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Abstract This paper highlights the problem of step-length selection for the one-
step-ahead prediction of ozone called the data time interval. This is done using a
case study-based comparison of two approaches for predicting the maximum daily
values of tropospheric ozone. The first approach is the one-day-ahead prediction
and the second is the prediction of the maximum values based on a multi-step-
ahead iteration of one-hour predictions. Gaussian process modelling is utilised for
this comparison. In particular, evolving Gaussian-process models are used that up-
date on-line with the incoming measurement data. These sorts of models have been
successfully used in the past for the prediction of ozone pollution. This paper con-
tributes an assessment of the way that the maximum ozone values are predicted.
A comparison of the daily maximum ozone values forecasted by a model based on
one-day-ahead predictions with those obtained by iterated one-hour-ahead predic-
tions of the ozone with predictions at predetermined hours of the day is given.
The forecast results are in favour of the on-line model based on hourly predictions
when approaching closer to the real maximum values of ozone, and in favour of
the daily predictions when they are made on a daily basis.
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1 Introduction

Tropospheric ozone concentration forecasting is recognised by international regula-
tions as one of the important factors in determining air quality. As such, consider-
able efforts are being employed to develop models that provide forecasts (hereafter
predictions) of this pollutant that can be used to provide warnings in addition to
other purposes.

Mathematical models that constitute the basis for computer models can be
roughly divided into deterministic (i.e., physical) models and statistical (i.e., em-
pirical) models, and can also be a combination of the two.

Deterministic or physical models (Zhang et al., 2012a,b) contain relations
among the physical and chemical meteorological and air-pollution variables and as
such provide an insight into pollutant-formation processes (Zhang et al., 2012a).
These types of air-quality models provide prognostic time- and spatially-resolved
concentrations for various typical and atypical scenarios. An overview of such
models for the prediction of ozone concentration is given in (Im et al., 2015).

Statistical or empirical models, on the other hand, are developed based on
historical measurements of meteorological and air-pollution variables and utilise
mainly statistical, i.e., regression, methods to develop prediction models based on
the historical record of the included variables. These models provide predictions of
higher accuracy and with better computational efficiency in relation to acquired
measurements than deterministic models, provided that the empirical models are
developed correctly and sufficiently well (Zhang et al., 2012a). Unfortunately, the
physical and chemical processes determining the meteorology and air quality are
not transparent in empirical models.

Nevertheless, the dilemma of whether deterministic models are superior over
empirical models is artificial. These two types of models should be complemen-
tary in use. Deterministic air-quality and meteorological models cover large areas
of geographical, 3-dimensional space, including locations that are not monitored
(Žabkar et al., 2015), and for long prediction horizons. Empirical air-quality and
meteorological models, on the other hand, are advantageous in predicting locally,
and as such are more suitable for modelling the concentrations of air pollutants
over terrain with complex topography and consequently complex climatological
conditions.

This paper deals with the assessment of empirical models for modelling max-
imum ozone concentrations. When empirical models are chosen for development,
there are several modelling decisions to be made regarding the methodology. Be-
sides the regression method and, consequently, the content of the regression vector,
there are other design parameters to be selected including the interval of prediction,
the interval of sampling data from databases, the interval of averaging measure-
ments, and the sources of the data. Regulatory frameworks provide directions for
some of these design parameters, e.g., the interval of the measurements’ averaging,
but most of them are decided by modelling experts.

There are various modelling methods that can be used for empirical models. An
abundance of publications exist that describe the use of empirical models for the
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modelling and prediction of ozone concentrations, and air quality in general, using
the different methods and applied in various regions, e.g., (Gong and Ordieres-
Meré, 2016; Taylan, 2017; Ding et al., 2016), to name a few of the most current.

This paper continues the investigation of finding the optimal method for pre-
dicting the daily maximum ozone concentrations as described in (Kocijan et al.,
2016), but with a different focus. While in (Kocijan et al., 2016) the selections of
the modelling algorithm and the regressors were emphasised, here the selection of
step length, which is the interval for the one-step-ahead prediction, is highlighted.
We refer to this step length as the data time interval in the subsequent text.

