distribution with respect to the nominal

one. In the presented approach, the multivariate distribution is built through Rayleigh bivariate copula

and D-Vine algorithm. It is shown that the selected copula is the optimal choice for modelling impedance

characteristics of PEM fuel cells. The performance of the approach was evaluated and validated on an

industrial grade 8.5 kW PEM fuel cell system subjected to the flooding and drying faults.

Keywords: OR in Energy, Rayleigh copula, PEM fuel cell, Condition monitoring, Water management

faults

1. Introduction

A proton exchange membrane (PEM) fuel cell is an electrochemical device that converts chemical energy

of hydrogen directly into electrical energy. An outstanding advantage of fuel cells is its high energy efficiency

compared to conventional internal combustion machines. In the commercially available PEM fuel cell-based
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power systems, the net efficiency of the chemical-to-electrical energy conversion at nominal output power

varies between 45 and 60%, which is substantially higher compared to the conventional energy converting

devices [1, 2]. In addition to the high conversion efficiency, a PEM fuel cell-based power system generates no

greenhouse gases and emits only low level noise. Low temperature of operation (up to max. ∼85°C), ability

to use oxygen from the air, short start-up and shut-down times, and high power density are the features

that promote PEM fuel cells as a technology of the future [3].

PEM fuel cells are considered to be the most suitable for setups of up to a few hundreds of kW of

power, both for stationary and transportation applications. However, a major obstacle in reaching high

commercialisation level of PEM fuel cell power systems remains its relatively low reliability of operation and

insufficient lifetime. It is well recognised that when prognostics and health management (PHM) information

of a technical system is applied wisely, it provides benefits in term of reliability and durability of the

system [4–6]. Furthermore, an online information about the condition indices of an electrochemical system

can be directly included into their exploitation scheme thus improving their the overall efficiency [7, 8].

The main source of information regarding current condition of PEM fuel cells is the electrochemical

impedance spectroscopy (EIS) data [9]. The bulk of the research is, however, focused predominantly on

the measurement and estimation aspects. Whereas proper statistical analysis of impedance data is usually

neglected. This paper provides in-depth analysis of the statistical properties of impedance by employing the

concepts of multivariate random variables. As a result, the probability of observing a particular impedance

characteristic can be treated as an overall condition indicator for PEM fuel cells.

In the field of PEM fuel cell and wider, stochastic excitation signals have already been employed for per-

forming impedance spectroscopy [10–14]. Employing stochastic excitation signals has two benefits compared

to the traditional small-amplitude sinusoidal excitation [9, 15, 16] or multi-sine excitation [17–19]. The most

apparent benefit is the shorter probing time which is due to the broadband excitation. The second one is

the possibility to employ various powerful approaches for statistical signal processing and analysis.

Statistical analysis requires specifying probability distribution for each impedance component as well as

for the impedance characteristic as a whole. Boškoski and Debenjak [12] provided a solution for the former

requirement by analytically specifying the probability density functions (PDFs) of particular impedance

components. For the latter problem, a multidimensional cumulative distribution function (CDF) and/or

PDF have to be specified, which describe the complete impedance characteristic. This is far more difficult

problem.

Copula functions offer a way of building multidimensional CDFs based on marginal the distributions of

its components. Such approaches have been already proposed for the concepts of condition monitoring [20,

21]. Since the marginal distributions of the impedance amplitude (i.e., the distributions of the impedance

amplitude at individual frequencies) are known to be a ratio of two Rayleigh random variables [12], it is

justified to select a copula function that belongs to the exponential copula family. Exploiting the results
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of Zeng et al. [22] for bivariate copulas, this paper proposes a solution for constructing the multivariate

PDF that encompasses the complete impedance characteristic based on the Rayleigh copula and the D-Vine

approach.

Specifying the multivariate PDF of the impedance characteristic has significant practical merits in the

context of condition monitoring of PEM fuel cells. The initial fault-free condition of a PEM fuel cell under

observation is fully captured by the parameters of the multivariate distribution of its impedance. As a

result, the changes in the impedance, induced by faults, can be quantified by calculating the probability of

observing a particular impedance characteristic. This offers a way of performing fault detection and fault

evaluation without the need of any prior characterisation of the fuel cell under various fault modes. Values

near the mode of the PDF represent fault-free state, whereas values in the tail regions indicate faulty states.

