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Abstract—Scientists are confronted with significant data 

management problems due to the huge volume and high 

complexity of environmental data. An important aspect of 

environmental data management is that data, needed for a 

process, are not always in the adequate format. In this 

contribution, we analyze environmental data structure, and 

model this data using a semantic-based method. Using this model, 

we design and implement a framework based on Web services for 

transformation between massive environmental text-based data 

and relational databases. We present a mapping model for 

environmental data transformation to be used in the scenario 

devoted to the methodology for development of stochastic models 

for prediction of environmental parameters by application of 
Gaussian processes. 
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I. INTRODUCTION 

Nowadays, a significant part of a scientist's work is 
dedicated to accessing, visualizing, integrating and analyzing 
data from a wide range of heterogeneous sources because 
science is more and more data-driven. On the other hand, 
scientist's activities, scientific instruments and computer 
simulations produce more and more data from different 
domain, e.g. physics, astronomy, meteorology, air pollution 
and so on. Scientists process these data and generate new data 
based on the results of the processes. Editing and updating of 
data also generates data. Produced data are schema-less, semi 
or fully structured persisting in different repositories [5]. 
According to some sources [2], the data volumes are 
approximately doubling each year. Furthermore, scientists need 
to know based on which collection of data they have produced 
a specific result. An important problem that arises here is the 
data provenance and the data versioning that can be expressed 
by the question: What data in which version a specific result 
was obtained. So, data require new methods of organization for 
scientific analysis. It is obvious that scientists need a data 
structuring and a storing organization for data management and 
processing.  

The existing scientific tools are mostly focused on data 
processing and visualization, and data management is largely 
left to the user [3]. 

Many of scientific data are traditionally stored in ASCII 
format, i.e. text file. The ASCII text is a recognized standard 
for data exchange (e.g. input/output) supported by scientific 
instruments and simulation devices. It is recognized that 
ASCII-based data are platform independent, so they can be 
analyzed in different operating systems and they can be 
imported to whatever information system or scientific 
workflow. However, this form presents some drawbacks: 

· Low readability: data can be presented in different units 
without any context-based explanation and they become 
somewhere ambiguous. 

· Hard to integrate: scientific data are natively 
heterogeneous, unstructured and they are usually stored 
in different files and/or in different locations. This 
makes it difficult to integrate all the data into one place 
without a common sematic schema. 

· Data searching: content discovery is a difficult task in a 
large datasets or in thousands of distributed files. 

An important aspect of environmental data management is 
that data, needed for a process, are not always in the adequate 
format. Scientists use different tools in different stages of their 
research; they develop some tools for their work by themselves 
and spend time to retrofitting data into acceptable formats for 
these tools [4]. 

So, the main problem to address here is how to provide an 
efficient way to implement massive data transformation 
between texts and databases. This is a common problem for 
both computer science researchers and environmental science 
researchers, aswe consider environmental data as a subset of 
scientific data. 

In semi-structured data, the information that is normally 
associated with a schema is contained within the data [3]. The 
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meaning and logic structure of semi-structured data can be 
expressed and identified by semantic tags. For instance, XML 
is a standardized extended markup semi-structured data. 

In this paper, we present our work in progress. We analyze 
environmental data structure, and model this data using a 
semantic-based method. Using this method, we design and 
implement a Web service-based framework for transformation 
between massive environmental text-based data and relational 
databases. As main contribution, we present a mapping model 
for environmental data transformation. We apply this model in 
a scenario devoted to the methodology for development of 
stochastic models for prediction of environmental parameters.  

We envision a schema for prediction of environmental 
parameters by application of Gaussian processes, e.g. the ozone 
concentration in the air based on data collected on-line by 
automatic measurement stations. As well, we can easy apply 
the developed methodology to predict the concentrations of 
other air pollutants e.g. sulfur dioxide and nitrogen dioxide. 

The paper is organized as follows: first in section 2 we 
present the background with some related work. In section 3, 
we present our motivation and concept for an environmental 
Web services-based workflow. In sections 4 and 5 we present 
our scenario for environmental data processing based on 
Gaussian processes. Finally, in section 6 we conclude and 
discuss some future work. 

II. BACKGROUND AND RELATED WORK 

As presented in [3] scientific utilities can fall into three 
categories: (1) scientific software; (2) scientific languages and 
(3) scientific workflows. In this study we present a non-
exhaustive list of mature scientific utilities i.e. scientific 
software, scientific languages, workflows software and systems 
to justify the choice that we will do in our research project. 