Often the applied data time intervals coincide with daily predictions, but ozone
cannot be predicted well on a daily basis because its dynamics is faster. If ap-
proached as a dynamic system, the ozone prediction makes it necessary to refine
the data time interval for the prediction. This is also suggested when considering
daily values. Various published investigations differ in the data time interval used
for the one-step-ahead prediction due to the availability of the data sampled at
a certain sampling rate. Besides one-day-ahead predictions, some investigations
used 15-minutes-ahead predictions (Feng et al., 2011), others used one-hour-ahead
predictions, e.g., (Petelin et al., 2013; Bruno and Paci, 2014; Duenas et al., 2005;
Al-Alawi et al., 2008), and another used three-hour-ahead predictions (Faris et al.,
2014).

The selection of the data time interval in prediction modelling is a known
problem and has been investigated in various domains, e.g., economic sciences,
e.g., (Andrawis et al., 2011; Casals et al., 2009; Kourentzes et al., 2014), medicine,
e.g., (Sud et al., 2002), and hydrology, e.g., (Liu and Han, 2013). However, this
issue has not yet been highlighted for air-quality modelling (Alyousifi et al., 2017)
or ozone-concentration modelling and prediction (Conde-Amboage et al., 2017).

The problem considered in this paper is how one-hour-ahead predictions can
be used for predicting the daily maximum value of the 1-hour-averaged ozone con-
centrations. We require that the obtained predictions contain information about
their uncertainty. Because one-hour-ahead predictions provide results too late to
be utilised for alarm purposes, they have to be iterated to obtain multi-hour-ahead
predictions that can provide results early enough. The results based on one-hour
predictions should be compared to the results of one-day-ahead predictions and
the relations between them should be assessed.

The paper is structured as follows. The problem is described in the next sec-
tion. The modelling method used is introduced in Section 2. Section 3 discusses
experiments used to assess the described approaches and the results are presented
in Section 4. The conclusions are gathered at the end of the paper.

2 Methods

2.1 Gaussian Process Models

Gaussian Process (GP) models are probabilistic, non-parametric models based on
the principles of Bayesian probability. GPs can be considered as kernel methods
with a Bayesian interpretation (Rasmussen and Williams, 2006; Gregorčič and
Lightbody, 2008). A GP model does not approximate the modelled system by
fitting the parameters of the selected basis functions, but implies a relationship
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among the measured data. The use of GP models and the properties for modelling
are thoroughly described in (Rasmussen and Williams, 2006; Kocijan, 2016; Shi
and Choi, 2011).

GP models can be used for regression, where the task is to infer a mapping
from a set of N D-dimensional regression vectors represented by the regression
matrix X = [x1,x2, . . . ,xN ]T to a vector of output data y = [y1, y2, . . . , yN ]. The
outputs are usually assumed to be noisy realisations of the underlying function
f(xi). A GP model assumes that the output is a realisation of a GP with a joint
probability density function:

p(y) = N (m,K), (1)

with the mean m and the covariance K being functions of the inputs x. Usually,
the mean function is defined as 0, while the covariance function or kernel

Kij = C(xi,xj) (2)

defines the characteristics of the process to be modelled, i.e., the statistical sta-
tionarity, smoothness, etc. The value of the covariance function C(xi,xj) expresses
the correlation between the individual outputs f(xi) and f(xj) with respect to the
inputs xi and xj . Assuming the statistically stationary data is contaminated with
white noise, the most commonly used covariance function is the composition of the
square exponential (SE) covariance function with ‘automatic relevance determina-
tion’ (ARD) hyperparameters (MacKay, 1998) and a constant covariance function
assuming white noise:

C(xi,xj) = σ2
f exp

[
−1

2
(xi − xj)

TΛ−1(xi − xj)

]
+ δijσ

2
n, (3)

where Λ−1 is a diagonal matrix Λ−1 = diag([l−2
1 , . . . , l−2

D ]) of the ARD hyperpa-
rameters, σ2

f and σ2
n are hyperparameters of the covariance function, and δij = 1

if i = j and 0 otherwise. The hyperparameters can be written as a vector θ =
[l−2
1 , . . . , l−2

D , σ2
f , σ

2
n]

T . The ARD property means that l−2
i ; i = 1, . . . , D indicates

the importance of the individual inputs. If l−2
i is zero or near zero, it means that

the inputs in dimension i contain only a little information and could possibly be
discarded. Further covariance functions suitable for various applications can be
found in, e.g., (Kocijan, 2016).