The paper is organised as follows. Section 2 presents the essentials of the EIS signal processing and

PDF parameter estimation processes as developed in [10, 12]. Section 3 provides the necessary theoretical

background of copula functions and D-Vine algorithm for multidimensional structures. All the necessary

relations required for building the multivariate PDF using Rayleigh copula are derived in Section 4. It is

shown that the selected multivariate Rayleigh-based PDF optimally describes the impedance characteristic

as a whole. Finally in Section 5, the proposed multidimensional distribution is employed for condition

monitoring of a PEM fuel cell system under various water management faults.

2. EIS with continuous wavelet transform (CWT) and discrete random binary sequence (DRBS)

EIS is an active characterisation tool that requires external excitation of the electrochemical device

under test. A carefully selected stochastic excitation signal enables in-depth statistical analysis, whereas

the selection of signal processing technique has a profound influence on the impedance results’ accuracy.

In order to employ statistical methodology, the EIS is enhanced by using DRBS as excitation signal and

complex CWT with Morlet mother wavelet as signal processing tool [10]. This section contains the essentials

for performing EIS with stochastic excitation. For more comprehensive explanation on the methodology refer

to [10, 12, 13].

2.1. Discrete Random Binary Sequence

The value of DRBS can either be a or −a1. The changes in value occur only at discrete points in time

kλ (k ∈ N0), where λ is the length of the time interval. Time interval λ is the time between two consecutive

points where the signal can change its value. The generating process for DRBS has the following form:

X(t) =
∑
n

anp(t− nλ− α), α ∼ U [0, λ], (1)

1In a given period of time, the probability of the number of changes of the signal’s value is distributed according to Poisson

distribution [23, pp. 161–162].
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where p(t) is the probability describing the binary change of amplitude a and α is random phase shift,

making process X(t) stationary. The power spectral density of the DRBS defined by (1) is:

ΦdX(ω) = a2λ

∣∣∣∣∣ sin
(
ωλ
2

)
ωλ
2

∣∣∣∣∣
2

(2)

It has zeros exactly at integer multiples of the frequency 1/λ. The useful frequency band fB is approximately

determined by the -3 dB frequency limit as [24]:

fB ≈
1

3λ
(3)

2.2. Continuous Wavelet Transform

Wavelet transform is a time-frequency analysis tool that provides variable time-frequency resolution

through the concept of scaling. It is defined through an orthogonal set of functions with compact support

called wavelets ψ(t). The wavelet function can be scaled and translated by introducing two parameters s

and u as:

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
. (4)

CWT of a square integrable function f(t) ∈ L2(R) is defined as [25]:

Wf(s, u) =

∫ ∞
−∞

f(t)ψ∗u,s(t) dt, (5)

where ψu,s(t) is defined by (4). For the application at hand the complex Morlet wavelet was selected as the

mother wavelet. The complex Morlet wavelet is defined as [26]:

ψ(t) = π−
1
4

(
e−jω0t − e−

ω2
0
2

)
e−

t2

2 , (6)

where ω0 is referred to as wavelet’s central frequency and is usually set to a value so that the ratio of the

highest two peaks of the wavelet is approximately 1
2 :

ω0 = π

(
2

ln 2

) 1
2

≈ 5.336 (7)

Impedance through complex wavelet coefficients

The result of the CWT analysis of the voltage u(t) and current i(t), with the Morlet wavelet, is a set of

complex wavelet coefficients:

Wi(t, f) = <{Wi(t, f)}+ j={Wi(t, f)},

Wu(t, f) = <{Wu(t, f)}+ j={Wu(t, f)}.
(8)

Finally, the impedance is calculated as the following ratio:

Z(t, f) =
Wu(t, f)

Wi(t, f)
. (9)

The ratio (9) provides the value for both the phase and the impedance amplitude for every time-frequency

pair.
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2.3. Probability Distribution of the Impedance Amplitude

Having a stationary stochastic excitation with zero mean, such as DRBS, makes the spectral components

of the measured signals a complex circular Gaussian random variables [27]. Consequently, their correspond-

ing modules |Wu(t, f0)| and |Wi(t, f0)| of wavelet coefficients (8) are distributed with Rayleigh distribution

as:

|Wu(t, f0)| ∼ Rayleigh(σu)

|Wi(t, f0)| ∼ Rayleigh(σi).
(10)

The PDF of the module of the ratio (9) can be calculated as a ratio of two dependent complex circular

Gaussian random variables as [28, 29]:

f|Z|(|z|) =
2σ2

i σ
2
u(1− ρ2)|z|(σ2

i |z|+ σ2
u)