A. Scientific Software 

Scientific software tools in general, load data in memory. 
Usually scientists need to perform some extra steps in order to 
prepare data for processes. To use different tools, scientists 
must learn different sets of commands, scripting or 
programming languages for different framework and operating 
systems. 

B. Scientific Languages 

The Apache Hadoop [9] is an open-source software library 
for storage and large-scale processing of data-sets on clusters. 
It is a framework that allows distributed processing of large 
data sets across single servers or thousands of machines by 
using simple programming models. As presented in [8], the 
Java open source library is designed to detect and handle 
failures at the application layer, so delivering a highly-available 
service on top of a cluster. 

Google Open Refine (GOR) [6] is a standalone open source 
desktop application for data cleanup and transformation to 
other formats. It is similar to spreadsheet applications; 
however, it behaves more like a database. GOR opens a Web 
interface powered by aWeb server. It operates on rows of data 
which have cells under columns, which is similar to relational 
database tables. Transformation expressions are written in the 

GOR Expression Language. It is able to work with CSV, TSV, 
XML, JSON, Excel and RDF formats. 

Matlab [7] is a numerical computing environment and 
allows matrix manipulations, plotting of functions and data, 
implementation of algorithms, creation of user interfaces. It 
imports data from CSV files, excel spreadsheets and databases. 
Import functions read the data in memory and reorganize them 
in vectors or matrices, then all functions work on these data 
structures and possible interfacing with programs written in 
other languages, including C, C++, Java, and FORTRAN. 

C. Scientific Workflows 

Workflow composition represents the conceptual model of 
a scientific analysis which implies the flow of data within a 
system. Every step of workflows acts on the data. The required 
data are obtained from previous steps, from local files, from 
relational databases, from remote services or another source. 

Kepler [10] is a free scientific workflow management 
system. It is able to acquire data from different sources, process 
them by prepared or user defined components. Optionally, an 
external data processing facility can be applied. This software 
provides process and data monitoring, provenance information, 
and data movement solutions. Its architecture is directed graphs 
where the nodes represent discrete computational components 
and the edges represent paths along which data and results can 
flow between components. In Kepler obtaining data from 
external sources like CSV files, spreadsheets, relational 
DBMSs and remote data sources are done by specific actors as 
metaphors to model the steps of workflows. The system 
includes a graphical user interface for composing workflows. 

VisTrails [11] is an open-source scientific workflow and 
provenance management system that provides support for 
simulations, data exploration and visualization [3]. The 
provenance information is presented as XML files or as tables 
in a relational database. It allows users to navigate workflow 
versions, to undo changes, to visually compare workflows and 
their results, and to examine the actions that led to a result. It 
allows the combination of loosely-coupled resources, 
specialized libraries, grid and Web services. 

Taverna [12] is an open source scientific Workflow 
management tool suite to design and execute workflows. It is 
able to fetch data from CSV and spreadsheet files, local and 
remote resources through provided or custom services. It 
provides provenance functionalities and a common model for 
workflows and means for sharing and reusing them across the 
borders of individual working groups. To leverage the existing 
infrastructure, the computational model strongly focuses on 
Web-services. It provides an API and a Web interface to access 
data about various Web services. 

III. MOTIVATION AND CONCEPT FOR AN ENVIRONMENTAL 

WORKFLOW 

Scientific Workflows present a managed combination of 
activities and computations in order to resolve scientific 
problems. In contrast to business Workflows that implement 
business processes involving different actors and systems, 
scientific workflows are used to realize computational 
experiments, possibly confirming or invalidating scientific 
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hypotheses. Scientific Workflow systems maintain the 
execution of repetitive tasks such as data access, transformation 
and analysis [1, 24] data from heterogeneous sources, e.g. 
sensor systems, measuring instruments, text files, spreadsheets, 
databases, simulation devices, etc. 

The creation and exchange of scientific and environmental 
information increase the amount of data that should be 
processed, from one hand, as well as the possibilities for their 
interpretation, on the other hand. This motivates many 
researchers and specialists to reconsider the existing 
engineering and network architectures, the database schemas, 
the algorithms and rules for data interpretation. Beside the hug 
size, the data are represented in a way, which does not allow 
processing by the traditional DBMS, because of their 
heterogeneity and specific characteristics. 