The common aim of regression is to predict the output y∗ in an unobserved
test location x∗ given the training data, a known mean function, and a known
covariance function C. The output predictive distribution can be obtained by
using the Bayes’ rule. The effect of unknown hyperparameters θ has to be taken
into account. This leads to a computationally demanding, sometimes intractable,
task. A frequently used approximate solution to the problem of computation is
to estimate the hyperparameters by maximising the marginal likelihood from the
Bayes’ rule. The details of inferring hyperparameters can be found in (Rasmussen
and Williams, 2006; Kocijan, 2016).

Once the hyperparameter values are obtained, the predictive normal distribu-
tion of the output for a new test input can be calculated using

µ(y∗) = k(x∗)TK−1y, (4)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗), (5)
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where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is the N × 1 vector of covariances be-

tween the test and the training cases, and κ(x∗) = C(x∗,x∗) is the covariance
between the test input itself.

A prediction of the GP model, in addition to the mean value (4), also provides
information about the confidence of the prediction using the prediction variance
(5). Usually, the confidence in the prediction is interpreted with a 2σ interval.
This confidence interval highlights the areas of the input space where the prediction
quality is poor, due to a lack of data or noisy data, by indicating a wider confidence
interval around the predicted mean.

A drawback of GP modelling is the computational load that comes with a large
training dataset. This load increases with the third power of the amount of input
data due to the calculation of the inverse of the covariance matrix. To overcome this
drawback, various sparse-approximation methods have been suggested. A common
property of all these sparse-approximation methods is that they try to retain the
bulk of the information contained in the full training dataset, but reduce the size
of the covariance matrix. They achieve this by using the subset of the training
data that contains most of the information. This subset of the training data is
called the active set. For more details see (Quinonero-Candela et al., 2007). The
subsequently described method adapts the active set sequentially and in parallel
adjusts the hyperparameter values.

The properties of GP models have made them attractive for modelling case
studies in various domains like chemical engineering (Chan et al., 2013) and pro-
cess control (Likar and Kocijan, 2007), biomedical engineering (Faul et al., 2007),
biological systems and medicine (Bukhari and Hong, 2014), power systems (Leith
et al., 2004) and engineering (Leithead et al., 2005), motion recognition (Kang and
Park, 2015), etc., to list just a few, and have also found their utility in the field
of environmental research (Grašič et al., 2006; Kocijan et al., 2016; Schliep et al.,
2017).

2.2 Evolving Gaussian process modelling

The Evolving GP (EGP) model is a self-developing system that sequentially adapts
elements of the GP model with incoming data, including the hyperparameter val-
ues.

This enables the fast and efficient adaptation of the GP model to changes.
The EGP concept is described in, e.g., (Petelin et al., 2013) and (Kocijan, 2016).
This concept considers the adaptation of four main elements of the GP model:
the active set, the hyperparameter values, the covariance function, and the re-
gressors. To simplify the concept we decided, like with (Petelin et al., 2013), to
use the fixed covariance function SE with ARD as we assume the smoothness
and stationarity of the stochastic process used for the modelling of the nonlinear
system input/output mapping. The ARD functionality is able to find influential
regressors. With the optimization of the hyperparameter values, the uninfluential
regressors have a smaller weight and, as a consequence, have a smaller influence
on the result. Therefore, all the available regressors can be used and, consequently,
only the active set and the hyperparameter values are adapted sequentially.

The proposed method consists of roughly three main steps to adapt the GP
model sequentially. In the first step, the new data is processed in the sense of
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including the incoming data in the active set X . In the following step, the hyper-
parameter values θ are optimized, while in the last step the covariance matrix K

and its inversion K−1 are updated in accordance with the changes from the first
two steps. More details can be found in (Petelin et al., 2013) and (Kocijan, 2016).

3 Description of the experiments

The investigation is made empirically as a comparison between one-day ahead
predictions of the daily maximum ozone concentrations based on historical data
from previous days and one-hour ahead predictions of the daily maximum 1-hour-
averaged ozone concentrations based on historical data from previous hours with
iterative predictions for several steps ahead.

The one-step-ahead prediction is

ŷ(k + 1) = f̂(x(k)), (6)

where k represents consecutive time instants and f̂ is the nonlinear mapping from
the regression vector x to the prediction ŷ. The iterative predictions are imple-
mented as follows:

Step Prediction Regression vector
1 ŷ(k + 1) x(k) = [y(k), y(k − 1), . . . ,u(k),u(k − 1), . . .]T

2 ŷ(k + 2) x(k + 1) = [ŷ(k + 1), y(k), . . . ,u(k + 1),u(k), . . .]T

3 ŷ(k + 3) x(k + 2) = [ŷ(k + 2), ŷ(k + 1), . . . ,u(k + 2),u(k + 1), . . .]T

...
...