[(σ2
i |z|2 + σ2

u)2 − 4ρ2σ2
uσ

2
i |z|2]

3/2
, |z| ≥ 0, (11)

where |ρ| ≤ 1 is a complex correlation coefficient. The PDF (11) is positively skewed and defined on the

non-negative semi axis. The CDF that corresponds to (11) reads [28, 29]:

F|Z|(z) =
1

2
− σ2

u − z2σ2
i

2
√

4z2 (1− ρ2)σ2
i σ

2
u + (σ2

u − z2σ2
i ) 2

, (12)

where z ≥ 0. PDF (11) depend on three parameters σu, σi and the correlation coefficient ρ. These parameters

can be easily estimated through the calculated wavelet coefficients as:

E{Wu(t, f0)Wu(t, f0)∗} =
σ2
u

2

E{Wi(t, f0)Wi(t, f0)∗} =
σ2
i

2

E{Wi(t, f0)Wu(t, f0)∗} =
σuσi

2
ρ.

(13)

3. Copula functions

The PDF (11) describes the impedance components for a single frequency. In order to encompass the

whole frequency range, one has to define a multivariate PDF. Estimating parameters of a multidimensional

PDF from data is a difficult task, predominantly due to the amount of required data. Using the traditional

kernel based estimation methods, for a d dimensional PDF, one would need Nd data points, where N is

the amount required for estimating the marginal distribution in one dimension [30]. Furthermore, the Nd

data points should be distributed throughout the observed hyperspace thus capturing the joint PDF shape

as accurately as possible. These requirements are rarely met in particular when using experimental data

acquired from a system in a fixed operating point.

Copula functions resolve the problem of massive data sets by performing estimation of the joint PDF in

two phases. First, the parameters of the dmarginals are estimated for each dimension separately. Afterwards,
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the copula function’s parameters θ are estimated using the original data set. Typically, the copula functions

are bivariate functions coupling two random variables. Coupling more than two random variables can be

performed in two ways either by defining multivariate copula or by building tree-like hierarchical structures

based on bivariate copulas. Due to the flexibility and simplified derivation, the latter strategy is the most

commonly employed.

The way how the hierarchical structures are built depends on the copula family. The most popular family

of copula functions are the so-called Archimedean copulas. However, the number of original PDFs that have

an Archimedean copula in closed form is limited. This is the case with Rayleigh-like distribution, which is

crucial in the analysis of impedance values. A solution to this problem are the so-called hierarchical Vine

copulas structures [31], which are used in the subsequent analysis. In order to use these structures, several

supporting functions have to be derived based on the selected copula function. In what follows, the basic

of the Vine copula algorithm is presented accompanied with all the necessary derivations of the supporting

functions based on the selected Rayleigh copula.

3.1. Vine copulas

Vine copula algorithm is based on copulas that represent PDF by employing the Bayes’ rule. The joint

PDF of n dependent random variables can be written as:

f(x1, . . . , xn) = f(x1|x2, . . . , xn) · · · f(xn−2|xn−1, xn)f(xn−1|xn)f(xn) (14)

This decomposition is unique for the specified order of random variables (unless the joint PDF is permutation

symmetric). Based on the Sklar’s theorem [32], the joint CDF can be written as:

F (x1, . . . , xn) = C(F (x1), F (x2), . . . , F (xn)|θ), (15)

where C(u1, . . . , un) is the copula CDF function, ui = F (xi), F (xi) is the CDF of xi and θ is the set of

parameters that have to be estimated. Here and in what follows, for simplified notation, the parameters θ

are omitted when specifying the copula CDFs and PDFs.

For continuous and strictly increasing CDFs, the joint PDF can be derived as the nth partial derivative

of the joint CDF resulting into:

f(x1, . . . , xn) = c(F (x1), F (x2), . . . , F (xn))× f(x1) · · · f(xn), (16)

where c(u1, . . . , un) is the copula PDF. For a bivariate case (16) becomes:

f(x1, x2) = c(F (x1), F (x2))f(x1)f(x2). (17)

Consequently, the bivariate copula PDF directly represents the conditional density as:

f(x1|x2) = c(F (x1), F (x2))f(x1). (18)
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Generalising the joint PDF (16) by using bivariate copula as replacement for the conditional distributions

lead to the following relation:

f(x|v) = cx|v(F (x|v−j), F (vj |v−j))f(x|v−j), (19)

where v is the n − 1 dimensional vector, vj represents one arbitrary dimension and v−j represents n − 2

dimensional vector with the jth component excluded. For every j the conditional CDF can be calculated

as [33]:

F (x|v) =
∂Cx,vj |vj (F (x|v−j), F (vj |v−j))

∂F (v|v−j)
. (20)

Relation (20) is required in the process of maximum likelihood estimation and is usually referred to as

function h(x, v).