Sensor systems are usually used to monitor the state of the 
environment in the urban areas. The obtained measurements 
need to be stored in a database, which is very important for the 
development of schema-based data models. So, the data 
collected by the sensors are used in real time by different 
applications through procedures for control of large amount of 
data in spatiotemporal databases. The problem which arises is 
related to the information control, because of the specific 
characteristics of the collected data. The space-time character 
of data requires the development of new approaches for 
structuring, exploitation and visualization of these data. Sensor 
networks and associated databases are used for monitoring and 
registration of various environmental phenomena, e.g. for the 
accurate prediction of the future values of these phenomena 
and for all stochastic-based data processing for environmental 
norm evaluation. 

Specific languages for scientific data description already 
exist. CDF and HDF are languages, which are used in the 
physics of thermonuclear synthesis, the geology and the 
astronomy. They represent data models, API, and file formats 
for storage and control of scientific data. These formats allow 
storing data as a simple table that is difficult to apply with a 
large amount of data that have a complex structure. In our work 
we process environmental data as a subset of scientific data. 
However, a specific language for description of environmental 
data doesn't really exist. Moreover, there is a large diversity of 
characteristics proprietary of environmental data, i.e. different 
scales of measurement expressed in different units. We suggest 
the use or the extension of a scientific Workflow with adapted 
semantics for presentation and storage of large amount of data, 
related to the monitoring system that analyzes environmental 
parameters. We argue for a semantic and Web service-based 
approach for processing environmental data from multiple and 
heterogeneous sources. 

The study of environmental data requires the use of 
protocols, mathematical models and procedures, which need to 
be validated. In order to accomplish this, we rely on a 
Workflow scientific process through integration and control of 
the components, defining the air quality in the environment. 

The scientific goal of our research work in progress is to 
study the complexity of the systems for environmental 
monitoring, which use large amount of data. 

 

Fig. 1. General structure diagram of a scientific workflow for environmental 

data processing. 

We develop solutions in terms of semantic languages, 
models and methods for access, storage and use of scientific 
and environmental data, implemented mainly as Web interfaces 
and services. Our focus in this area is geared towards the 
design and implementation of service oriented systems that 
allow a pay-as-to-go generation of composite cloud-based 
services according to the users’ requirements. 

In this paper, we aim at the development and integration of 
technologies and expertise, necessary to resolve the problem 
with the huge amount of environmental data applied to 
stochastic models for environmental parameter prediction by 
application of Gaussian processes. In order to achieve this goal, 
we rely on a Workflow-based scientific process, directed 
towards the control of data flow (Fig. 1). 

The main goal includes the following sub-goals: 

1) Development of a data control strategy. We study the 

algorithms and the efficiency of the Cloud-XaaS platform 

(Anything-as-a-Service) with an emphasis on the semantic 

structuring of acquired data from the instruments in order to 

facilitate the data integration when heterogeneous sources are 

used.We develop services for remote data control, associated 

with the data processing,i.e.acquisition, analysis, requests, 

actualization,computations and visualizationas shown inFig. 1. 

2) Data storage. We develop a multi-layer model with an 

automatic indexing of data by using the existing services within 

the Cloud-based platforms. We propose a native data storage 

architecture (NXD), which is adapted to various functions 

allowing the connection with other platforms. 

3) Distribution of the environmental data. We develop a 

model for digital visualization of environmental data through a 

transformation process for Web-based presentation in terms of 

tables and/or vector graphics. The environmental data are 

transformed into SVG, as an XML document, which allows 

building applications for immediate graphical representation of 

the prognosis on the user side. The digital visualization is 

associated with the latest advances in responsive design that 

takes into account all particularities of desktop and mobile 

devices based on media queries. 

4) Development of mathematical models for prediction of 

environmental parameters. This includes the system 
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integration via Web services of the modeling approach based 

on Gaussian processes with data about the concentrations of 

ozone, sulfur dioxide and nitrogen dioxide in the air, collected 

at the automatic measurement stations. 

5) Metadata descriptions. Scientific Workflow systems 

typically describe data processing via a Workflow definition 

language. However, current specific Workflow definition 

languages, even adopted by current mature scientific Workflow 

systems, are too complex and excessive for non-professionals. 

We design an XML-based environmental data definition 

language using schema descriptions to suit a lightweight 

workflow system in a specific domain such as air quality. 