...

where y represents measurements of the output, u is the vector of measurements
of the input signals and ŷ represents the predictions.

Remark In practice, the vector of the input signals u for the future steps cannot
be measured and is usually predicted by some model predictions. The regression
vector in step i should, in such cases, be written as follows:

x(k + i) = [ŷ(k + i− 1), ŷ(k + i− 2), . . . , û(k + i− 1), û(k + i− 2), . . .]T.

However, to avoid the prediction uncertainty for other variables as well as to enable
a fair comparison strictly following the assessment methodology as used in the
investigation described in (Kocijan et al., 2016), where the focus is on ozone only,
we used the measurements instead of the predictions for all those variables that
are not ozone. The use of numerical predictions from other models as regressors is
certainly a feasible option, but it is beyond the scope of this paper.

The one-hour-ahead predictions are made at 6:00, 12:00 and 15:00 hours with
iterative predictions forward to find daily maximum-value predictions. The pro-
cedure and results of the modelling and predictions for the daily maximum ozone
concentrations one-day ahead are taken from the investigation described in (Ko-
cijan et al., 2016), where the details can be found.

The empirical investigation of the two prediction concepts is pursued on a set
of data acquired from a measurement station in the city of Koper, Slovenia. Koper
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Fig. 1 Geographical location of the treated location in Slovenia.

is an industrial and port town on the Adriatic coast with a Mediterranean climate.
Its geographical location is depicted in Figure 1.

The meteorological and air-quality variables at these locations are measured
every half an hour and are stored in a database. The measured data were acquired
for all the available variables, as listed in Table 1, for each location for a period of
3 years (from the beginning of 2012 to the end of 2014).

Table 1 Available variables’ measurements at the city of Koper

Variable Description

O3 Ozone concentration
GlSolRad Global solar radiation
AirTemp Air temperature
RelHum Relative humidity
WindSpd Wind speed
WindDir Wind direction

NOx Nitrogen oxides concentration
NO2 Nitrogen dioxide concentration
Dust Solid particles
Precip Precipitation

DifSolRad Diffuse solar radiation
Pressure Atmospheric pressure

Based on the collected half-hour measurements for each variable, their 1-h
averages are calculated according to the regulatory framework (EU-Commission,
2008). Because the ozone concentration depends on the past and present values of
the variables, the present values are also added. In practice, as already mentioned,
this is done with model, e.g. physical- or empirical-model, predictions.

The regression vector for the data-based model is expected to contain the
values of variables as well as their lagged values, because the dynamic model is
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developed. However, the number of all the regressors is very large, so it is only
necessary to select the regressors that add the most information to the prediction.

The procedure for the selection of regressors was using a conventional off-line
GP regression model for determining the best set of regressors with an exhaustive
search. The GP model was based on a squared exponential covariance function
with the ARD property and with a noise covariance function as described by
Equation (3). The GP model was trained on a subset of data that was recognized
as the most significant, i.e., periods of the year with high maximum values of
ozone concentrations. The available data were divided into 11 subsets. A 10-fold
cross-validation was used in the training procedure and the remaining set was used
for testing the predictions. Performance measures described in the Appendix were
used for the evaluation. The final set of regressors is shown in Table 2 together with
the set of regressors for the daily maximum one-day ahead model from (Kocijan
et al., 2016). It is clear from Table 2 that even though the regressors for the one-
day-ahead and one-hour-ahead models are different, the variables, from which the
regressors are sampled, are the same. This confirms the significance of particular
variables for daily maximum predictions at the investigated location.

Table 2 Regressors for the final models. k denotes consecutive time instants, where k + 1
means the present-time values, i.e., at the prediction time, and k the recent values, i.e., one
day or one hour backwards. Instead of predictions, measurements are used for the present-time
values, as explained earlier in the text.