3.2. D-Vine copula structure

The decomposition (14) can be performed in many different ways, based on the ordering of the random

variables. Bedford and Cooke [34] have introduced a graphical way of representing the possible decomposition

of the multidimensional PDF based on bivariate copulas. These approach is called regular vine. Two

variations of these approach offer a more practical way of making the multidimensional decomposition: the

canonical vine and D-Vine [35]. The presented results are obtained by employing the D-Vine decomposition.

The D-Vine decomposition of a five-dimensional PDF is shown in Figure 1. The input random variables

are represented with the circles as the leaves of the tree, whereas the bivariate copulas are represented

with edges. Generally there are n! different ways of combining the input variables. By having a symmetric

copulas, these number reduces down to n(n−1)
2 .

u1 u2 u3 u4 u5

c1,1(u1, u2) c1,2(u2, u3) c1,3(u3, u4) c1,4

c2,1 c2,2 c2,3

c3,1 c3,2

c4,1

Figure 1: Structure of the selected D-vine copula hierarchy.

3.3. Maximum likelihood estimation algorithm for D-Vine copulas

The modelling process with D-Vine copulas, or for that matter, with any type of copula structures is

a two step process. The first step is determining the families of bivariate copulas that will be employed
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when building the appropriate tree-like structure. The second step is estimation of the set of parameters

θ that are associated with each bivariate copula. It should be noted that when building a tree-like copula

decomposition one can mix various copula families if necessary.

There are many ways how to determine the most suitable bivariate copula family for the problem in

hand [31]. However, as shown in Section 2, the marginal PDFs are Rayleigh, thus the subsequent analysis

is performed by using Rayleigh bivariate copula as the main building block.

The estimation of the corresponding set of parameters θ can be performed using a pre-determined

maximum likelihood estimation algorithm that is independent of the choice of bivariate copula family. The

algorithm requires recursive calculation of likelihood values and evaluation of the h(x, v|θ) function (20).

4. Rayleigh copula and the corresponding h(x, v) functions

The Rayleigh copula CDF can be obtained through

C(u, v) = (1− ρ)

∫ a1

0

∫ a2

0

e−z1−z2I0(2
√
ρz1z2)dz1dz2, (21)

where Ik(x) is the modified Bessel’s function of first kind of order k. Using the transformation [36, Eq. (2.14)],

the double integral can be transformed into:

C(u, v) = 1 + eρa2−a2
(
e−a1

∫ ρa2

0

e−sI0 (2
√
sa1) ds− 1

)
− e−a1

∫ a2

0

e−sI0 (2
√
ρa1s) ds, (22)

where

a1 = − log(1− u)

1− ρ

a2 = − log(1− v)

1− ρ
.

(23)

In order to employ the D-Vine copula maximum likelihood estimation algorithm, the corresponding h(·)

functions read as:

hx(y) = FY |X(y|x) =
∂C(u, v)

∂v
. (24)

hy(x) = FX|Y (x|Y ) =
∂C(u, v)

∂u
. (25)

The notation of h(·) functions are adopted in order to be inline with the original copula vine algorithm as

defined by Aas et al. [31].

The partial derivative of (24) reads as:

∂C(u, v)

∂v
=1− (1− u)

1
1−ρ (1− v)

ρ
1−ρ I0 (2

√
ρa1a2)

− (1− u)
1

1−ρ

∫ ρa2

0

e−sI0 (2
√
sa1) ds

(26)
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The integral in (26) can be evaluated through the Marcum Q-function as:∫ qa2

0

e−sI0 (2
√
sa1) ds =

[
1−Q1

(√
2a1,

√
2ρa2

)]
ea1 , (27)

where

QM (a, b) =

∫ ∞
b

x
(x
a

)M−1
exp

(
−x

2 + a2

2

)
IM−1(ax) dx. (28)

Similarly, the partial derivative of (25) reads as:

∂C(u, v)