6) Data integration. Notable characteristics of scientific 

computing are data integration, data manipulations during 

calculation, scientific analysis, data migration and the data 

store on distributed machines according to guidelines and 

logical relations [8]. We assert that Web Services can be used 

to unlock heterogeneous scientific systems to extract and 

integrate environmental data. 
There are two issues in using a scientific Workflow 

approach to prediction modeling: The first one is the choice of 
a Workflow composition and execution environment. The 
second issue adapts the process steps in an environmental data 
management suite. We recommend the second issue because it 
can be associated to Web Service technology. It is necessary to 
recall that the Web Service paradigm enables the aggregation 
of multiple data sources. In this approach, each process step is 
implemented as a Web Service and Web Services are chained 
together to form a modeling task as shown in Fig. 2. In the core 
of Web Service technology is the Web Services Description 
Language (WSDL) [13]. WSDL provides a XML-based 
framework and language for defining interfaces e.g. input and 
output, SOAP access specification (Simple Object Access 
Protocol) [14] and the location of the service. This approach 
can achieve greater system interoperability with existing 
scientific Workflows. 

 
Fig. 2. Integrated platform for environmental data processing with 

environmental metadata description, Web Services Management for data and 
application integration with an environmental Workflow. 

IV. ENVIRONMENTAL DATA METADATA DESCRIPTION AND 

PROCESSING 

A. Environmental Data Need a MetadataDescription 

In general, to be able to process scientific and 
environmental data it is important to know their meaning, e.g. 
what it is about, how they was obtained, how they are 
formatted and so on. This information is coded and stored as 
data about the real data, i.e. an underlying definition or 
description. The formal descriptions are useful to record 
meaningful information about the data, their provenance and 
their coding in order to be understood by other users. So, we 
generate metadata as data that describe other data with some 
common characteristics: 

· The metadata summarize basic information about data, 
which can make finding and working with particular 
instances of data easier, or to locate a specific set of 
data by filtering through metadata. 

· Metadata for scientific and environmental data contain 
descriptions of the content, as well as keywords linked 
to the content. These are usually expressed in the form 
of meta-tags. 

· The meta-tags are the vocabulary of metadata and they 
are often evaluated by search engines to help decide of 
data relevance. 

· The metadata information is to be used in automated 
data processing by standard procedures, i.e. the 
procedures have to understand metadata and to process 
data according to metadata description. 

· Metadata can be created manually, or by automated 
information processing. 

There are a lot of research works in the metadata domain as 
described in [24].Some of them try to define a formal language 
able to describe a widest set of data. Organization such as 
OMG[23] developed standard models and languages such as 
CWM and UML. On the basis of CWM several metadata 
models for business application were developed in [22]. The 
main difficulty to address here is the data heterogeneity, the 
variety of their applications and the wide range of specialized 
languages used for their description. The native heterogeneity 
specific to environmental data requires a meta-description that 
takes into account the difference in size, the difference in 
measurement scale, the difference in context or provenance. In 
this study, we find that languages mentioned so far do not 
appear to be entirely satisfactory. Therefore we recommend 
more appropriate environmental data semantics to be defined. 

B. Metadata Types and Models 

In our research work for the description of environmental 
data we define different types (levels) of metadata: 

1) Origin:this data describe the ownership of each piece of 

data, the place where it is stored, the organization and/or the 

person responsible for its maintenance. 

2) Access right:this data describe rights to read, write or 

process data by someone. 
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3) Processing:the data about special routines or/and 

algorithms for processing a piece of data. 

 

Fig. 3. Environmental data model presented in three sections with two 

reference classes that tell the mapping between both models presented as 
XML schema, i.e. (1) General; (2) Semantics; (3) Layout. 

4) Formatting:this data describe how data are recorded 

and stored; are they numerical and in what unit of 

measurement are they written. 

5) Naming and Meaning: this data describe data about the 

namespace of every piece of data, their meaning described by 

the language of the knowledge domain and the data 

provenance. 
Fig. 3 shows our concept of XML schema for metadata 

description. This choice is argued by the differences between 
business data and scientific data as described below: 

· Most scientific data is numerical and float especially in 
domains with strong mathematical background as 
physics, chemistry and engineering. 

· The datasets concerning one source are huge. 

· The origin and access metadata values are identical for 
whole datasets. They do not differ from value to value 
as in the case of business data. 

· Most of scientific data are multidimensional tables. 

 

Fig. 4. Canonical form of our environmental data processing model 

C. Relational Model of Scientific Data 

In our work we propose a scientific-environmental dataset 
as a simple relational database. So, the metadata was devised in 
three parts (sections). 

1) General: metadata about the origin and access rights. 

This part contains also a general description of the data and 

references to specific procedures used to process them. 