One-day-ahead One-hour-ahead
1 O3(k) O3(k)
2 RelHum(k + 1) RelHum(k + 1)
3 AirTemp(k + 1) AirTemp(k + 1)
4 NOx(k + 1) NOx(k + 1)
5 Pressure(k + 1) Pressure(k + 1)
6 GlSolRad(k + 1) GlSolRad(k)
7 AirTemp(k) NOx(k)
8 GlSolRad(k) Pressure(k)
9 Pressure(k) /

When the regressors were selected, they were used for the modelling and the
one-hour-ahead prediction of the ozone based on the EGP. First, 60 days are
needed to initialise the GP model. This period was selected empirically. After
that, the evolving GP model is applied. Again, the SE covariance function with
the ARD property, white noise covariance function, and a constant mean value
are used. The number of optimisation iterations in each EGP step is, in our case,
limited to 70. And the maximum size of the active set is determined as 90 data
points. The selected values were obtained empirically based on a trade-off be-
tween the computational time and the quality of the predictions. The information
gain is defined by the maximum Euclid distance of the i-th element to any other.
Exponential forgetting, with a forgetting factor of 0.9995, was also determined
empirically.

As mentioned before in this section, the one-hour-ahead predictions are made
separately at 6:00, 12:00 and 15:00. The predictions after the hour of the first
prediction are a combination of iteratively used predictions of the O3 variable
from the previous step and measurements for the other regressors.
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When we want to obtain a more realistic picture of the dynamic model predic-
tion, we have to take into account the uncertainty of uncertain input data, which in
our case is the EGP-model prediction of the O3 variable in the previous step. The
idea of using the uncertainty information is as follows.

We wish to make a prediction at x∗, where the regression vector x∗ contains
uncertain input values. Within a Gaussian approximation, the input values can be
described by the normal distribution x∗ ∼ N (µx∗ ,Σx∗), where µx∗ and Σx∗ are
the vector and the matrix of the input mean values and variances, respectively. To
obtain a prediction, we need to integrate the predictive distribution p(y∗|x∗,D),
where D = {(xi, yi)|i = 1, . . . , N} = {(X,y)}, over the input data distribution, that
is

p(y∗|µx∗ ,Σx∗ ,D) =

∫
p(y∗|x∗,D)p(x∗)dx∗, (7)

where

p(y∗|x∗,D) =
1√

2πσ2(x∗)
exp

[
− (y∗ − µ(x∗))2

σ2(x∗)

]
. (8)

Since p(y∗|x∗,D) is in general a nonlinear function of x∗, the new predictive dis-
tribution p(y∗|(µy∗ ,Σy∗ ,D)) is not Gaussian and this integral cannot be solved
without using an approximation. In other words, when the Gaussian distribution
is propagated through a nonlinear model it is not a Gaussian distribution at the
output of the model.

Approximations can be roughly divided into numerical methods, for example,
Monte Carlo methods and analytical methods. Here, only one of the methods,
i.e., analytical approximation with exact matching of statistical moments, which is
described in (Kocijan, 2016) and references therein, is used. The idea of the method
is that the integral of Equation (7) is approximated so that the exact prediction,
which is a Gaussian mixture, is approximated with the normal distribution.

4 Results

This section provides results that show whether and approximately when it is rea-
sonable to predict the daily maximum concentrations with iterated one-hour-ahead
predictions and with one-day-ahead predictions. What we expected was that from
a certain point in the day, the one-hour-ahead predictions with the following itera-
tive predictions should provide more insight. Moreover, predicting with a one-hour
data time interval should also provide the estimate of the maximum-concentration
time occurrence.

Table 3 provides results of the performance measures for the test data. The
description of the performance measures is given in the Appendix.

The content of the table confirms the expectation that the iterated one-hour-
ahead predictions deteriorate the further away we make iterations from the time
of the first prediction. It seems reasonable in the sense of the predictions’ accuracy
that one-hour-ahead predictions are used no earlier than a few hours before the
expected event, i.e., in the afternoon hours on each day where the maximum is
sought.

The scatter plots in Figs. 2 and 3 and the time responses in Figs. 5–7 visually
illustrate and confirm the conclusions for Table 3.
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Table 3 Performance measures for predictions of the daily maximum concentrations using
one-day-ahead and iterated one-hour-ahead predictions: the root-mean-square error (RMSE),
the standardised mean-squared error (SMSE), Pearson’s correlation coefficient (PCC), the
mean fractional bias (MFB), and the factor of the modelled values within a factor of two of
the observations (FAC2)

Performance 1-day-ahead 1-hour-ahead 1-hour-ahead 1-hour-ahead
measure at 6.00 at 12.00 at 15.00