∂u
=

(1− u)
ρ

1−ρ

(30)︷ ︸︸ ︷∫ a2

0

e−sI0 (2
√
ρsa1) ds

1− ρ
− ρ(1− u)

1
1−ρ

(1− ρ)(1− u)

(31)︷ ︸︸ ︷∫ a2

0

e−ssI1
(
2
√
ρsa1

)
√
ρsa1

ds

+
(1− u)

1
1−ρ (1− v)

(1− ρ)(1− u)


∫ ρa2

0

e−ssI1
(
2
√
sa1
)

√
sa1

ds︸ ︷︷ ︸
(32)

−
∫ ρa2

0

e−sI0 (2
√
sa1) ds︸ ︷︷ ︸

(27)

 .

(29)

All of the integrals involving the modified Bessel’s functions can be solved through the Marcum Q-function

by using the following relations:∫ a2

0

e−ssI1
(
2
√
a1ρs

)
√
a1ρs

ds =
[
1−Q2

(√
2ρa1,

√
2a2

)]
eρa1 (30)

∫ a2

0

e−sI0 (2
√
ρa1s) ds =

[
1−Q1

(√
2ρa1,

√
2a2

)]
eρa1 (31)

∫ ρa2

0

e−ssI1
(
2
√
a1s
)

√
a1s

ds =
[
1−Q2

(√
2a1,

√
2ρa2

)]
ea1 . (32)

The derivation of the substitution integrals is given in Appendix A. Introducing the Marcum Q-function sig-

nificantly simplifies the numerical evaluations of the derived relations. As a result, the parameter estimation

can be done in a computationally efficient manner.

4.1. Selection of the D-Vine structure

The final task when building the D-Vine copula structure is to determine which of the n! possible

trees is the most suitable for the problem at hand. The selection determines the order in which the input

random variables are coupled during the process of building the multidimensional PDF. Selecting the most

appropriate structure can be obtained either by using goodness-of-fit tests and testing each of the possible

combinations or by incorporating an experts knowledge. The former approach is rather time consuming,

taking into account that the number of possible tree combinations increases by n!. Therefore, for the case

of PEM fuel cells condition monitoring, the latter approach is selected.
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Having EIS data as the main source of information, the goal is to capture its structure in the best

possible manner. For fuel cells, the impedance characteristics has two distinct lobes whose shape and location

determine the condition of the fuel cell under test. As a result, the subsequent analysis was performed by

selecting five frequencies that cover the measured frequency band from 0.8 up to 150 Hz. The frequency

interval was divided in a dyadic manner. The selected frequencies are shown to be sufficient for the purpose

of capturing the main shape properties of the impedance characteristics.

The usual practice is to build the tree like structure by starting with those components that exhibit the

biggest dependence structure [35]. The dependence values were calculated for all possible pairs of bivariate

Rayleigh copulas using a data set from fault free operation of the PEM fuel cell under observation. The

results are given in Table 1. Due to symmetry only the upper triangular elements are shown.

Table 1: Dependence values among the selected five frequency components

f1 f2 f3 f4 f5

f1 0.4285 0.1536 0.0569 0.0001

f2 0.4232 0.1468 0.0126

f3 0.3437 0.0695

f4 0.4581

The values shown in Table 1 offer additional insight of the impedance characteristic of the PEM fuel cell

under test. As expected, the frequencies that are closer to each other show higher degree of dependence.

The biggest dependence is between the highest frequency components, thus c4,5 is the first copula. The

next component is the one that has the highest dependence with either the 5th or the 4th component, i.e.,

the component f3. Consequently, the order in which frequency components enter in the process of building

the D-Vine was started the most dependent ones. After applying the maximum likelihood algorithm for the

complete structure the θ values for each of the copula nodes are shown in Figure 2.

These maximum likelihood estimates of the θ parameters reflect the dependence structure among the

frequency components. The parameter θ1,2, which couples the frequency components f3 and f5 has quite low

values, indicating low dependence. The same effect is visible for node θ3,1. Copula at this node “connects”

the high and low frequency arcs of the PEM fuel cell impedance characteristic. Since θ3,1 = 0, the resulting

copula is the independence one, i.e., the joint PDF is a product of the corresponding copulas.