2) Semantics: contains elements describing the meaning of 

the data file. The main hypothesis was that most 

environmental data can be presented as one or as few tables 

containing two types of quantities: (1) independent and (2) 

dependent quantities. This way they can be examined as a 

relational table with a primary key consisting of independent 

quantities and the dependent quantities as non-key attributes. 

There are other data named parameters that are common for 

the whole dataset and characterize the environment of the 

experiment or the assumptions of the simulation as shown in 

Fig. 3. 

3) Layout:describes the formatting and the structure of the 

raw data. 
In Fig. 4 our environmental data processing model is 

presented. The idea behind is to convert environmental data to 
the structure of the developed semantics model named 
canonical or standard form. By this approach it becomes easier 
to develop associated Web services for environmental data 

processing. Instead developing NM ´ different Web services 

processing M different data structures to N  results we can 

produce M  transformations (automatic) to standard form and 

N Web services. The conversion is done according the meta-
description of data and Web services defined in the canonical 
description shown in Fig. 3. 

The proposed solution serves as a modeling language for 
experimental and measured data from different environmental 
sources and captures, especially applied to predict the 
concentrations of air pollutants in an inspected region. 
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V. ENVIRONMENTAL DATA PROCESSING BASED ON 

GAUSSIAN PROCESSES 

This section is devoted to the methodology for development 
of stochastic models for prediction of environmental 
parameters by application of Gaussian processes. It represents 
the core of the data processing block in the structural diagram, 
shown in Fig. 1. The Gaussian process (GP) model is a 
probabilistic, non-parametric black-box model based on the 
principles of Bayesian probability. The output of the GP model 
is a random variable withnormal distribution, expressed in 
terms of the mean and the variance. The mean value represents 
the most likely output and the variance can be interpreted as a 
measure of its confidence. The obtained variance, which 
depends on the amount and the quality of the available 
identification data, is important information when it comes to 
distinguishing the GP models from other computational 
intelligence methods. Because of their properties GP models 
are especially suitable for uncertain processes modelling or 
when modelling data are unreliable, noisy or missing. In this 
respect, GP models fit well for environmental 
systemmodelling. Its use and properties for modelling are 
reviewed in [15]. The use of Gaussian processes for dynamic 
system modelling is a relatively recent development [16, 17, 
18]. A retrospective review of dynamic system modeling with 
Gaussian process models can be found in [19]. 

A Gaussian process is a collection of random variables 
which have a joint multivariate Gaussian distribution (Fig. 5). 

Assuming a relationship of the form ( )y f= x  between an 

input 
DRX Î and output RY Î , we have (1), (2), ... , ( )~ (0, )y y y M ΣN , 

where Cov( ( ), ( )) ( ( ), ( ))pq y p y q C p qS = = x x  gives the covariance 

between the output points ( )y p  and ( )y q  corresponding to the 

input points ( )px and ( )qx . Thus, the mean ( )m x  (usually 

assumed to be zero) and the covariance function ( ( ), ( ))C p qx x  

fully specify the Gaussian process. Note that the covariance 

function ( ( ), ( ))C p qx x  can be any function with the property 

that it generates a positive definite covariance matrix. A 
common choice is: 

2

1 0

1

1
( ( ), ( )) exp ( ( ) ( ))

2

D

i i i pq

i

C p q v w x p x q v a
=

é ù
= - - +ê ú

ë û
åx x  (1) 

where 1 0 1[ , ... , , , ]Dw w v v=Θ are the "hyper-parameters" of 

the covariance function, 
ix  denotes the i-th component ofthe 

D-dimensional input vectorX, and 
pqa  is the Kronecker 

operator. The covariance function (1) is composed of two parts: 
the Gaussian covariance function for the modeling of system 
function and the covariance function for the modelling of noise. 
The noise is usually presumed to be white. Other forms of 
covariance functions suitable for different applications can be 
found in [15]. For a given problem, the hyper-parameters are 
learned (identified) using the data at hand. After the learning, 

one can use the w  parameters as indicators of ‘how important’ 

the corresponding input components (dimensions) are: if iw  is 

zero or near zero it means that the inputs in dimension i contain 
little information and could possibly be removed. 

Consider a set of MD-dimensional input vectors

1 2[ , ,..., ]T

M=X x x x
 and a vector of output data

1 2[ , , ... , ]T

My y y=y
. Based on the data ( , )X y , and given a 

new input vector
*

x , we wish to estimate the probability 

distribution of the corresponding output *y . Unlike other 

models, there is no model parameter determination as such, 
within a fixed model structure. With this model, most of the 
effort consists in tuning the parameters of the covariance 
function. This is done by maximizing the log-likelihood of the 
parameters, which is computationally relatively demanding 
since the inverse of the data covariance matrix (M×M) has to be 
calculated at every iteration. 