RMSE 14.69 27.12 17.36 11.40
SMSE 0.19 0.62 0.27 0.14
MSLL -0.79 -0.005 -0.56 -0.92
PCC 0.90 0.72 0.87 0.94
MFB 0.025 -0.10 -0.04 -0.03
FAC2 0.98 0.99 0.997 0.998

It is also important to mention the time deviations of the predicted maxi-
mums that can be observed from the histograms in Fig. 4. The mean value of
the deviations between the predicted and measured values of the daily maximum
concentrations are slightly on the negative side. Consequently, if these data are
used for alarms, the alarms would be slightly premature.
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Fig. 2 Comparison of daily maximum values for iterated multi-hour-ahead predictions and
one-hour-ahead predictions (bottom right figure) versus observation values

One of the advantages of using GP models is that they provide a distribution
of predictions at the model output. This information can be interpreted as a con-
fidence in the predictions. It is clear from Figs. 5–7 that the interval determined
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Fig. 3 One-day-ahead predicted values versus observation values for daily maximum ozone
concentrations for Koper.
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Fig. 4 Comparison of histograms of the difference between the predicted and measured time
of maximum ozone values

by 2 × σ that corresponds to the 95 % confidence interval is larger if the predic-
tions have been made earlier in the day. The measured daily maximum values are,
however, mostly still within the predicted interval of uncertainty.

How the predictions deteriorate the further away we iterate from the hours of
6.00, 12.00 and 15.00 is shown in Fig. 8.
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Fig. 5 Comparison of time-series responses for 1-h daily maximum ozone concentrations
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Fig. 6 Zoomed time-series responses for 1-h daily maximum ozone concentrations for Koper

Computations were pursued on personal computer (Central Processing Unit:
Intel i7-2600K with 3.4 GHz, RAM memory: 8 GB) with Windows 7 operating
systems and Matlab computation software. Calculations of model adaptation and
the one-step-ahead prediction for the Evolving Gaussian Process in every time
sample of its operation took 0.72 seconds or less, which enables calculations in
real time when necessary.

The obtained results are for one location and one modelling methodology only,
so the results cannot be considered general. It can be concluded for the case study
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Fig. 7 Comparison of zoomed time-series responses of daily maximum values for iterated
multi-hour-ahead predictions and one-hour-ahead predictions (bottom-right figure)

2 4 6 8 10 12 14
Prediction steps

5

10

15

20

25

30

R
M

S
E

2 4 6 8 10 12 14
Prediction steps

0.1

0.2

0.3

0.4

0.5

S
M

S
E

2 4 6 8 10 12 14
Prediction steps

0.7

0.75

0.8

0.85

0.9

P
C

C

2 4 6 8 10 12 14
Prediction steps

-1

-0.8

-0.6

-0.4

-0.2

M
S

LL

2 4 6 8 10 12 14
Prediction steps

-0.1

-0.05

0

0.05

0.1

M
F

B

2 4 6 8 10 12 14
Prediction steps

0.88

0.9

0.92

0.94

0.96

0.98

F
A

C
2

Fig. 8 Comparison of different performance measures for multi-hour-ahead predictions with
iterated one-hour prediction step starting at 6.00. The analysis is made with predictions from
April 29, 2012 until December 31, 2014.

though, that a combination of models, i.e., an integrated or a hybrid model, that
provides the combination of the one-day-ahead prediction with iterated one-hour-
ahead predictions in the afternoon hours, may ensure more accurate predictions
of the maximum ozone values. This fact can be productively used for providing
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accurate information for the population and to increase the credibility of the alarm
system.

Moreover, the demonstrated modelling method, i.e., the Gaussian process re-
gression, provides a measure of confidence in the prediction. This can be a valuable
piece of information that also increases the credibility of the provided prediction.
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5 Conclusions

This paper described an empirical assessment of two approaches to predicting the
daily maximum values of tropospheric ozone. The first approach was a one-day-
ahead prediction and the second was a prediction of maximum values based on a
multi-step-ahead iteration of one-hour predictions. The Gaussian Process models
were used in modelling, in particular Evolving Gaussian Process models as their
on-line version.

The investigation confirmed that iterated one-hour-ahead predictions provide
better results in the last few hours before the maximum value occurs. This is a
consequence of a deterioration in the predictions’ accuracy with increasing itera-
tions. We suggest using the combination of one-day-ahead prediction and iterated
one-hour-ahead predictions in the afternoon hours to improve the forecasts of daily
maximum ozone values.