4.2. Comparison with other copula functions

Comparing the performance among copula functions is performed by employing various goodness-of-fit

measures. The most commonly used ones are Akaike information criterion (AIC) or Bayesian information
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u1 u2 u3 u4 u5

θ1,1 = 0.4581 θ1,2 = 0.0695 θ1,3 = 0.4232 θ1,4 = 0.4285

θ2,1 = 0.2581 θ2,2 = 0.8183 θ2,3 = 0.0388

θ3,1 = 0.0000 θ3,2 = 0.4174

θ4,1 = 0.1169

Figure 2: Estimated θ values for the D-Vine structure.

criterion (BIC):

AIC = −2 log(L(U|θ)) + 2k

BIC = −2 log(L(U|θ)) + k log(n),
(33)

where L(U|θ) is the maximum likelihood of the copula model based on the observation U and parameters θ.

The parameter k represents the cardinality of θ and n is the number of observations i.e., the cardinality

of U. The bivariate copula functions usually have the similar number of parameters, and the evaluation

is performed using the same number of observations n. Consequently, the last terms in the AIC and

BIC in (33) will be constant regardless of the selected copula function. As a result the model selection is

performed solely on the maximum likelihood value L(U|θ).

A more robust approach is to select the copula family through the concepts of mutual information [37].

The mutual information describes the mutual dependence of two random variables as:

I(X,Y ) =

∫∫
x∈X,y∈Y

fX,Y (x, y) log

(
fX,Y (x, y)

fX(x)fY (y)

)
dxdy. (34)

Having copula function the mutual information can be calculated as [38]:

I(X,Y ) =

∫∫
[0,1]2

c(u, v) log [c(u, v)] dudv, (35)

where u = F−1X (x) and v = F−1Y (y). By using the data from the fault-free operation of the PEM fuel cell

under examination the calculated mutual information values are shown in Table 2. It is clearly visible that

the selection of Rayleigh copula is justified as it was initially assumed based on the marginal PDFs of the

impedance values.

5. Results

The evaluation of the proposed methodology was performed on a commercial PEM fuel cell system

Hydrogenics HyPM HD 8. The stack consists of 80 cells, each with surface area of 200 cm2, providing
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Table 2: Mutual information values for various copula families estimated on EIS data

Copula family

Rayleigh Gauss Student-t Clayton Gumbel

Mutual Information 0.1003 0.0036 0.051 6.756× 10−4 1.16× 10−11

8.5 kW of electric power in total. The fuel cell system operates on pure hydrogen and ambient air. Besides

the fuel cell system, the experimental setup also included an electronic load, function generator and data

acquisition equipment (block diagram of the setup is shown Figure 3).

The DRBS excitation waveform was generated by the external function generator and superimposed to

the DC current of the fuel cell stack by the electronic load. The current and voltage signals were measured

using a custom-designed voltage monitor [11]. The signals were sampled with frequency of fs = 5 kHz.

Individual measurement sections (data acquisition segments) were repeated every 40 seconds. In this way,

a set of 105 measurements were acquired.

Function
Generator

Electronic
Load

Fuel Cell
Stack

Voltage
Monitor

Wavelet
transform

PDF
estimation

D-Vine
copula P (U)

Measurement section

80 FCs
Voltages


 i(t)
u(t)


 Z(t, f)

U = F−1(z|ρ)

DRBS
excitation
signal

i(t)

+
–

+
–

Figure 3: Block diagram of the experimental setup and signal processing steps.

5.1. Measurement section explained

The first step of the measurement section is transforming the acquired voltage u(t) and electrical current

i(t) into wavelet coefficients (8). Afterwards, the parameters σu, σi and ρ are estimated through (13). The

parameters are estimated for each of the selected frequencies fi, where i ∈ [1, . . . , Nf ]. Therefore the result

is n×Nf matrix, where n is the number of samples.

The impedance values are than transformed into a n × Nf matrix U of uniformly distributed random

variables. The transformation is performed by using the inverse CDF, i.e., by applying inverse transform

sampling for each sample separately. The last step is the evaluation of the D-Vine structure based on the

initially estimated parameters θ. The result is a set of n probabilities of observing particular impedance

values, one for each acquired sample. This process is shown in Figure 4.



European journal of operational research 266 (2018) 269–277 doi: 10.1016/j.ejor.2017.08.058

n
ti

m
e

sa
m

pl
es

W
av

el
et

tr
an

sf
or

m

z11 z12 . . . z1n

z21 z22 . . . z2n...
...

. . .
...

zNf ,1zNF ,2 . . . zNf ,n







Z(t, f) : n×Nf

F−1
1 (z|σu1 , σi1 , ρ1)

F−1
2 (z|σu2 , σi2 , ρ2)...