The described approach can be easily utilized for regression 

calculation. Based on a training set X , a covariance matrix K  
of size M×M is determined. As already mentioned before, the 
aim is to estimate the probability distribution of the 

corresponding output *y  at some new input vector
*

x . For a 

new test input
*

x , the predictive distribution of the 

corresponding output is * *| , ( , )y x X y  and is Gaussian, with 

mean and variance: 

* * 1

2 * * * 1 *

0

( ) ( )

( ) ( ) ( ) ( )

T

Tk

m

s

-

-

=

= -

x k x K y

x x k x K k x
 (2) 

where * * *

1( ) [ ( , ), ..., ( , )]T

MC C=k x x x x x  is the M×1 vector 

of covariance between the test and training cases and 
* * *

0( ) ( , )k C=x x x  is the covariance between the test input and 

itself. 

The identified model, in addition to mean value, also 
provides information about the confidence in prediction by the 
variance. Usually, the prediction confidence is depicted with 

2s  interval which is about 95% confidence interval. 

 

Fig. 5. Modelling with GP - Gaussian distribution of predictions at new 

points 
1x , 

2x  and 
3x , conditioned on the training points (.). 
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Fig. 6. Using GP models - in addition to the prediction mean value (full 

line), we obtain a 95% confidence region (dotted lines) for the underlying 

function f . 

This confidence region can be seen in the example in Fig. 
6as band bounded by dotted lines. It highlights areas of the 
input space where the prediction quality is poor, due to the lack 
of data or noisy data, by indicating a wider confidence band 
around the predicted mean. 

Gaussian processes can, like neural networks, be used to 
model static non-linearities and can therefore be used for 
modeling dynamic systems [16, 18] as well as time series if 
lagged samples of output signals are fed back and used as 
regressors. For the environmental parameter dynamics 
modelling we consider representation where the output at the 
step k depends on the delayed outputs y: 

( ) ( ( 1), ( 2), ... , ( )) ( )y k f y k y k y k n ke= - - - +  (3) 

where ( )ke  is white noise and the output ( )y k  depends on 

the vector [ ( 1), ( 2), ... , ( )]Ty k y k y k n- - - . Assuming the 

signal is known up to the step k, we wish to predict the system 
output h steps ahead, i.e., we need to find the predictive 

distribution of ( )y k h+  corresponding to ( )k h+x . Multiple-

step-ahead predictions of a system modeled by eq. (3) can be 
achieved by iteratively making repeated one-step-ahead 
predictions, up to the desired horizon [16, 18]. 

The quality of the mean values predicted by a Gaussian 
process model can be assessed by computing the average 
squared error (ASE) [15]: 

2

1

1
ˆ[ ]

M

i i

i

ASE y y
M =

= -å   (4) 

where ˆ
iy  and 

iy  are the output prediction and the output 

measurement at the i-th step. Additionally, the quality of the 
prediction variance can be assessed with the logarithm of the 
predictive density error (LD) [15]: 

2
2

2
1

ˆ[ ]1 1
log(2 ) log( )

2 2

M
i i

i

i i

y y
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M
p s

s=

æ ö-
= + +ç ÷

è ø
å  (5) 

where 2

is  are the prediction at the i-th step. 

The described methodology for development of GP models 
for environmental parameter prediction has been already 
applied to predict the ozone concentration in the air of Bourgas 
city, based on data collected on-line by the automatic 
measurement stations [20, 21]. This methodology can be easily 
applied to predict the concentrations of other air pollutants like 
sulfur dioxide and nitrogen dioxide in some of the most air 
polluted industrial cities in Bulgaria (Plovdiv, Stara Zagora, 
Varna, Bourgas). 

VI. CONCLUSION 

In this paper we proposed a concept of the framework for 
environmental data processing and stochastic models for 
prediction of environmental parameters. We analyzed 
environmental data structure, and modeled this data using a 
semantic-based method. Using this model, we designed and 
implemented a framework based on Web services for 
transformation between massive environmental text-based data 
and relational databases. We presented a mapping model for 
environmental data transformation to be used by application of 
Gaussian processes. 

For future work we emphasize for environmental risk 
management and data provenance linked to gas emissions and 
pollution of air in industrialized cities. 
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