In addition, the values of the confidence interval for the model predictions can
provide additional information that can increase the credibility of the provided
prediction, if used properly. Also, when predicting with the one-hour data time
interval the estimate of the maximum-concentration time occurrence is available.

While the investigation confirmed the hypothesis on the use of data time inter-
vals for the prediction, it also opened up further questions regarding the prediction
interval for the daily maximum concentrations. Various studies show that empiri-
cal models used for ozone prediction provide relatively reliable predictions, mainly
for short time predictions. This may be due to an insufficient number of used input
variables or variables that do not encompass all the dependencies in the process of
ozone formation. This disadvantage can be compensated for with the use of physi-
cal models, to a certain extent. However, there is still space for an investigation of
empirical-modelling methods that will provide better long-range predictions that
can be used for atmospheric modelling.
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Gregor Gregorčič and Gordon Lightbody. Nonlinear system identification: From
multiple-model networks to Gaussian processes. Engineering Applications of Ar-

tificial Intelligence, 21(7):1035–1055, 2008.
Ulas Im, Roberto Bianconi, Efisio Solazzo, Ioannis Kioutsioukis, Alba Badia,

Alessandra Balzarini, Roco Bar, Roberto Bellasio, Dominik Brunner, Charles
Chemel, Gabriele Curci, Johannes Flemming, Renate Forkel, Lea Giordano, Pe-
dro Jimnez-Guerrero, Marcus Hirtl, Alma Hodzic, Luka Honzak, Oriol Jorba,
Christoph Knote, Jeroen J.P. Kuenen, Paul A. Makar, Astrid Manders-Groot,



Selection of the data time interval 17

Lucy Neal, Juan L. Prez, Guido Pirovano, George Pouliot, Roberto San Jose,
Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Alfreida
Torian, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Khairunnisa Yahya,
Rahela Zabkar, Yang Zhang, Junhua Zhang, Christian Hogrefe, and Stefano
Galmarini. Evaluation of operational on-line-coupled regional air quality mod-
els over Europe and North America in the context of AQMEII phase 2. Part
I: Ozone. Atmospheric Environment, 115:404–420, 2015. ISSN 1352-2310. doi:
http://dx.doi.org/10.1016/j.atmosenv.2014.09.042.

Hyuk Kang and F. C. Park. Motion optimization using Gaussian process dynam-
ical models. Multibody System Dynamics, 34(4):307–325, 2015.
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A Performance measures

The following are performance measures used in the study.

– The root-mean-square error – RMSE:

RMSE =

√√√√ 1

N

N∑
i=1

(E(ŷi)− yi)2, (9)

where yi and ŷi are the observation and the prediction in the i-th step, respectively, E(·)
denotes the expectation, i.e., the mean value, of the random variable, and N is the number
of used observations.

– The standardised mean-squared error – SMSE

SMSE =
1

N

∑N
i=1(E(ŷi)− yi)

2

σ2
y

, (10)

where σ2
y is the variance of the observations.

– The Pearson’s correlation coefficient – PCC:

PCC =

∑N
i=1(E(ŷi)− E(ŷ))(yi − E(y))

Nσyσŷ
, (11)

where E(ŷ) is the expectation, i.e., the mean value, of the vector of predictions, and σy,σŷ

are the standard deviations of the observations and the predictions, respectively.
– The mean fractional bias – MFB:

MFB =
1

N

N∑
i=1

E(ŷi)− yi
1
2
(E(ŷi) + yi)

. (12)

– The factor of the modelled values within a factor of two of the observations – FAC2:

FAC2 =
1

N

N∑
i=1

ni with ni =

{
1 for 0.5 ≤ |E(ŷi)

yi
| ≤ 2,

0 else.
(13)
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RMSE and SMSE are frequently used measures for the accuracy of the predictions’ mean
values, which are 0 in the case of a perfect model. SMSE is the standardised measure with
values between 0 and 1. PCC is a measure of the associativity and is not sensitive to bias. Its
value is between -1 and +1, with ideally linearly correlated values resulting in a value 1. MFB
is the measure that bounds the maximum bias and gives additional weight to underestimations
and less weight to overestimations. Its value is between -2 and +2, with the value 0 in the case
of a perfect model. FAC2 indicates the fraction of the data that satisfies the condition from
Equation (13). Its value is between 0 and 1, with the perfect model resulting in a value of 1.