F−1
Nf

(z|σuNf
, σiNf

, ρNf )







Evaluate Nf CDFs

u11 u12 . . . u1n

u21 u22 . . . u2n...
...

. . .
...

uNf ,1uNF ,2 . . . uNf ,n







Uniform U : n×Nf

T

E
va

lu
at

e
D

-V
in

e
st

ru
ct

ur
e

p1

p2...

pn







n Vine outputs

Estimate σu, σi, ρ using (13)

Figure 4: Calculation steps for each measurement section.

It should be noted that the D-Vine parameters θ are estimated from data acquired from nominal oper-

ation, which in our case was the very first measurement. The θ parameters are estimated using the D-Vine

maximum likelihood estimation algorithm [35]. For the experiment at hand the estimated θ values are

presented in Section 4.1. Every subsequent evaluation of the D-Vine structure uses these initially estimated

values of θ. The output p(Ui) represents the copula output for each measured data point.

An alternative approach would include estimating new copula parameters for each measurement section

and then quantifying the alteration of the resulting multidimensional PDFs. Such an approach has two

main drawbacks. First, the estimation of the D-Vine structure parameters i.e., the θ parameters, is time

consuming thus in our approach this process is performed only ones. Second, using any form of comparison

of two PDFs (such as Kullback-Leibler divergence or similar approaches) requires either close form solution of

the PDFs or numerical evaluation of the divergence measures. In either way, this would be computationally

demanding and highly impractical for online operation.

5.2. Experimental profile

Throughout the experiment, the fuel cell system was kept at constant operating and environmental

conditions. Airflow temperature was kept constant at 50◦C with stoichiometry 2.5. Grade 5 hydrogen at a

constant temperature of 20◦C was used as fuel. The fuel cell operating point was set to 70 A DC, resulting

in the fuel cell stack output voltage of 55 V. The amplitude of the superposed DRBS waveform was set to

2 A. As such, the peak-to-peak amplitude was 4 A and therefore small enough not to cause difficulties due

to non-linearity of the PEM fuel cells.

Two types of water management faults were included in the evaluation process, i.e., flooding of the

cells and drying of the membranes. The rationale behind the selected fault modes is twofold. First, water

management faults can be induced by manipulating the humidity of the inlet air, while preserving constant

operating conditions. Second and more important fact is the reversibility of such faults. Therefore, the

changes in the fuel cell condition can be performed in a timely manner while at the same time preventing

any substantial damage of the system.

The experiment went through five stages:
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1. nominal inlet air humidity for 11 minutes (9% which at 50◦C corresponds to 7.5 g/m3 - grams of water

per cubic meter of air)

2. dried inlet air for 10 minutes (5% which at 50◦C corresponds to 4.1 g/m3)

3. nominal inlet air humidity for 10 minutes

4. 100% humid inlet air for 30 minutes (100% which at 50◦C corresponds to 83 g/m3) and

5. nominal inlet air for the last measurements.

The interim inlet air with nominal humidity was fed in order to cancel the influence of the previous fault

and monitor the recovery of the fuel cell.

5.3. Time evolution of the copula output

Based on the procedure described in Section 5.1, the copula output p(Ui) was calculated for each

measurement section. The results of the D-Vine copula PDF evaluation are shown in Figure 5. The

box plot represents the values of the D-Vine structure for each sample of the corresponding measurement

section. The boxes depict the interquartile interval and points are the median values.
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Figure 5: Evolution of the condition indicator (points are the median values and the line is its time average).

In the first 10 minutes the PEM fuel cell was operated under nominal conditions. The copula output

during this period can be regarded as the reference one. During the period with dry inlet air, the copula

output shifts towards the upper tail, with respect to the initial fault free region. Feeding saturated inlet

air at 100% humidity, causes even more significant change in the D-Vine values, thus indicating a highly

unlikely impedance. By restoring the water management balance, the D-Vine output returns back to the

nominal values.
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5.4. Discussion of the results

From the results shown in Figure 5, it is apparent that the influence of the dry inlet air is significantly

smaller than the one imposed by the humid air. There are two main reasons for this discrepancy. The used

fuel cell system was designed to operate without an external humidifier unit, therefore inducing drying fault

is rather challenging. Furthermore, in order to prevent any local excessive drying and thus damaging the

membranes, this phase was kept relatively short, i.e., 10 minutes. Due to these factors it was possible to

achieve only mild drying of the fuel cell stack, hence the small deviation of the copula output.

Notwithstanding the mild drying, its effects are visible even after the humidity of the inlet air was

returned to normal. As described by Ji and Wei [39], at low current densities, back diffusion will prevail

on electroosmotic drag, while at high current densities, electro-osmotic drag will prevail over back diffusion

and thus the anode will tend to dry out, even if the cathode is well hydrated.

This analysis shows that the copula output can be directly related to the fault’s severity. Consequently,

the proposed approach can be employed for the process of performing fault detection and fault evaluation.

Furthermore, any type of fault affects the cell’s system and consequently its impedance characteristic. This

influence will influence the copula’s output too. Consequently, the proposed solution can be applied for any

approach that operates with impedance data regardless of the system’s nature.

5.5. Comparison with previous research

Copula functions have already been applied for condition monitoring of PEM fuel cells in the study

by Mileva Boshkoska et al. [21]. Unlike the present approach, the original study was performed using

Archimedean copulas. Due to the straightforward parameter estimation method, based on the so-called

generator functions, Archimedean copulas are readily implemented in various numerical packages. The

weakest point of that approach is suboptimal selection of the copula family. Despite having suboptimal

copula, the results confirmed the applicability of copula based approaches for condition monitoring of PEM

fuel cells.

The analysis presented in this paper goes one step further. The governing factor in the selection of

copula family is the nature of the random variables at hand. The PDF of the impedance components is

a ratio of two Rayleigh distributed random variables (as shown in Section 3.3). For PDF that belong to

the family of exponential distributions, which is the case for the Rayleigh distribution, it is not possible

to construct an Archimedean copula (a generator function does not exist in the closed form). Addressing

this issue, the present analysis is based on the Rayleigh copula. Being a non-Archimedean type imposes

significant difficulties in the process of parameter estimation and numerical evaluation. The presented

material contains all the necessary derivations required for the numerical implementation of the parameter

estimation algorithm for the Rayleigh copula.
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Both studies, the present one and the study of Mileva Boshkoska et al. [21], were evaluated with the

same data set. As shown by the estimated mutual information values, presented in Table 2, the Rayleigh

copula significantly outperforms the two Archimedean copulas that were employed in the first study.

6. Conclusion

With stochastic excitation signals, the impedance amplitude is a ratio of two Rayleigh random vari-

ables. As a result, the complete impedance characteristic itself can be analysed through the framework of

multivariate random variables, where each dimension represents the impedance at single frequency. The

multivariate analysis is performed through the concepts of copula functions.

Since the nature of the underlying marginal distributions stems from the Rician family, the analysis

was performed using the Rayleigh copula. As there are no available implementations for such an approach,

this paper contains all the necessary mathematical derivations required for numerical implementation of the

proposed algorithm.

The output of the proposed copula structure is a probability of observing a particular impedance char-

acteristic vis-á-vis the nominal one. Therefore, the output can be treated as a unit-free condition indicator.

The performance of the condition indicator was tested on a 8.5 kW industrial PEM fuel cell for detection

and evaluation of fooding and drying faults with various severity.

There are several practical benefits offered by the copula based statistical condition indicator. Online

condition monitoring of PEM fuel cells can be performed without any prior characterisation of the device

under various fault modes. The tuning is done using data from nominal operation. The value of the condition

indicator can be directly related to the fault severity. Finally, since the statistical properties of the condition

indicator are known, the calculation of the fault alarm thresholds can be based on a desired probability of

false alarm.

Appendix A. Derivation of substitution integral (30)

By entering substitution

s =
x2

2
(A.1)

the integral (30) becomes

∫ √2a2
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2 sI1
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The last part of (A.2) has the required form of the Marcum Q-function (28). The integral limits can be

adjusted by taking into account that the Marcum Q-function is the survival function of the noncentral χ2

distribution.

The survivor function s(x) for an arbitrary distribution specified by its CDF Fx(x) and PDF fX(x) is

defined as

s(x) =

∫ ∞
x

fX(t) dt = 1− FX(x). (A.3)

Therefore, the relation 1−QM (a, b) is a CDF of a non-central χ2 distribution with k = 2M moments with

parameters a and b. Being a CDF, makes the last integral in (A.2) equal to 1−Q2(a, b) where a =
√

2ρa1

and b =
√

2a2. Similar derivation can be performed for the remaining substitution integrals needed for

calculation of functions hy(x) and hx(y).
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